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Differential Equations and Linear Algebra 2250 Scores

Midterm Exam 2

Instructions: This in-class exam is designed to be completed in 30 minutes. No calculators, notes, tables or
books. No answer check is expected. Details count 3/4, answers count 1/4.

1. (The 3 Possibilities with Symbols)

Let a, b and ¢ denote constants and consider the system of equations

0 0 0 x 0
9% —4 3 a w2
b+1 ~1 0 v 1= b
-1-b 1 a 2 b —b

(a) [40%)| Determine a and b such that the system has a unique solution.

(b) [30%)] Explain why a = 0 and b # 0 implies no solution. Ignore any other possible no solution cases.

(c) [30%] Explain why a = b = 0 implies infinitely many solutions. Ignore any other possible infinitely
many solution cases.
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2. (Vector Spaces) Do all parts. Details not required for (a)-(d).

. 1 1 3
(a) [10%)] E@r false: Thereis egubs_ggce S of R® coptaining none of the vectors | 1 ) , ( -1 ) , ( 1 )
‘T)}: 2V +Va = cll‘m(S): I R= grm\(\'/':x.\\[z 1 0 2
(b) [10%)] @or false: The set of solutions @ in R3 of a cc))nsistent matrix eqution Ai = b can equal
all vector?_iggle zy-plane, that is, all vectors of the form @ = (z,y,0). Exqule (2=o
(c) [10%] |True]or false: Relations z2 4+ 3% =0, y + z = 0 define a subspace in R3. ' { ©=o0
(d) [10%) Tue pr false: Equations z = y, z = 2y define a subspace in R®. kevne | Theo re;\"
(e) [20%)] Linear algebra theorems are able to conclude that the set S of all polynomials f(z) =cp+eciz+
coz? such that f'(z) + fy f(z)zdz = 0 is a vector space of functions. Explain why V = span(l,z,z?) is
a vector space, then fully state a linear algebra theorem required to show S is a subspace of V. To save
time, do not write any subspace proof details.
(f) [40%] Find a basis of vectors for the subspace of RS given by the system of restriction equations

3z 4+ 2z3 + 4z4 + 1025 = 0,
21, + x3 + 234 + 4dzs = 0,
-2z + 4z = 0,
21 + 2z3 + 4z4 + 12z5 = 0.
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3. (Independence and Dependence) Do all parts.

(a) [10%)] State a dependence test for 3 vectors in RY. Write the hypothesis and conclusion, not just the
name of the test.

(b) [10%] State fully an independence test for 3 polynomials. It should apply to show that 1, 1 + z,
z(l + z) are independent.
(c) [10%)] For any matrix A, rank(A) equals the number of lead variables for the problem AT = 0. How
many non-pivot columns in an 8 x 8 matrix A with rank(4) = 67
(d) [30%)] Let vy, vo, V3, v4 denote the rows of the matrix

0 -2 0 -6 0
0 20 51
A= 0o 10 21
0 10 30
Decide if the four rows @y, U, U3, 74 are independent and display the details of the chosen independence
test.
(e) [40%)] Extract from the list below a largest set of independent vectors.
0 0 0 0 0 0
0 2 1 3 1 0
-~ |0 . 2 ~ 1 o 3 - |1 -~ _| O
1= 0 ,'U2— _2 ,'U3— _1 ,'U4— _1 ,U5— 1 )UG— 2
0 0 0 0 0 0
0 2 1 5 3 2
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/" Differential Equations and Linear Algebra 2250
Midterm Exam 2

Instructions: This in-class exam is designed to be completed in under 30 minutes. No calculators, notes,
tables or books. No answer check is expected. Details count 3/4, answers count 1/4.

4. (Determinants) Do all parts.
(a) [10%] True or 1@ The value of a determinant is the product of the diagonal elements.
(b) [10%] True or(False3 The determinant of the negative of the n x n identity matrix is —1.
(c) [20%) Assume given 3 x 3 matrices A, B. Suppose A2B = E;F; A and E1, E; are elementary matrices
representing respectively a swap and a multiply by —5. Assume det(B) = 10. Let C = 2A. Find all
possible values of det(C).
(d) [30%] Determine all values of z for which (I + C)~! fails to exist, where C equals the transpose of
2 0 -1
the matrix 3r 0 1
z—1 z =«
(e) [30%] Let symbols a,b, c denote constants. Apply the adjugate [adjoint] formula for the inverse to
find the value of the entry in row 3, column 4 of A™!, given A below.
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5. (Linear Differential Equations) Do all parts.
(a) [20%] Solve for the general solution of 153" + 8y’ +y = 0.
(b) [40%] The characteristic equation is r2(2r + 1)3(r> — 2r 4+ 10) = 0. Find the general solution y of
the linear homogeneous constant-coefficient differential equation.
(c) [20%] A fourth order linear homogeneous differential equation with constant coefficients has two
particular solutions 2€3% + 4z and ze3®. Write a formula for the general solution.
(d) [20%] Mark with X the functions which cannot be a solution of a linear homogeneous differential
equation with constant coefficients. Test your choices against this theorem:

The general solution of a linear homogeneous nth order differential equation with constant
coefficients is a linear combination of Euler solution atoms.

x eln f2z] X e 2+ x cos(lnlml)X
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