\qquad

Differential Equations and Linear Algebra 2250
Midterm Exam 2
Version 1, 21 Mar 2014

Scores
1.
2.
3.
4.
5.

Instructions: This in-class exam is designed to be completed in 30 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

1. (The 3 Possibilities with Symbols)

Let a, b and c denote constants and consider the system of equations

$$
\left(\begin{array}{ccr}
b-3 & a & 2 \\
2 b-4 & a & 3 \\
1-b & 0 & -1 \\
b-1 & a & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
b^{2}-b \\
b^{2} \\
-b \\
b^{2}+b
\end{array}\right)
$$

plan: Toolkit untila row of Zeros, Then replace by a 3×3 system, take determinax.
(a) [40\%] Determine a and b such that the system has a unique solution.
(b) [30\%] Explain why $a=0$ and $b \neq 0$ implies no solution. Ignore any other possible no solution cases. plan: produce a signal equation.
(c) $[30 \%]$ Explain why $a=b=0$ implies infinitely many solutions. Ignore any other possible infinitely many solution cases. plan: Consistent system t one free variable
(a) $\left(\begin{array}{cccc}b-3 & a & 2 & b^{2}-b \\ 2 b-4 & a & 3 & b^{2} \\ 1-b & 0 & -1 & -b \\ 0 & a & 0 & b^{2}\end{array}\right)$ combo $(3,4,1)\left(\begin{array}{cccc}b-3 & 0 & 2 & -b \\ 2 b-4 & 0 & 3 & 0 \\ 1-b & 0 & -1 & -b \\ 0 & a & 0 & b^{2}\end{array}\right)$ combo $(4,1,-1)$
$\rightarrow\left(\begin{array}{cccc}b-3 & 0 & 2 & -b \\ b-3 & 0 & 2 & -b \\ 1-b & 0 & -1 & -b \\ 0 & a & 0 & b^{2}\end{array}\right)$ combo $(3,2,1)\left(\begin{array}{cccc}b-3 & 0 & 2 & -b \\ 1-b & 0 & -1 & -b \\ 0 & a & 0 & b^{2} \\ 0 & 0 & 0 & 0\end{array}\right) \begin{aligned} & \text { Combo }(1,2,-1) \\ & \text { swap zero } \\ & \text { row end }\end{aligned}$
Considu equivalent system
unique for $a(b+1) \neq 0$.
bet of coff $=\left|\begin{array}{ccc}b-3 & 0 & 2 \\ 1-b & 0 & -1 \\ 0 & a & 0\end{array}\right|$
Bet $=-a(-b+3+2 b-2)$
(b) Consida $a=0$ in 1 (a)
(c) Consider $a=b=0$ in 1(a)

$$
\left(\begin{array}{ccc|c}
b-3 & 0 & 2 & -b \\
1-b & 0 & -1 & -b \\
0 & 0 & 0 & -b^{2}
\end{array}\right)
$$

$$
\left(\begin{array}{ccc|c}
-3 & 0 & 2 & 0 \\
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \begin{aligned}
& \text { consistent. } \\
& 2 \text { lead vars. } \\
& 1 \text { free var. }
\end{aligned}
$$

Use this page to start your solution. Attach extra pages as needed. ∞ - Many solutions.
Signal equation from
row 3 , if $b \neq 0$. No sol.
\qquad KEY
2. (Vector Spaces) Do all parts. Details not required for (a)-(d).
(a) $[10 \%]$ True or false: The span of the vectors $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$ is a subspace of \mathcal{R}^{3} of dimension 2. $\left|\begin{array}{ccc}1 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & 0 & 2\end{array}\right|=0 \Rightarrow$ dependent, but first 2 are indep.
(b) [10\%] True or (false A matrix equation $A \vec{x}=\vec{b}$ has a solution \vec{x} if and only if the matrix A has an inverse. A non-square, $\vec{b}=\overrightarrow{0}, 1+$ free variable
(c) [10%]rue) or false: Relation $x+y=2 x+z$ defines a subspace in \mathcal{R}^{3}. Kernel The
(d) $[10 \%]$ True or false: The span of $e^{x}, e^{-x}, \sinh (x)$ is a subspace of the vector space of functions continuous on $-\infty<x<\infty$. span Th
(e) $[20 \%]$ State two linear algebra theorems that apply to conclude that the set $S=\operatorname{span}\left(1, x, x^{2}\right)$ is a subspace of the vector space of all polynomials. Do not present details, but please state the theorems fully.
(f) $[40 \%]$ Find a basis of vectors for the subspace of \mathcal{R}^{5} given by the system of restriction equations

