
Differential Equations and Linear Algebra 2250
Sample Midterm Exam 2

Exam Date: 17 April 2015 at 7:25am

Instructions: This in-class exam is designed to be completed in 80 minutes. No calculators, notes, tables
or books. No answer check is expected. Details count 3/4, answers count 1/4. This sample contains extra
sample problems. The actual exam is certainly much shorter, tested for 80 minutes.

Chapter 4

1. (Chapter 4) Do all parts.
(a) State a dependence test for 3 vectors in R4. Write the hypothesis and conclusion, not just the name
of the test.

Answer:

The Rank Test is the first choice: Let A be the augmented matrix of the 3 vectors. Then the
vectors are independent if and only if the rank of A equals 3.

((b) State fully an independence test for 3 polynomials. It should apply to show that 1, 1 + x, x(1 + x)
are independent.

Answer:

Either the Wronskian test or the Sampling Test applies. The Wronskian Test: Let W (x)
be the Wronskian matrix of the three polynomials. If |W (x0)| 6= 0 for some x = x0, then the
polynomials are independent.

(c) For any matrix A, rank(A) equals the number of lead variables for the problem A~x = ~0. How many
non-pivot columns in an 8× 8 matrix A with rank(A) = 6?

Answer:

The number of pivot columns is the number of leading ones in the reduced row echelon form of
A. The number of leading ones is the rank. So, A has rank 6 means there are 6 pivot columns
and 2 non-pivot columns.

(d) Let v1, v2, v3, v4 denote the rows of the matrix

A =


0 −2 0 −6 0
0 2 0 5 1
0 1 0 2 1
0 1 0 3 0

 .
Decide if the four rows ~v1, ~v2, ~v3, ~v4 are independent and display the details of the chosen independence
test.

Answer:

The rows of A are independent if and only if the columns of the transpose matrix AT are indepen-
dent. Columns 1, 2 of AT are the pivot columns, therefore the columns of AT are not independent.
This means that the four rows of A are not independent. In the details, show the swap, combo,



multiply steps for the last frame (reduced row echelon form) and box the pivot columns, as in the
display below.

rref
(
AT
)

=


1 0 1

2 −1
2

0 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

(e) Extract from the list below a largest set of independent vectors.

~v1 =



0
0
0
0
0
0


, ~v2 =



0
2
2
−2

0
2


, ~v3 =



0
1
1
−1

0
1


, ~v4 =



0
3
3
−1

0
5


, ~v5 =



0
1
1
1
0
3


, ~v6 =



0
0
0
2
0
2


.

Answer:
One answer is ~v2, ~v4, using the Pivot Theorem. Form the augmented matrix A of the vectors
and find the pivot columns of A. The pivot columns form a largest subset of independent vectors.
The non-pivot columns are linear combinations of the pivot columns (they are redundant columns).
In the details, compute rref(A) and box the leading ones, which marks pivot columns 2, 4:

rref(A) = rref〈~v1, ~v2, ~v3, ~v4, ~v5, ~v6〉 =



0 1 1
2 0 −1 −3

2

0 0 0 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(e) Check the independence tests which apply to prove that vectors x, x7/3, ex are independent in the
vector space of all continuous functions on −∞ < x < ∞. Demerits are given for missing a box, and
also for checking a box that does not apply.

Wronskian test Wronskian of functions f, g, h nonzero at x = x0 implies indepen-
dence of f, g, h.

Rank test Vectors ~v1, ~v2, ~v3 are independent if their augmented matrix has
rank 3.

Determinant test Vectors ~v1, ~v2, ~v3 are independent if their square augmented matrix
has nonzero determinant.

Atom test Any finite set of distinct Euler solution atoms is independent.

Pivot test Vectors ~v1, ~v2, ~v3 are independent if their augmented matrix A has
3 pivot columns.

Sampling test Let samples a, b, c be given and for functions f, g, h define

A =

 f(a) g(a) h(a)
f(b) g(b) h(b)
f(c) g(c) h(c)

 .
Then det(A) 6= 0 implies independence of f, g, h.



Answer:
Tests 2, 3, 5 fail to apply, because these tests are about fixed vectors, not functions. Details for
the other tests can be given: let f(x) = x, g(x) = x7/3, h(x) = ex. These are not atoms, so the
atom test does not apply. The Wronskian test applies directly, using x0 = 1 to obtain Wronskian
determinant value W = 4e/3. The sampling test applies using samples a = 0, b = 1, c = 2

because then A =

 0 0 1
1 1 e

2 4 3
√

2 e2

 and det(A) = 4 3
√

2− 2 6= 0.

A maple answer check can be done as follows:

# Wronskian test

v:=<x,x^(7/3),exp(x)>;

W:=linalg[wronskian](v,x);

subs(x=1,linalg[det](W)); # positive test if nonzero

# Sampling test

F:=x-><x,x^(7/3),exp(x)>;

A:=<F(0)|F(1)|F(2)>^+;

linalg[det](A); # positive test if nonzero

(f) Consider the homogenous system A~x = ~0. The nullity of A equals the number of free variables.
Give an example of a matrix A with three pivot columns that has nullity 2.

