Name KEY

Differential Equations and Linear Algebra 2250 Midterm Exam 2 Version 1, 21 Mar 2014

Scores 1. 2. 3. 4. 5.

Instructions: This in-class exam is designed to be completed in 30 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count 1/4.

1. (The 3 Possibilities with Symbols)

Let a, b and c denote constants and consider the system of equations

$$\begin{pmatrix} b-3 & a & 2\\ 2b-4 & a & 3\\ 1-b & 0 & -1\\ b-1 & a & 1 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} b^2-b\\ b^2\\ -b\\ b^2+b \end{pmatrix}$$
Plan: Toolkit until a
row of Zeros, Then
replace by a 3x3
System, take determinat.

- (a) [40%] Determine a and b such that the system has a unique solution.
- (b) [30%] Explain why a = 0 and $b \neq 0$ implies no solution. Ignore any other possible no solution cases. Plan: produce a Signal equation. (c) [30%] Explain why a = b = 0 implies infinitely many solutions. Ignore any other possible infinitely
- many solution cases. plan: Consistent System + one free variable

$$\begin{array}{c} \left(\textcircled{0} \\ \left(\begin{array}{c} b^{-3} & a & 2 & b^{2} \\ 2b^{-4} & a & 3 & b^{2} \\ 1-b & 0 & -1 & -b \\ 0 & a & 0 & b^{1} \end{array} \right) & (\operatorname{ombo}(3,4,1) & \left(\begin{array}{c} b^{-3} & 0 & 2 & -b \\ 2b^{-4} & 0 & 3 & 0 \\ 1-b & 0 & -1 & -b \\ 0 & a & 0 & b^{1} \end{array} \right) & (\operatorname{ombo}(3,4,1) & \left(\begin{array}{c} b^{-3} & 0 & 2 & -b \\ 1-b & 0 & -1 & -b \\ 0 & a & 0 & b^{2} \end{array} \right) & (\operatorname{ombo}(3,2,1) & \left(\begin{array}{c} b^{-3} & 0 & 2 & -b \\ 1-b & 0 & -1 & -b \\ 0 & a & 0 & b^{2} \end{array} \right) & (\operatorname{ombo}(3,2,1) & \left(\begin{array}{c} b^{-3} & 0 & 2 & -b \\ 1-b & 0 & -1 & -b \\ 0 & a & 0 & b^{2} \end{array} \right) & (\operatorname{ombo}(3,2,1) & \left(\begin{array}{c} b^{-3} & 0 & 2 & -b \\ 1-b & 0 & -1 & -b \\ 0 & a & 0 & b^{2} \end{array} \right) & (\operatorname{ombo}(1,2,-1) & (\operatorname{ombo}(1,2$$

Use this page to start your solution. Attach extra pages as needed.

Name. <u>KEY</u>

- 2. (Vector Spaces) Do all parts. Details not required for (a)-(d).
 - (a) [10%] True or false: The span of the vectors $\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\0\\0 \end{pmatrix}, \begin{pmatrix} 3\\1\\2 \end{pmatrix}$ is a subspace of \mathcal{R}^3 of dimension 2. (b) [10%] True or false: A matrix equation $A\vec{x} = \vec{b}$ has a solution \vec{x} if and only if the matrix A has an inverse. (c) [10%] True or false: Relation x + y = 2x + z defines a subspace in \mathcal{R}^3 . Kernel Thm. (d) [10%] True or false: The span of e^x e^{-x} sinh(x) is a subspace of the vector space of the vector space

(d) [10%] (True) or false: The span of $e^x, e^{-x}, \sinh(x)$ is a subspace of the vector space of functions continuous on $-\infty < x < \infty$. (a) [20%] (10%] (10%) (10\%)

(e) [20%] State two linear algebra theorems that apply to conclude that the set $S = \text{span}(1, x, x^2)$ is a subspace of the vector space of all polynomials. Do not present details, but please state the theorems fully.

 $2x_1 + x_2 + 2x_4 + 4x_5 = 0,$

(f) [40%] Find a basis of vectors for the subspace of \mathcal{R}^5 given by the system of restriction equations

KEY Name.

3. (Independence and Dependence) Do all parts.

(a) [10%] State an independence test for 3 vectors in \mathcal{R}^5 . Write the hypothesis and conclusion, not just the name of the test.

(b) [10%] State fully an independence test for 3 functions, each is which is a linear combination of Euler solution atoms, e.g., e^x , $\cosh(x)$, $\sin(x) + x$. No details are expected, but please state the test fully.

(c) [40%] Let \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 denote the rows of the matrix

	(0	-2	-6	0	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	
A =	0	1	2	1	0	
	0	2	5	1	0	,
	0 /	1	3	0	1 /	

Decide if the four rows $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ are independent and display the details of the chosen independence test.

(d) [40%] Extract from the list below a largest set of independent vectors.

$$\vec{v_1} = \begin{pmatrix} 0\\0\\0\\0\\0 \end{pmatrix}, \vec{v_2} = \begin{pmatrix} 0\\2\\2\\-2\\2 \end{pmatrix}, \vec{v_3} = \begin{pmatrix} 0\\1\\1\\-1\\1 \end{pmatrix}, \vec{v_4} = \begin{pmatrix} 0\\1\\1\\1\\3 \end{pmatrix}, \vec{v_5} = \begin{pmatrix} 0\\3\\-1\\5 \end{pmatrix}, \vec{v_6} = \begin{pmatrix} 0\\0\\0\\2\\2 \end{pmatrix}.$$

30 The 3 vectors are independent (> The Mank of Neir augmented matrix is 3.

30
$$\begin{vmatrix} 0 & -2 & -6 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 7 & 3 & 1 \end{vmatrix} = 0$$
 because of zero col 1. Determinant test
implies The nows are dependent, because $|A| = |AT|$.