$$
\begin{aligned}
& 2 x_{1}+x_{2}+2 x_{4}+4 x_{5}=0, \\
& 3 x_{1}+2 x_{2}+4 x_{4}+10 x_{5}=0, \\
& -2 x_{1}+4 x_{5}=0, \\
& 2 x_{1}+2 x_{2}+4 x_{4}+12 x_{5}=0 \text {. }
\end{aligned}
$$

(e) Span Theorem. The span of vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ in vector space V is a subspace S of V.
Subspace Criterion. A subset S of V is a subspace of V provided
(1) $\overrightarrow{0}$ is in S; (2) \vec{v}_{1}, \vec{v}_{2} in $S \Rightarrow \bar{v}_{1}+\vec{v}_{2}$ in S; (3) $c=$ constant and $\vec{\nu}$ in $S \Rightarrow c \vec{\nu}$ 的 S.
2 (6) Solve the homogeneous systerr using the Last Frame Algorithm

$$
\begin{aligned}
& \left(\begin{array}{ccccc|c}
2 & 1 & 0 & 2 & 4 & 0 \\
3 & 2 & 0 & 4 & 10 & 0 \\
-2 & 0 & 0 & 0 & 4 & 0 \\
2 & 2 & 0 & 4 & 12 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccccc|c}
2 & 1 & 0 & 2 & 4 & 0 \\
3 & 2 & 0 & 4 & 10 & 0 \\
0 & 1 & 0 & 2 & 8 & 8 \\
0 & 1 & 0 & 2 & 8 & 0
\end{array}\right) \begin{array}{c}
\text { combo }(1,3,1) \\
\text { combo }(1,4,-1)
\end{array} \rightarrow \\
& \left(\begin{array}{ccccc|c}
2 & 1 & 0 & 2 & 4 & 0 \\
3 & 2 & 0 & 4 & 1 & 0 \\
0 & 1 & 0 & 2 & 8 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \operatorname{combo}(3,4,-1)\left(\begin{array}{ccccc|c}
2 & 1 & 0 & 2 & 4 & 0 \\
1 & 1 & 0 & 2 & 6 & 0 \\
0 & 1 & 0 & 2 & 8 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \operatorname{combo}(1,2,-1) \rightarrow \\
& \left.\left(\begin{array}{ccccc|c}
2 & 0 & 0 & 0 & -4 & 0 \\
1 & 1 & 0 & 2 & 6 & 0 \\
0 & 1 & 0 & 2 & 8 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{\text { combo }(3,1,-1)}\left(\begin{array}{ccccc|c}
1 & 0 & 0 & 0 & -2 & 0 \\
1 & 0 & 0 & 0 & -2 & 0 \\
0 & 1 & 0 & 2 & 8 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \text { combolt }(1,1 / 2), 2,-1\right) \\
& \text { pREF }=\left(\begin{array}{ccccc|c}
1 & 0 & 0 & 0 & -2 & 0 \\
0 & 1 & 0 & 2 & 8 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left\{\begin{array} { c }
{ x _ { 1 } - 2 x _ { 5 } = 0 } \\
{ x _ { 2 } + 2 x _ { 4 } + 8 x _ { 5 } } \\
{ 0 = 0 } \\
{ 0 = 0 }
\end{array} \quad \left\{\begin{array}{c}
x_{1}=2 t_{3} \\
x_{2}=-2 t_{2}-8 t_{3} \\
x_{3}=t_{1} \\
x_{4}=t_{2} \\
x_{5}=t_{3}
\end{array}\right.\right. \\
& \text { Use this page to start your solution. Attach extra pages as need } \\
& \text { Basis }=\left\{\frac{\partial \vec{x}}{\partial t_{1}}, \frac{\partial \vec{x}}{\partial t_{2}}, \frac{\partial \vec{x}}{\partial t_{3}}\right\}=\left\{\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
-2 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
2 \\
-8 \\
0 \\
0
\end{array}\right)\right\}
\end{aligned}
$$