Answer:
Let ~v1, ~v2, ~v3 be any three columns of the identity and let ~v4 = ~v5 each be the zero vector. Define
A to be the augmented matrix of these four vectors. Then A has 5 columns. There are three
pivot columns and two free variables x4, x5, hence A has 3 pivots and nullity 2.

(g) Let V be the vector space of all continuously differentiable vector functions ~v(t) =

(
x(t)
y(t)

)
. Let S

be the set of all vector solutions ~v(t) =

(
x(t)
y(t)

)
of the dynamical system

{
x′(t) = 2x(t)
y′(t) = 4y(t)

Find two independent solutions ~v1, ~v2 such that S = span(~v1, ~v2). This calculation proves that S is a

subspace of V by Picard’s theorem and the Span Theorem, hence S is a vector space.

Answer:
The dynamical system is diagonal, therefore it can be solved by the method of linear cascades
(Section 1.5, linear integrating factor method). The general solution is x = c1e

2t, y = c2e
4t.

Then two independent vector solutions are found by taking partial derivatives on the symbols

c1, c2, obtaining ~v1 =

(
e2t

0

)
and ~v2 =

(
0

e4t

)
. Then any solution of the dynamical system is

given by ~v = c1~v1 + c2~v2.

(h) The 4 × 6 matrix A below has some independent columns. Report the independent columns of A,
according to the Pivot Theorem.

A =


0 0 0 0 0 0
0 −3 −2 1 0 −1
0 −1 0 1 0 0
0 6 6 0 0 3





Answer:

Find rref(A) =


0 1 0 −1 0 0

0 0 1 1 0 1
2

0 0 0 0 0 0
0 0 0 0 0 0

. The pivot columns are 2 and 3, indicated by boxed

leading ones.

Use this page to start your solution. Attach extra pages as needed.
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Chapter 5

2. (Chapter 5) Do all parts.
(a) Solve for the general solution of 15y′′ + 8y′ + y = 0.

Answer:

The roots of 15r2 + 8r + 1 = 0 are −1
5 ,−

1
3 . The Euler atoms are e−t/5, e−t/3. The general

solution is a linear combination of the two atoms.

(b) The characteristic equation is r2(2r+1)3(r2−2r+10) = 0. Find the general solution y of the linear
homogeneous constant-coefficient differential equation.

Answer:

The characteristic polynomial factors are r2, (2r+1)3, ((r−1)2+32) with roots 0, 0; −1
2 ,−

1
2 ,−

1
2 ; 1±

3i. The Euler atoms are 1, x; e−t/2, te−t/2, t2e−t/2; et cos(3t), et sin(3t). The general solution
is a linear combination of this list of atoms.

(c) A fourth order linear homogeneous differential equation with constant coefficients has two particular
solutions 2e3x + 4x and xe3x. Write a formula for the general solution.

Answer:

In order for xe3x to be a solution, the general solution must have Euler atoms e3x, xe3x. Then
the first solution 2e3x + 4x minus 2 times the Euler atom e3x must be a solution, therefore x is
a solution, resulting in Euler atoms 1, x. The general solution is then a linear combination of the
four Euler atoms: y = c1(1) + c2(x) + c3

(
e3x
)

+ c4
(
xe3x

)
.

(d) Mark with X the functions which cannot be a solution of a linear homogeneous differential equation
with constant coefficients. Test your choices against this theorem:

The general solution of a linear homogeneous nth order differential equation with constant
coefficients is a linear combination of Euler solution atoms.

eln |2x| ex
2

2π + x cos(ln |x|)

cos(x ln |3.7125|) x−1e−x sin(πx) cosh(x) sin2(x)

Answer:

Items (1), (2), (4), (6) are marked by X. The functions which are a solution of some linear
constant homogeneous differential equation are those items which are a linear combination of
Euler atoms.
(1) eln |2x| = |2x| is not a linear combination of atoms, because |2x| has no derivative at x = 0;
(2) ex

2
is not an atom; (3) 2π + x is a linear combination of atoms 1, x; (4) cos(ln |x|) is not

differentiable at x = 0, so not a linear combination of atoms; (5) cos(x ln |3.7125|) is Euler atom
cos(bx) with b > 0; (6) x−1 times Euler atom e−x sin(πx) is a fraction, which is not an Euler
atom or linear combination of atoms; (7) cosh(x) = 1

2e
x + 1

2e
−x is a linear combination of Euler

atoms; (8) sin2(x) = 1
2 −

1
2 cos(2x) is a linear combination of Euler atoms 1, cos(2x).