Use this page to start your solution. Attach extra pages as needed.

(V2, Vy) = largest indep set.

2250 Midterm Exam 2 S2014 [21Mar]

Name.

4. (Determinants) Do all parts.

KEY

(a) [10%] True of Fals? The toolkit operations of swap, combination and multiply apply to determinants

and leave the value of the determinant unchanged. (b) [10%] True or False? For 3×3 matrices A and B, |A + B| = |A| + |B|. Ex : A = I, B = -I, 2x2(c) [20%] Assume given 3×3 matrices A, B. Suppose $A^2B = E_3E_2E_1$ and E_1 , E_2 , E_3 are elementary

matrices representing respectively a combination, a multiply by -3 and a swap. Assume det(B) = 9. Let C = 3A. Find all possible values of det(C).

(d) [30%] Suppose matrix C is 8×8 , nonzero but $C^2 = 0$. Let B = I - C and A = I + C. Explain why B is the inverse of A.

(e) [30%] Let symbols a, b, c denote constants. Define matrix

$$A = \left(\begin{array}{rrrrr} 1 & 1 & 0 & a \\ 1 & 0 & 0 & 0 \\ a & b & 0 & 1 \\ 1 & c & 1 & 2 \end{array}\right)$$

Assume $|A| \neq 0$. Then the adjugate [adjoint] formula for the inverse is defined. Find the value of the entry in row 2, column 3 of A^{-1} .

$$40 \quad |A|^{2} |B| = |E_{3}||E_{2}||E_{1}| \Rightarrow |A|^{2}(q) = (-1)(-3)(1) \Rightarrow |A|^{2} = \frac{1}{3}$$

$$|C| = |(B|D)(A)| = |3|T||A| = 27 |A| = \begin{cases} 27/\sqrt{3} \\ -27/\sqrt{3} \\ -27/\sqrt{3} \end{cases}$$

$$40 \quad AB = (T+C)(T-C) = T+C-C-C^{2} = T-C^{2} = T$$

$$bo \quad A, B \text{ are inverses. UP use The Theorem That $AB = T \Rightarrow BA = T.$

$$40 \quad entry in A^{-1} in Aow = 2, col = 3 = \frac{cofactor(A, 3, 2)}{|A|}$$

$$entry = \frac{|A|^{2}(-1)^{2+3}}{|A|} = \frac{(-1)^{2+3}}{|A|} = \frac{(-1)^{2}|A|}{|A|} = \frac{-a}{|A|} = \frac{-a}{|A|}$$$$

Use this page to start your solution. Attach extra pages as needed.

5. (Linear Differential Equations) Do all parts.

KE)

(a) [20%] Solve for the general solution of 12y'' + 11y' + 2y = 0.

(b) [40%] The characteristic equation is $(4r^4 - r^2)(r^2 - 2r + 5)^2 = 0$. Find the general solution y of the linear homogeneous constant-coefficient differential equation.

(c) [20%] A fourth order linear homogeneous differential equation with constant coefficients has a particular solution $2e^{-x} + \sin(x) + xe^{-x}$. Find the roots of the characteristic equation.

(d) [20%] Mark with X the functions which can possibly be be a solution of a linear homogeneous differential equation with constant coefficients. Test your choices against this theorem:

The general solution of a linear homogeneous nth order differential equation with constant coefficients is a linear combination of Euler solution atoms.

l	$\sin(x)$	×	$2x^{\pi}$	$\cos(x \times \pi)$	-2 for each
	$\cos(e^2)$	$\frac{e^{-x}\sin(10\pi x)}{x}$	$x \sin(x)$	$x + \exp^{2(x)}$	Low score = 8

$$\begin{split} & \mathbb{E} \left(\begin{array}{c} 12 r^{2} + 11 r + 2 = (4r + 1)(3r + 2), \text{ Noots} = -1/4, -2/3 \\ & \mathcal{Y} = c_{1} e^{-\frac{x}{4}} + c_{2} e^{-\frac{2x}{3}} \\ & \mathcal{Y} = c_{1} e^{-\frac{x}{4}} + c_{2} e^{-\frac{2x}{3}} \\ & = c_{1} e^{-\frac{x}{4}} + c_{2} e^{-\frac{2x}{3}} \\ & = r^{2} (4r^{2} - 1)((r - 1)^{2} + 4)^{2} = r^{2} (2r - 1)(2r + 1)((r - 1)^{2} + 4)^{2} \\ & \text{ Noots} = 0, 0, \frac{1}{2}, -\frac{1}{2}, 1 \pm 2i, 1 \pm 2i \\ & \text{ Noots} = 0, 0, \frac{1}{2}, -\frac{1}{2}, 1 \pm 2i, 1 \pm 2i \\ & \text{ atoms} = 1, x, e^{\frac{x}{2}}, e^{-\frac{x}{2}}, e^{\frac{x}{2}} \cos 2x, e^{\frac{x}{2}} \sin 2x, xe^{\frac{x}{2}} \sin 2x, xe^{\frac{x}{2}} \sin 2x} \\ & \mathcal{Y} = \text{ linear combinetium } \mathcal{Y} \text{ Te atoms above} \end{split}$$

50 Remarks
Ain(IXI) not an atom
X^{TT} disablewed for an atom - only positive integer power
E^X fric(10TTX) is an atom, but no fraction
$$\pm$$
 allowed.

Use this page to start your solution. Attach extra pages as needed.