\qquad

Differential Equations and Linear Algebra 2250
 Sample Midterm Exam 1
 Version 1, 14 Feb 2014

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

1. (Quadrature Equations)

(a) $[25 \%]$ Solve $y^{\prime}=\frac{x^{2}-2}{1+x}$.
(b) $[25 \%]$ Solve $y^{\prime}=\frac{1}{(\cos x+1)(\cos x-1)}$.
(c) $[25 \%]$ Solve $y^{\prime}=\frac{\left(1+e^{2 x}\right)^{2}}{e^{x}}, y(0)=1$.
(d) $[25 \%]$ Find the position $x(t)$ from the velocity model $\frac{d}{d t}\left(e^{2 t} v(t)\right)=20 e^{t}, v(0)=0$ and the position model $\frac{d x}{d t}=v(t), x(0)=100$.

Answers supplied after the exam: (a) $y(x)=(1 / 2) x^{2}-x-\ln (1+x)+C$, (b) $y=\cot (x)+C$, (c) $y(x)=-e^{-x}+2 e^{x}+\frac{1}{3} e^{3 x}-\frac{1}{3}(\mathrm{~d}) v(t)=20 e^{-t}-20 e^{-2 t}, x(t)=-20 e^{-t}+10 e^{-2 t}+110$. The sample exam handwritten solution solved a different problem $1(\mathrm{~d}), \frac{d}{d t}\left(e^{2 t} v(t)\right)=20 e^{-t}, v(0)=0$ and the position model $\frac{d x}{d t}=v(t), x(0)=100$.

Name. \qquad

2. (Classification of Equations)

The differential equation $y^{\prime}=f(x, y)$ is defined to be separable provided functions F and G exist such that $f(x, y)=F(x) G(y)$.
(a) [40\%] Check (X) the problems that can be converted into separable form. No details expected.

\square	$y^{\prime}+x y=y^{2}+x y^{2}$	\square
$y^{\prime}=(x-1)(y+1)+(y-x y) y$		
$\square y^{\prime}=\cos (x y)$	\square	$e^{x} y^{\prime}=x \ln \|y\|+x^{2} \ln \left(y^{2}\right)$

(b) [10\%] State a partial derivative test that concludes $y^{\prime}=f(x, y)$ is a linear differential equation but not a quadrature differential equation.
(c) [20\%] Apply classification tests to show that $y^{\prime}=x y^{2}$ is not a linear differential equation. Supply all details.
(d) [30\%] Apply a test to show that $y^{\prime}=e^{x}+y \ln |x|$ is not separable. Supply all details.

Use this page to start your solution. Attach extra pages as needed.

Name.
3. (Solve a Separable Equation)

Given $(y x+2 y) y^{\prime}=((2+x) \sin (x) \cos (x)+x)\left(y^{2}+3 y+2\right)$.
(a) $[80 \%]$ Find a non-constant solution in implicit form.

To save time, do not solve for y explicitly. No answer check expected.
(b) [20\%] Find all constant solutions (also called equilibrium solutions; no answer check expected).

Use this page to start your solution. Attach extra pages as needed.

Name. \qquad

4. (Linear Equations)

(a) [50\%] Solve the linear model $4 x^{\prime}(t)=-160+\frac{24}{2 t+3} x(t), x(0)=30$. Show all integrating factor steps.
(b) $[20 \%]$ Solve the homogeneous equation $\frac{d y}{d x}-(\cos x) y=0$.
(c) $[30 \%]$ Solve $11 \frac{d y}{d x}+33 y=5$ using the superposition principle $y=y_{h}+y_{p}$. Expected are answers for y_{h} and y_{p}.

Answers reported after the exam: (a) $x(t)=20 t+30$, (b) $y(x)=c e^{\sin (x)}$, (c) $y(x)=$ $\frac{5}{33}+c e^{-3 x}$

Use this page to start your solution. Attach extra pages as needed.

Name. \qquad
5. (Stability)
(a) [50\%] Draw a phase line diagram for the differential equation

$$
\frac{d x}{d t}=\ln \left(1+x^{4}\right)(2-|3 x-1|)^{3}(2+x)\left(x^{2}-4\right)\left(1-x^{2}\right)^{5} .
$$

Expected in the phase line diagram are equilibrium points and signs of $d x / d t$.
Answers reported after the exam: Roots $-2,-1,-1 / 3,0,1,2$. Signs left to right are: MINUS, MINUS, PLUS, MINUS, MINUS, MINUS, PLUS.
(b) [50\%] Assume an autonomous equation $x^{\prime}(t)=f(x(t))$. Draw a phase diagram with at least 12 threaded curves, using the phase line diagram given below. Add these labels as appropriate: funnel, spout, node [neither spout nor funnel], stable, unstable.

Use this page to start your solution. Attach extra pages as needed.