(e) Find the characteristic equation of a higher order linear homogeneous differential equation with
constant coefficients, of minimum order, such that y = 3x2 + 10xe−x + 4 cos(2x) is a solution.

Answer:
The Euler atoms x2, xe−x, cos(2x) correspond to roots 0, 0, 0; −1,−1; 2i,−2i. The factor
theorem implies the characteristic polynomial should be r3(r + 1)2(r2 + 4).

(f) Determine a basis of solutions of a homogeneous constant-coefficient linear differential equation,
given it has characteristic equation

(r4 − 4r3)((r − ln(2))2 + 4)2 = 0.

Answer:
The roots are 0, 0, 0; 4; ln(2)± 2i, ln(2)± 2i. By Euler’s theorem, a basis is the set of corre-
sponding atoms for these roots: 1, x, x2; e4x; eln(2)x cos(2x), xeln(2)x cos(2x), eln(2)x sin(2x),
xeln(2)x sin(2x). The exponential factor eln(2)x can be written 2x.

(g) Find the Beats solution for the forced undamped spring-mass problem

x′′ + 64x = 40 cos(4t), x(0) = x′(0) = 0.

It is known that this solution is the sum of two harmonic oscillations of different frequencies.

Answer:
Use undetermined coefficients trial solution x = d1 cos 4t + d2 sin 4t. Then d1 = 5/6, d2 = 0,
and finally xp(t) = (5/6) cos(4t). The characteristic equation r2 + 64 = 0 has roots ±8i with
corresponding Euler solution atoms cos(8t), sin(8t). Then xh(t) = c1 cos(8t) + c2 sin(8t). The
general solution is x = xh + xp. Now use x(0) = x′(0) = 0 to determine c1 = −5/6, c2 = 0,
which implies the particular solution x(t) = −5

6 cos(8t) + 5
6 cos(4t).

(h) Determine the shortest trial solution for yp according to the method of undetermined coefficients.
Do not evaluate the undetermined coefficients!

d4y

dx4
− 4

d2y

dx2
= 11x2 + 2x+ 3 + 12 cos 2x+ 13xe2x

Answer:
The homogeneous problem has roots 0, 0, 2,−2 with atoms 1, x, e2x, e−2x.
The trial solution is constructed by Rule I from f(x) = 11x2+2x+3+12 cos 2x+13xe2x, which
has seven atoms in a list of four groups (1) 1, x, x2; (2) cos 2x; (3) sin 2x; (4) e2x, xe2x.
Rule II is applied. Conflicts with the homogeneous equation atoms causes a repair of groups (1),
(4) making the new groups (1) x2, x3, x4; (2) cos 2x; (3) sin 2x; (4) xe2x, x2e2x. Then the
shortest trial solution is a linear combination of the seven atoms in the corrected list.

(i) Find a particular solution yp(x)and the homogeneous solution yh(x) for
d4y

dx4
− d2y

dx2
= 12x2.

Answer:
y = −x4 − 12x2 by the method of undetermined coefficients. Rule I applied to f(x) = 12x2

gives trial solution a linear combination of the Euler atom list 1, x, x2. The homogeneous problem
d4y

dx4
− d2y

dx2
= 0 has Euler atoms 1, x, ex, e−x. Rule II is applied. Conflicts with homogeneous

Euler atoms 1, x cause two x-multiplies, giving the corrected list x2, x3, x4. Then the trial solution

is y = d1x
2 + d2x

3 + d3x
4. Stuff y into

d4y

dx4
− d2y

dx2
= 12x2 and determine d1 = −12, d2 = 0,

d3 = −1.



(j) The differential equation
d4y

dx4
+
d2y

dx2
= 12x2 + 6x has a particular solution yp(x) of the form y =

d1x
2 + d2x

3 + d3x
4. Find yp(x) by the method of undetermined coefficients (yes, find d1, d2, d3).

Answer:

Solution yh is a linear combination of the atoms 1, x, cos(x), sin(x). A particular solution is
yp = x4 + x3 − 12x2.
The Euler atoms for y(4) + y′′ = 0 are found from r4 + r2 = 0 with roots r = 0, 0, i,−i. Rule
I: the Euler atoms in f(x) = 12x2 + 6x are 1, x, x2. Rule II: because 1, x are solutions of the
homogeneous equation, then the list 1, x, x2 from f(x) is multiplied by x2 to obtain the corrected
list x2, x3, x4. Then yp = d1x

2 + d2x
3 + d3x

4.
Substitute yp into the equation y(4) + y′′ = 12x2 + 6x to get 24d3 + 2d1 + 6d2x + 12d3x

2 =
12x2 + 6x. Matching coefficients of atoms gives 24d3 + 2d1 = 0, 6d2 = 6, 12d3 = 12. Then
d3 = 1, d2 = 1, d1 = −12. Finally, yp = (−12)x2 + (1)x3 + (1)x4.