\qquad
3. (Independence and Dependence) Do all parts.
(a) $[10 \%]$ State an independence test for 3 vectors in \mathcal{R}^{5}. Write the hypothesis and conclusion, not just the name of the test.
(b) $[10 \%]$ State fully an independence test for 3 functions, each is which is a linear combination of Euler solution atoms, e.g., $e^{x}, \cosh (x), \sin (x)+x$. No details are expected, but please state the test fully.
(c) $[40 \%]$ Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}$ denote the rows of the matrix

$$
A=\left(\begin{array}{rrrrr}
0 & -2 & -6 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 2 & 5 & 1 & 0 \\
0 & 1 & 3 & 0 & 1
\end{array}\right)
$$

Decide if the four rows $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ are independent and display the details of the chosen independence test.
(d) $[40 \%]$ Extract from the list below a largest set of independent vectors.

$$
\overrightarrow{v_{1}}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \overrightarrow{v_{2}}=\left(\begin{array}{r}
0 \\
2 \\
2 \\
-2 \\
2
\end{array}\right), \overrightarrow{v_{3}}=\left(\begin{array}{r}
0 \\
1 \\
1 \\
-1 \\
1
\end{array}\right), \overrightarrow{v_{4}}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
3
\end{array}\right), \overrightarrow{v_{5}}=\left(\begin{array}{r}
0 \\
3 \\
3 \\
-1 \\
5
\end{array}\right), \overrightarrow{v_{6}}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
2 \\
2
\end{array}\right) .
$$

3(a) The 3 rectors are independent \Leftrightarrow The Rank of Their augmented matrix is 3 .
3 (b) If $i v e$ wronskian determinant of $t_{e} 3$ functions is nonzero for sore x, then the 3 functions are in dependent,
(3) $\left|\begin{array}{cccc}0 & -2 & -6 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 5 & 0 \\ 0 & 1 & 3 & 1\end{array}\right|=0$ because y zero col 1. Detuminart test implies the snows are dependent, because $|A|=\left|A^{\top}\right|$.

$$
\begin{aligned}
& 3(0)\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 1 & 3 & 0 \\
0 & 2 & 1 & 1 & 3 & 0 \\
0 & -2 & -1 & 1 & -1 & 2 \\
0 & 2 & 1 & 3 & 5 & 2
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
0 & 2 & 1 & 1 & 3 & 0 \\
0 & -2 & -1 & 1 & -1 & 2 \\
0 & 2 & 1 & 3 & 5 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \\
& \rightarrow\left(\begin{array}{cccccc}
0 & 2 & 1 & 1 & 3 & 0 \\
0 & 0 & 0 & 2 & 2 & 2 \\
0 & 0 & 0 & 2 & 2 & 2 \\
1
\end{array}\right) \text { combo }(2,3,-1) \\
& \text { combo }(1,2,1) \\
& \text { Use this page to start your solution. Attach extra pages as needed. }
\end{aligned}
$$

$$
\left\{\bar{v}_{2}, \hat{v}_{4}\right\}=\operatorname{loppst}+\text { inner }_{0} \text { st t. }
$$

Name. \qquad
4. (Determinants) Do all parts.
(a) [10\%] True False? The toolkit operations of swap, combination and multiply apply to determinants and leave the value of the determinant unchanged.
(b) $[10 \%]$ True or False For 3×3 matrices A and $B,|A+B|=|A|+|B|$. $E x: A=I, B=-I, 2 \times 2$
(c) $[20 \%]$ Assume given 3×3 matrices A, B. Suppose $A^{2} B=E_{3} E_{2} E_{1}$ and E_{1}, E_{2}, E_{3} are elementary matrices representing respectively a combination, a multiply by -3 and a swap. Assume $\operatorname{det}(B)=9$. Let $C=3 A$. Find all possible values of $\operatorname{det}(C)$.
(d) $[30 \%]$ Suppose matrix C is 8×8, nonzero but $C^{2}=0$. Let $B=I-C$ and $A=I+C$. Explain why B is the inverse of A.
(e) $[30 \%]$ Let symbols a, b, c denote constants. Define matrix

$$
A=\left(\begin{array}{cccc}
1 & 1 & 0 & a \\
1 & 0 & 0 & 0 \\
a & b & 0 & 1 \\
1 & c & 1 & 2
\end{array}\right)
$$

