Name \qquad

Differential Equations and Linear Algebra 2250 Sample Midterm Exam 3 2014

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

1. (Chapter 5) Complete all.
(1a) [50\%] The differential equation $\frac{d^{4} y}{d x^{4}}+\frac{d^{2} y}{d x^{2}}=12 x^{2}+6 x$ has a particular solution $y_{p}(x)$ of the form $y=d_{1} x^{2}+d_{2} x^{3}+d_{3} x^{4}$. Find $y_{p}(x)$ by the method of undetermined coefficients (yes, find d_{1}, d_{2}, d_{3}).
(1b) [20\%] Given $5 x^{\prime \prime}(t)+2 x^{\prime}(t)+4 x(t)=0$, which represents a damped spring-mass system with $m=5, c=2, k=4$, determine if the equation is over-damped, critically damped or under-damped.
To save time, do not solve for $x(t)$!
(1c) [30%] Given the forced spring-mass system $x^{\prime \prime}+2 x^{\prime}+17 x=82 \sin (5 t)$, find the steady-state periodic solution.

Use this page to start your solution. Attach extra pages as needed.

Name.
2. (Chapter 5) Complete all.
(2a) [60\%] A homogeneous linear differential equation with constant coefficients has characteristic equation of order 6 with roots $0,0,-1,-1,2 i,-2 i$, listed according to multiplicity. The corresponding non-homogeneous equation for unknown $y(x)$ has right side $f(x)=5 e^{-x}+4 x^{2}+x \cos 2 x+\sin 2 x$. Determine the undetermined coefficients shortest trial solution for y_{p}.
To save time, do not evaluate the undetermined coefficients and do not find $y_{p}(x)$! Undocumented detail or guessing earns no credit.
(2b) [40\%] Let $f(x)=x^{3} e^{1.2 x}+x^{2} e^{-x} \sin (x)$. Find the characteristic polynomial of a constant-coefficient linear homogeneous differential equation of least order which has $f(x)$ as a solution. To save time, do not expand the polynomial and do not find the differential equation.

Use this page to start your solution. Attach extra pages as needed.

Name.
3. (Chapter 10) Complete all parts. It is assumed that you have memorized the basic 4 -item Laplace integral table and know the 6 basic rules for Laplace integrals. No other tables or theory are required to solve the problems below. If you don't know a table entry, then leave the expression unevaluated for partial credit.
(3a) [40\%] Display the details of Laplace's method to solve the system for $x(t)$. Don't solve for $y(t)$!

$$
\begin{aligned}
& x^{\prime}=x+3 y, \\
& y^{\prime}=-2 y, \\
& x(0)=1, \quad y(0)=2 .
\end{aligned}
$$

(3b) [30\%] Find $f(t)$ by partial fractions, the shifting theorem and the backward table, given

$$
\mathcal{L}(f(t))=\frac{2 s^{3}+3 s^{2}-6 s+3}{s^{3}(s-1)^{2}} .
$$

(3c) $[30 \%]$ Solve for $f(t)$, given

$$
\mathcal{L}\left(e^{2 t} f(t)\right)+2 \frac{d^{2}}{d s^{2}} \mathcal{L}(t f(t))=\frac{s+3}{(s+1)^{3}} .
$$

Use this page to start your solution. Attach extra pages as needed.

Name. \qquad
4. (Chapter 10) Complete all parts.
(4a) [60\%] Fill in the blank spaces in the Laplace table:

Forward Table

$f(t)$	$\mathcal{L}(f(t))$
t^{3}	$\frac{6}{s^{4}}$
$e^{-t} \cos (4 t)$	
$(t+2)^{2}$	
$t^{2} e^{-2 t}$	

Backward Table

$\mathcal{L}(f(t))$	$f(t)$
$\frac{3}{s^{2}+9}$	$\sin 3 t$
$\frac{s-1}{s^{2}-2 s+5}$	
$\frac{2}{(2 s-1)^{2}}$	
$\frac{s}{(s-1)^{3}}$	

(4b) $[20 \%]$
Find $\mathcal{L}(f(t))$ from the Second Shifting theorem, given $f(t)=\sin (2 t) \mathbf{u}(t-2)$, where \mathbf{u} is the unit step function defined by $\mathbf{u}(t)=1$ for $t \geq 0, \mathbf{u}(t)=0$ for $t<0$.
(4c) [20\%] Find $f(t)$ from the Second Shifting Theorem, given $\mathcal{L}(f(t))=\frac{s e^{-\pi s}}{s^{2}+2 s+17}$.

Use this page to start your solution. Attach extra pages as needed.

Name.

\qquad
5. (Chapter 6) Complete all parts.
(5a) $[30 \%]$ Find the eigenvalues of the matrix $A=\left(\begin{array}{rrrr}1 & 4 & 1 & 12 \\ -4 & 1 & -3 & 15 \\ 0 & 0 & -1 & 6 \\ 0 & 0 & -2 & 7\end{array}\right)$. To save time, do not find eigenvectors!
(5b) $[30 \%]$ Given $A=\left(\begin{array}{rrr}1 & -1 & 1 \\ 1 & 3 & -1 \\ 1 & 1 & 1\end{array}\right)$, which has eigenvalues $1,2,2$, find all eigenvectors for eigenvalue 2.
(5c) [20\%] Suppose a 3×3 matrix A has eigenpairs

$$
\left(2,\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)\right), \quad\left(2,\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right), \quad\left(0,\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right) .
$$

Display an invertible matrix P and a diagonal matrix D such that $A P=P D$.
(5d) [20\%] Assume the vector general solution $\overrightarrow{\mathbf{u}}(t)$ of the 2×2 linear differential system $\overrightarrow{\mathbf{u}}^{\prime}=C \overrightarrow{\mathbf{u}}$ is given by

$$
\overrightarrow{\mathbf{u}}(t)=c_{1} e^{2 t}\binom{1}{-1}+c_{2} e^{2 t}\binom{2}{1} .
$$

Find the matrix C.

Use this page to start your solution. Attach extra pages as needed.