(k) Find the steady-state periodic solution for the forced spring-mass system x′′ + 2x′ + 2x = 5 sin(t).

Answer:

x = sin t − 2 cos t by the method of undetermined coefficients. Rule I: the trial solution x(t)
is a linear combination of the Euler atoms found in f(x) = 5 sin(t). Then x(t) = d1 cos(t) +
d2 sin(t). Rule II does not apply, because solutions of the homogeneous problem contain negative
exponential factors (no conflict). Substitute the trial solution into x′′ + 2x′ + 2x = 5 sin(t) to
get (−2d1 + d2) sin(t) + (d1 + 2d2) cos(t) = 5 sin(t). Match coefficients to find the system of
equations (−2d1 + d2) = 5, (d1 + 2d2) = 0. Solve for the coefficients d1 = −2, d2 = 1.

(l) Find by variation of parameters an integral formula for a particular solution xp of the equation

x′′ + 4x′ + 20x = et
2

ln(t2 + 1). To save time, don’t try to evaluate integrals (it’s impossible).

Answer:

Use the variation of parameters formula (33) in section 5.5 of Edwards-Penney. Then
xp(t) = x1(t)

∫ t
0 k1(u)f(u)du+ x2(t)

∫ t
0 k2(u)f(u)du,

where f(t) = et
2

ln(t2 + 1). Symbols x1, x2, k1, k2 are defined as follows. The homogeneous
equation x′′+4x′+20x = 0 has a basis the Euler atoms x1(t) = e−2t cos(4t), x2(t) = e−2t sin(4t).
Symbol k1(u) = −x2(u)/W (u), symbol k2(u) = x1(u)/W (u), and the Wronskian determinant of
x1, x2 is W (u) = 2e−4u.

(m) Write the solution x(t) of

x′′(t) + 25x(t) = 180 sin(4t), x(0) = x′(0) = 0,

as the sum of two harmonic oscillations of different natural frequencies.
To save time, don’t convert to phase-amplitude form.

Answer:

x(t) = −16 sin(5t) + 20 sin(4t) by the method of undetermined coefficients. Rule I: x =
d1 cos(4t) + d2 sin(4t). Rule II does not apply due to natural frequency

√
25 = 5 not equal to the

frequency of the trial solution (no conflict). Substitute the trial solution into x′′(t) + 25x(t) =
180 sin(4t) to get 9d1 cos(4t) + 9d2 sin(4t) = 180 sin(4t). Match coefficients, to arrive at the
equations 9d1 = 0, 9d2 = 180. Then d1 = 0, d2 = 20 and xp(t) = 20 sin(4t). Lastly, add the ho-
mogeneous solution to obtain x(t) = xh +xp = c1 cos(5t) + c2 sin(5t) + 20 sin(4t). Use the initial
condition relations x(0) = 0, x′(0) = 0 to obtain the equations cos(0)c1+sin(0)c2+20 sin(0) = 0,
−5 sin(0)c1 + 5 cos(0)c2 + 80 cos(0) = 0. Solve for the coefficients c1 = 0, c2 = −16



(n) Given 5x′′(t) + 2x′(t) + 4x(t) = 0, which represents a damped spring-mass system with m = 5,
c = 2, k = 4, determine if the equation is over-damped , critically damped or under-damped.
To save time, do not solve for x(t)!

Answer:
Use the quadratic formula to decide. The number under the radical sign in the formula, called the
discriminant, is b2 − 4ac = 22 − 4(5)(4) = (19)(−4), therefore there are two complex conjugate
roots and the equation is under-damped. Alternatively, factor 5r2 + 2r + 4 to obtain roots
(−1±

√
19i)/5 and then classify as under-damped.

(o) Determine the practical resonance frequency ω for the electric current equation

2I ′′ + 7I ′ + 50I = 100ω cos(ωt).

Answer:
ω = 1/

√
LC = 1/

√
2/50 =

√
25 = 5. The solution uses the theory in the textbook, section

EPbvp3.7, which says that electrical resonance occurs for ω = 1/
√
LC.

(p) Given the forced spring-mass system x′′ + 2x′ + 17x = 82 sin(5t), find the steady-state periodic
solution.

Answer:
x(t) = −5 cos(5t) − 4 sin(5t) by undetermined coefficients. Rule I: The trial solution is xp(t) =
A cos(5t) +B sin(5t). Rule II: because the homogeneous solution xh(t) has limit zero at t =∞,
then Rule II does not apply (no conflict). Substitute the trial solution into the differential equation.
Then −8A cos(5t)−8B sin(5t)−10A sin(5t)+10B cos(5t) = 82 sin(5t). Matching coefficients of
sine and cosine gives the equations −8A+10B = 0, −10A−8B = 82. Solving, A = −5, B = −4.
Then xp(t) = −5 cos(5t)− 4 sin(5t) is the unique periodic steady-state solution.