Assume $|A| \neq 0$. Then the adjugate [adjoint] formula for the inverse is defined. Find the value of the entry in row 2 , column 3 of A^{-1}.
$40 \quad|A|^{2}|B|=\left|E_{3}\right|\left|E_{2}\right|\left|E_{1}\right| \Rightarrow|A|^{2}(9)=(-1)(-3)(1) \Rightarrow|A|^{2}=\frac{1}{3}$

$$
|C|=|(3 I)(A)|=|3 I||A|=27|A|=\left\{\begin{array}{c}
27 / \sqrt{3} \\
-27 / \sqrt{3}
\end{array}\right.
$$

4(d) $\quad A B=(I+C)(I-C)=I+C-C-C^{2}=I-C^{2}=I$
so A, B are inverses. we use λ_{e} theorem That $A B=I \Rightarrow B A=I$.
4(e) entry in A^{-1} in now $=2, c_{0} \left\lvert\,=3=\frac{\operatorname{cofactor}(A, 3,2)}{|A|}\right.$

$$
\text { entry } \left.=\frac{\left|\begin{array}{ccc}
1 & 0 & a \\
1 & 0 & 0 \\
1 & 1 & 2
\end{array}\right|(-1)^{2+3}}{\left\lvert\, \begin{array}{ccc}
1 & 1 & 0
\end{array} a\right.} \begin{array}{|ccc}
1 & 0 & 0 \\
a & b & 0 \\
1 & c & 1
\end{array} \right\rvert\,
$$

Use this page to start your solution. Attach extra pages as needed.
\qquad
5. (Linear Differential Equations) Do all parts.
(a) $[20 \%]$ Solve for the general solution of $12 y^{\prime \prime}+11 y^{\prime}+2 y=0$.
(b) $[40 \%]$ The characteristic equation is $\left(4 r^{4}-r^{2}\right)\left(r^{2}-2 r+5\right)^{2}=0$. Find the general solution y of the linear homogeneous constant-coefficient differential equation.
(c) $[20 \%]$ A fourth order linear homogeneous differential equation with constant coefficients has a particular solution $2 e^{-x}+\sin (x)+x e^{-x}$. Find the roots of the characteristic equation.
(d) $[20 \%]$ Mark with X the functions which can possibly be be a solution of a linear homogeneous differential equation with constant coefficients. Test your choices against this theorem:

The general solution of a linear homogeneous nth order differential equation with constant coefficients is a linear combination of Euler solution atoms.

$\sin (\|x\|)$	$\frac{6}{e^{\prime}}$	$2 x^{\pi}$	$\cos (x)(\pi)$
$\cos \left(</ e^{2}\right)$	$\frac{e^{-x} \sin (10 \pi x)}{x}$	$x \sin h(x)$	$x+\operatorname{c}^{\prime}\left(s^{2}(x)\right.$

5(4) $12 r^{2}+11 r+2=(4 r+1)(3 r+2), \operatorname{not}+-1 / 4,-2 / 3$

$$
y=c_{1} e^{-x / 4}+c_{2} e^{-2 x / 3}
$$

5(b) $r^{2}\left(4 r^{2}-1\right)\left((r-1)^{2}+4\right)^{2}=r^{2}(2 r-1)(2 r+1)\left((r-1)^{2}+4\right)^{2}$

$$
\operatorname{root}=0,0,1 / 2,-1 / 2,1 \pm 2 i, 1 \pm 2 i
$$

atoms $=1, x, e^{x / 2}, e^{-x / 2}, e^{x} \cos 2 x, e^{x} \sin 2 x, x e^{x} \cos 2 x, x e^{x} \sin 2 x$
$y=\operatorname{lin} e \mathrm{u}$ combinathim of the atoms above
5(c) roots $=-1,-1, i,-i$
5(d) Remarks
$\operatorname{Arn}(|x|)$ mot an atom
x^{π} disallowed fa ar atom - only positive integer powers $e^{-x} \sin (10 \pi x)$ is an atom, but no fraction $\frac{1}{x}$ allowed.

Use this page to start your solution. Attach extra pages as needed.