(q) Consider the variation of parameters formula (33) in Edwards-Penney,

yp(x) = y1(x)

(∫ −y2(x)f(x)

W (x)
dx

)
+ y2(x)

(∫
y1(x)f(x)

W (x)
dx

)
.

Given the second order equation

2y′′(x) + 4y′(x) + 3y(x) = 17 sin(x2),

write the equations for the variables y1, y2, f .
To save time, do not compute W and do not write out yp. Do not try to evaluate any
integrals!

Answer:
To put the differential equation into the correct form for (33), divide by 2:
y′′(x) + 2y′(x) + 3

2y(x) = 17
2 sin(x2)

The characteristic equation r2 + 2r + 3
2 = 0 has roots −1 ± i

√
2. Variables are the Euler atoms

y1(x) = e−x cos(x/
√

2), y2(x) = e−x sin(x/
√

2), the forcing term f(x) = 17
2 sin(x2) and the

Wronskian W = y1y
′
2 − y′1y2.

(r) A homogeneous linear differential equation with constant coefficients has characteristic equation
of order 6 with roots 0, 0, −1, −1, 2i, −2i, listed according to multiplicity. The corresponding non-
homogeneous equation for unknown y(x) has right side f(x) = 5e−x+4x2 +x cos 2x+sin 2x. Determine
the undetermined coefficients shortest trial solution for yp.
To save time, do not evaluate the undetermined coefficients and do not find yp(x)! Undoc-
umented detail or guessing subtracts credit.



Answer:

The Euler solution atoms for roots of the characteristic equation are 1, x; e−x, xe−x; cos 2x, sin 2x.
The atom list for f(x) is e−x, 1, x, x2, cos 2x, x cos 2x, sin 2x, x sin 2x. This list of 8 atoms is bro-
ken into 4 groups, each group having exactly one base atom: (1) 1, x, x2; (2) e−x; (3) cos 2x,
x cos 2x; (4) sin 2x, x sin 2x. Each group contains a solution of the homogeneous equation.
Modification Rule II is applied to groups 1 through 4. The shortest trial solution is a linear com-
bination of the replacement 8 atoms in the new list (1*) x2, x3, x4; (2*) x2e−x; (3*) x cos 2x,
x2 cos 2x; (4*) x sin 2x, x2 sin 2x.

(s) Let f(x) = x3e1.2x +x2e−x sin(x). Find the characteristic polynomial of a constant-coefficient linear
homogeneous differential equation of least order which has f(x) as a solution. To save time, do not
expand the polynomial and do not find the differential equation.

Answer:

The characteristic polynomial is the expansion (r − 1.2)4((r + 1)2 + 1)3. Because x3eax is an
Euler solution atom for the differential equation if and only if eax, xeax, x2eax, x3eax are Euler
solution atoms, then the characteristic equation must have roots 1.2, 1.2, 1.2, 1.2, listing according
to multiplicity. Similarly, x2e−x sin(x) is an Euler solution atom for the differential equation if
and only if −1± i,−1± i,−1± i are roots of the characteristic equation. There is a total of 10
roots with product of the factors (r − 1)4((r + 1)2 + 1)3 equal to the 10th degree characteristic
polynomial.

Use this page to start your solution. Attach extra pages as needed.
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Chapter 10

3. (Chapter 10) Complete all parts. It is assumed that you have memorized the basic 4-item Laplace
integral table and know the 6 basic rules for Laplace integrals. No other tables or theory are required
to solve the problems below. If you don’t know a table entry, then leave the expression unevaluated for
partial credit.

(a) Display the details of Laplace’s method to solve the system for x(t). Don’t solve for y(t)!

x′ = x+ 3y,
y′ = −2y,
x(0) = 1, y(0) = 2.

Answer:

The Laplace resolvent equation (sI −A)L(u) = u(0) can be written out to find a 2× 2 linear system
for unknowns L(x(t)), L(y(t)):

(s− 1)L(x) + (−3)L(y) = 1, (0)L(x) + (s+ 2)L(y) = 2.

Any other method of arriving at the system of linear algebraic equations is acceptable, it is not an error
to do it another way. Elimination or Cramer’s rule or matrix inversion applies to this system to solve

for L(x(t)) =
(s+ 2) + 6

(s− 1)(s+ 2)
=
−2

s+ 2
+

3

s− 1
. Then the backward table implies x(t) = −2e−2t+ 3et.

(b) Find f(t) by partial fractions, the shifting theorem and the backward table, given

L(f(t)) =
2s3 + 3s2 − 6s+ 3

s3(s− 1)2
.

Answer:

The numerator has degree 3, less than the denominator degree 5. Partial fraction theory gives an
expansion 2s3+3s2−6s+3

s3(s−1)2 = a
s + b

s2
+ c

s3
+ d

s−1 + e
(s−1)2 . Clear the fractions and obtain a system of

equations for a, b, c, d, e. Solve the system: a = b = 0, c = 3, d = 0, e = 2. Then L(f(t)) =
3
s3

+ 2
(s−1)2 = L(3t2/2 + 2tet) implies by Lerch’s theorm f(t) = 3t2/2 + 2tet.

(c) Solve for f(t), given

L(e2tf(t)) + 2
d2

ds2
L(tf(t)) =

s+ 3

(s+ 1)3
.

Answer:

Use the s-differentiation theorem, partial fractions and the backward Laplace table plus the shift theorem
to get L(e2tf(t)) + 2L((−t)2(t)f(t)) = 1

(s+1)2
+ 2

(s+1)3
= L(te−t + t2e−t). Lerch’s theorem implies

(e2t + 2t3)f(t) = te−t + (t2)e−t. Then f(t) = (t+ t2)e−t/(e2t + 2t3).

(d) Solve for f(t), given

L(e−3tf(t)) =
s+ 1

(s+ 2)2



Answer:

L(e−3tf(t)) = s−1
s2

∣∣∣
s→(s+2)

=
(
1
s −

1
s2

)∣∣∣
s→(s+2)

= L((1 − t)e−2t). Then f(t) = (1 − t)e−2te3t =

(1− t)et.

(e) Fill in the blank spaces in the Laplace table:

Forward Table Backward Table

f(t) L(f(t))

t3
6

s4

e−t cos(4t)

(t+ 2)2

t2e−2t

L(f(t)) f(t)

3

s2 + 9
sin 3t

s− 1

s2 − 2s+ 5

2

(2s− 1)2

s

(s− 1)3

Answer:

Forward:
s+ 1

(s+ 1)2 + 16
,

2

s3
+

4

s2
+

4

s
, 2

(s+2)3
.

Backward: et cos(2t), (1/2)tet/2, tet + (t2/2)et.

(f) Find L(f(t)) from the Second Shifting theorem, given f(t) = sin(2t)u(t − 2), where u is the unit step
function defined by u(t) = 1 for t ≥ 0, u(t) = 0 for t < 0.

Answer:

Use the second shifting theorem

L(g(t)u(t− a)) = e−asL
(
g(t)|t→t+a

)
.

Write g(t) = sin(2t).

Then L(f(t)) = L(g(t)u(t−2)) = e−2sL(g(t)|t−>t+2) = e−2sL(sin(2t+4)) = e−2sL(sin(2t) cos(4)+

sin(4) cos(2t)). Then the Forward Table implies L(f(t)) = e−2s
(
2 cos 4
s2+4

+ s sin(4)
s2+4

)
.

(g) Find f(t) from the Second Shifting Theorem, given L(f(t)) =
s e−πs

s2 + 2s+ 17
.

Answer:

Use the second shifting theorem in backward form

e−asL(f(t)) = L(f(t− a)u(t− a)).

Then L(f(t)) =
s e−πs

(s2 + 2s+ 1) + 16
= e−πsL(e−t cos(4t)) = L(e−t cos(t)u(t)

∣∣∣
t→(t−π)

) = L(e−t+π cos(t−

π)u(t−π)). Then Lerch’s theorem implies f(t) = e−t+π (cos(t) cos(π) + sin(t) sin(π))u(t−π), which
reduces to f(t) = −e−t+π cos(t)u(t− π).



(h) Solve for x(t), given

L(x(t)) =
d

ds

(
L(e2t sin 2t)

)
+ L(t sin t)|s→(s+2) .

Answer:

x(t) = −te2t sin 2t + te−2t sin t. The first term on the right is replaced by L(−te2t sin(2t)), by the
s-differentiation theorem. The second term on the right is replaced by L(e−2t t sin(t)), by the first
shifting theorem. Lerch’s theorem applies to give x(t) = −te2t sin(2t) + e−2t t sin(t).

(i) Solve for x(t), given

L(x(t)) =
s+ 2

(s+ 1)2
+

1 + s

s2 + 5s

Answer:

The idea is to use the first shifting theorem on the first term on the right, then partial fractions on the
second term. Another idea is to use partial fractions on both terms combined. The details:

L(x(t)) = s+1
s2

∣∣∣
s→(s+1)

+ 1
5s + 4

5(s+4)

L(x(t)) =
(
1
s + 1

s2

)∣∣∣
s→(s+1)

+ 1
5s + 4

5(s+4)

L(x(t)) = L
(
(1 + t)e−t + 1

5 + 4
5e
−4t
)

Then Lerch’s theorem implies x(t) = (1 + t)e−t + 1
5 + 4

5e
−4t.

(j) Find L(f(t)), given f(t) = e2t
(

sin(t)

t

)
.

Answer:

Let g(t) = (1/t) sin t. Then d
dsL(g(t)) = L(−tg(t)) = L(− sin t) = −1/(s2+1). Solve the quadrature

problem dG(s)
ds = −1

s2+1
, where G(s) = L(g(t)), to get G(s) = c− arctan s. Because L(g(t)) has limit

zero at s =∞, then c = π
2 . Then L(f(t)) = L(g(t))|s→(s−2) = π

2 − arctan(s− 2).

(k) Apply Laplace’s method to find a formula for L(x(t)). Do not solve for x(t)! Document steps by reference
to tables and rules.

d4x

dt4
+ 4

d2x

dt2
= et(5t+ 4et + 3 sin 3t), x(0) = x′(0) = x′′(0) = 0, x′′′(0) = −1.

Answer:

L(x(t)) = p/q, p = 1+L(et(5t+4et+3 sin 3t)), q = s4+4s2. Expanding, p = 1+
(

5
s2

+ 4
s−1 + 9

s2+9

)∣∣∣
s→(s−1)

=

1 + 5
(s−1)2 + 4

s−2 + 9
(s−1)2+9

.

(l) Find L(f(t)), given f(t) = u(t− π)
sin(t)

t− π
, where u is the unit step function.

Answer:

Use the second shifting theorem L(u(t−a)g(t)) = e−asL(g(t+a)). Then L(f(t)) = e−πsL
(
sin(t+π)
t−π+π

)
=

e−πsL
(
− sin t
t

)
. Let h(t) = − sin t

t , then L(th(t)) = −1
s2+1

implies a first order DE −dH
ds = −1

s2+1
, which

can be solved to get H(s) = arctan(s)− π
2 . Then L(f(t)) = e−πs(arctan(s)− π/2).

(m) Find f(t) by partial fraction methods, given

L(f(t)) =
8s2 − 24

(s− 1)(s+ 3)(s+ 1)2
.



Answer:

L(f(t)) = −1
s−1 + −3

s+3 + 4
(s+1)2

+ 4
s+1 = L

(
−et − 3e−3t + 4te−t + 4e−t

)
. Then by Lerch’s theorem,

f(t) = −et − 3e−3t + 4te−t + 4e−t.

(n) Apply Laplace’s method to find a formula for L(x(t)). To save time, do not solve for x(t)! Document
steps by reference to tables and rules.

x(4) + x(2) = 3t+ 4et + 5 sin 2t, x(0) = x′(0) = x′′(0) = 0, x′′′(0) = −1.

Answer:

L(x(t)) = p/q, p = −1 + L(RHS), q = s4 + s2. Finally p = −1 + L(3t + 4et + 5 sin 2t) =
−1+ 3

s2
+ 4

s−1 + 10
s2+4

. Rules: Parts L(f ′) = sL(f)−f(0), Linearity. Tables used to evaluate L(RHS).

Use this page to start your solution. Attach extra pages as needed.



2250 Sample Midterm Exam 2 S2015 [17April]

Chapter 6

4. (Chapter 6) Complete all parts.

(a) Define E =

 4 2 −2
0 3 1
0 1 3

 . Find E3

 1
0
0

 without using matrix multiply.

Answer:

Define v ≡

 1
0
0

. Then v = v2, where v1, v2, v3 are the eigenvectors of E for eigenvalues λ1 = 2,

λ2 = 4, λ3 = 4. Then E3v = E(E(Ev2)) = 43v2 =

 64
0
0

.

(b) Find the eigenvalues of the matrix A =


1 4 1 12
−4 1 −3 15

0 0 −1 6
0 0 −2 7

. To save time, do not find eigenvectors!

Answer:

1, 5, 1± 4i

(c) Given A =

 1 −1 1
1 3 −1
1 1 1

, which has eigenvalues 1, 2, 2, find all eigenvectors for eigenvalue 2.

Answer:

One frame sequence is required for λ = 2. The sequence starts with

 −1 −1 1
1 1 −1
1 1 −1

, the last frame

having two rows of zeros. There are two invented symbols t1, t2 in the last frame algorithm answer

x1 = −t1 + t2, x2 = t1, x3 = t2. Taking ∂t1 and ∂t2 gives two eigenvectors,

 −1
1
0

 and

 1
0
1

.

(d) Given A =

 1 1 −1
0 0 1
0 1 0

, which has eigenvalues 1, 1,−1, assume there exists an invertible matrix P

and a diagonal matrix D such that AP = PD. Circle those vectors from the list below which are possible
columns of P .  1

−1
2

 ,
 1

1
1

 ,
 1

1
−1

 .



Answer:

Matrix P must contain eigenvectors of P corresponding to eigenvalues 1, 1, −1, in some order. For
each given vector v, multiply out Av and see if it equals λv for some λ. The first fails. The second
works for λ = 1. The third fails.

(e) Find the remaining eigenpairs of

E =

 6 2 −2
0 5 1
0 1 5


provided we already know one eigenpair 6,

 0
1
1


 .

Answer:

Eigenvalues are 4, 6, 6 with corresponding eigenvectors

 2
−1

1

,

 1
0
0

,

 0
1
1

.

There are two linear algebra problems: (1) (A− 4I)~v = ~0; (2) (A− 6I)~v = ~0.
(1) For λ = 4, there is only one eigenvector ~v1 found from the general solution by taking the partial
derivative on free variable symbol t1.
(2) For λ = 6, there are two free variables with invented symbols t1, t2. The eigenvectors ~v2, ~v3 are
found from the general solution by taking partials on symbols t1, t2. These vectors are Strang’s Special
Solutions.

(f) Suppose a 3× 3 matrix A has eigenpairs2,

 1
2
0


 ,

2,

 1
1
0


 ,

0,

 0
0
1


 .

Display an invertible matrix P and a diagonal matrix D such that AP = PD.

Answer:

Define P =

 1 1 0
2 1 0
0 0 1

, D =

 2 0 0
0 2 0
0 0 0

. Then AP = PD.

(g) Assume the vector general solution x(t) of the linear differential system x′ = Ax is given by

x(t) = c1

 3
1
1

+ c2e
2t

 −1
2
0

+ c3e
2t

 0
0
1

 .
Display Fourier’s model for the 3× 3 matrix A.

Answer:

A

c1
 3

1
1

+ c2

 −1
2
0

+ c3

 0
0
1


 = 0c1

 3
1
1

+ 2c2

 −1
2
0

+ 2c3

 0
0
1

.



(h) Find the eigenvalues of the matrix A =


−2 7 1 27
−1 6 −3 62

0 0 3 2
0 0 −1 0

. To save time, do not find eigenvectors!

Answer:

Expand |A− λI| by cofactors along column 1. The eigenvalues are −1, 1, 2, 5.

(i) Assume A is 2× 2 and Fourier’s model holds:

A

(
c1

(
1
1

)
+ c2

(
1
−1

))
= 2c2

(
1
−1

)
.

Find A.

Answer:

AP = PD implies A = PDP−1 =

(
1 1
1 −1

)(
0 0
0 2

)(
.5 .5
.5 −.5

)
=

(
1 −1
−1 1

)
.

(j) Let A =

 3 0 −1
0 3 0
0 0 3

. Circle the possible eigenvectors of A in the list below.

 −4
2
0

 ,
 1

0
0

 ,
 0

0
1

 .
Answer:

The first and second are eigenvectors for λ = 3. The third is not an eigenvector.
The matrix is triangular, therefore the eigenvalues are on the diagonal, λ1 = λ2 = λ3 = 3. The
problem should be solved by testing the equation Av = 3v for each of the 3 vectors v in the list, not
by doing the eigenanalysis of A.
Remarks. Fourier’s model does not hold [A is not diagonalizable] because there are only two eigen-

vectors

 1
0
0

 and

 0
1
0

 for eigenvalue λ = 3. The first is a linear combination of these eigenvectors,

hence itself an eigenvector. The second is among the eigenvectors just reported. The third is not an
eigenvector.

(k) Consider the 3× 3 matrix

E =

 4 2 −2
0 3 1
0 1 3

 .
Show that matrix E has a Fourier model:

E

c1
 1

0
0

+ c2

 0
1
1

+ c3

 2
−1

1


 = 4c1

 1
0
0

+ 4c2

 0
1
1

+ 2c3

 2
−1

1

 .
Answer:

Do the eigenanalysis of A. Alternate: verify that the eigenpairs extracted from Fourier’s model actually
work, which involves 3 matrix multiplies. The alternate method is substantially less work.



(l) Let P =

(
3 1
1 −1

)
, D =

(
3 0
0 −2

)
and define A by AP = PD. Display the eigenpairs of A.

Answer:(
3,

(
3
1

))
,

(
−2,

(
1
−1

))

(m) Assume the vector general solution ~u(t) of the 2× 2 linear differential system ~u′ = C~u is given by

~u(t) = c1e
2t

(
1
−1

)
+ c2e

2t

(
2
1

)
.

Find the matrix C.

Answer:

The eigenvalues come from the exponents in the exponentials, 2 and 2. The eigenpairs are

(
2,

(
1
−1

))
,(

2,

(
2
1

))
. Then P =

(
1 2
−1 1

)
, D =

(
2 0
0 2

)
. Solve CP = PD to find C =

(
2 0
0 2

)
. The

usual eigenpairs for C are the columns of the identity. But the eigenvalues are equal, therefore any
linear combination of the two eigenvectors is also an eigenvector. This justifies the correctness of the
strange eigenpairs given in the problem.

(n) Find all eigenpairs for the matrix A =

(
1 1
2 2

)
. Then display Fourier’s model for A.

Answer:

Eigenpairs are

(
0,

(
−1

1

))
,

(
3,

(
1
2

))
. Then A

(
c1

(
−1

1

)
+ c2

(
1
2

))
= 3c2

(
1
2

)
.

Use this page to start your solution. Attach extra pages as needed.


