Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

1. (Quadrature Equations)

(a) $[25 \%]$ Solve $y^{\prime}=\frac{x^{2}-2}{1+x}$.
(b) $[25 \%]$ Solve $y^{\prime}=\frac{1}{(\cos x+1)(\cos x-1)}$.

Problem 1(d): Typo 20*exp(t) changed
(c) $[25 \%]$ Solve $y^{\prime}=\frac{\left(1+e^{2 x}\right)^{2}}{e^{x}}, y(0)=1$.
to $20^{*} \exp (-t)$ in class on exam day.
(d) $[25 \%]$ Find the position $x(t)$ from the velocity model $\frac{d}{d t}\left(e^{2 t} v(t)\right)=20 e^{t}, v(0)=0$ and the position model $\frac{d x}{d t}=v(t), x(0)=100$.
(a) $1+x=u, \quad \frac{x^{2}-2}{1+x}=\frac{(u-1)^{2}-2}{u}=\frac{u^{2}-2 u-1}{u}=\frac{u-2-1 / u}{u^{2}}$ $\left.y=\int y^{\prime} d x=\int u d x=u^{2} / 2-2 u-\ln |u|+c=\frac{(1+x)^{2}}{2}-2 x-\ln |1+x|+c_{1} \right\rvert\,$ Also by long division, $\frac{x^{2}-2}{x+1}=x-1-1 /(x+1) \Rightarrow y=\frac{x^{2}}{2}-x-\ln |1+x|+c_{2}$
(b) $(\cos x+1)(\cos x-1)=\cos ^{2} x-1=-\sin ^{2} x$

$$
y^{\prime}=-\csc ^{2} x \Rightarrow y=\int y^{\prime}=\int-\csc ^{2} x=\cot x+c
$$

(c) $y^{\prime}=\frac{1}{e^{x}}\left(1+2 e^{2 x}+e^{4 x}\right)=e^{-x}+2 e^{x}+e^{3}$

$$
\begin{aligned}
& y=\frac{1}{e^{x}}\left(1+2 e^{\prime x}+e^{\prime}\right)=e^{\prime}+2 e^{x}+e^{-x}+2 e^{x}+\frac{1}{3} e^{3 x}+c \\
& y=\int y^{\prime}=\int\left(e^{-x}+2 e^{x}+e^{3 x}\right) d x=-t
\end{aligned}
$$

(d) $e^{2 t} v=\int \frac{d}{d t}\left(e^{2 t} v\right) d t=\int 20 e^{t} d t=\frac{-20 e^{-t}+c}{-3 t}$

$$
v(0)=0 \Rightarrow 0=-20+c \Rightarrow c=20 . \quad v=-20 e^{-3 t}+20 e
$$

$$
x=\int v=\int\left(-20 e^{-3 t}+20 e^{-2 t}\right) d t=\frac{20}{3} e^{3 t}-10 e^{-2 t}+c_{1}
$$

$$
x(0)=100 \Rightarrow 100=\frac{20}{3}-10+c_{1} \Rightarrow c_{1}=\frac{310}{3}
$$

$$
x(t)=\frac{20}{3} e^{-3 t}-10 e^{-2 t}+\frac{310}{3}
$$

Use this page to start your solution. Attach extra pages as needed.

Name. \qquad
2. (Classification of Equations)

The differential equation $y^{\prime}=f(x, y)$ is defined to be separable provided functions F and G exist such that $f(x, y)=F(x) G(y)$.
(a) [40\%] Check (X) the problems that can be converted into separable form. No details expetted.

\square	$y^{\prime}+x y=y^{2}+x y^{2}$	$X \mid \quad y^{\prime}=(x-1)(y+1)+(y-x y) y$
\square	$y^{\prime}=\cos (x y)$	X

(b) $[10 \%]$ State a partial derivative test that concludes $y^{\prime}=f(x, y)$ is a linear differential equation but not a quadrature differential equation.
(c) $[20 \%]$ Apply classification tests to show that $y^{\prime}=x y^{2}$ is not a linear differential equation. Supply all details.
(d) $[30 \%]$ Apply a test to show that $y^{\prime}=e^{x}+y \ln |x|$ is not separable. Supply all details.
(a) $y^{\prime}=-x y+y^{2}(1+x)$ not sep $\mid y^{\prime}=x y-y+x-1+y^{2}-x y^{2}$

(b) $\frac{\partial f}{\partial y} \neq 0$ and independent of $y \Rightarrow$ lines and not quadratures
(c) $f(x, y)=x y^{2} \Rightarrow \frac{\partial f}{\partial y}=2 x y$ nut independent $y y \Rightarrow$ Not Linear
(d) $f(x, y)=e^{x}+y \ln |x| \Rightarrow \frac{f_{y}}{f}=\frac{\ln |x|}{e^{x}+y \ln |x|}$ depords on x,
because $\left.\frac{f_{y}}{f}\right|_{x=1}=0$ and $\left.\frac{f_{y}}{f}\right|_{x=2}=\frac{e^{x}+g \ln |x|}{e^{2}+y \ln 2} \neq 0$
Therefore, $y^{\prime}=f(x, y)$ is not separable.

Use this page to start your solution. Attach extra pages as needed.
\qquad
3. (Solve a Separable Equation)

Given $(y x+2 y) y^{\prime}=((2+x) \sin (x) \cos (x)+x)\left(y^{2}+3 y+2\right)$.
(a) $[80 \%]$ Find a non-constant solution in implicit form.

To save time, do not solve for y explicitly. No answer check expected.
(b) [20\%] Find all constant solutions (also called equilibrium solutions; no answer check expected).
(a)

$$
\begin{aligned}
& (x+2) y y^{\prime}=[(x+2) \sin x \cos x+x](y+2)(y+1) \\
& \frac{y y^{\prime}}{(y+2)(y+1)}=\operatorname{An} x \cos x+\frac{x}{x+2} \\
& \int \text { LHS } \left.=\int\left(\frac{A}{y+2}+\frac{B}{y+1}\right) y^{\prime}=A \ln |y+2|+B \ln |y+1|+C \right\rvert\, \\
& \frac{y}{(y+2)(y+1)}=\frac{A}{y+2}+\frac{B}{y+1}=A=2, B=-1 \\
& \int R H S=\int \frac{\sin x \cos x d x+\int\left(1-\frac{2}{x+2}\right) d x}{}=\frac{\sin ^{2} x}{2}+x-2 \ln |x+2|+C_{2}
\end{aligned}
$$

Implicit sol

$$
2 \ln |y+2|-\ln |y+1|=\frac{1}{2} \sin ^{2} x+x-2 \ln |x+2|+c
$$

(b) Find $y=$ constant in $y^{\prime}=F(x) G(y)$ means $0=F(x) G(y)$

$$
\text { or } G(y)=0 \text {. Here, } G(y)=\frac{(y+2)(y+1)}{y} \text {, so } y=-1, y=-2
$$

\qquad
Differential Equations and Linear Algebra 2250
Midterm Exam la
Version la, 21 Feb 2013

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.
4. (Linear Equations)
(a) [50\%] Solve the linear velocity model. Show all integrating factor steps.

$$
\left\{\begin{aligned}
5 v^{\prime}(t) & =-160+\frac{12}{2 t+1} v(t) \\
v(0) & =80
\end{aligned}\right.
$$

(b) $[25 \%]$ Solve the homogeneous equation $\frac{d y}{d x}-\left(\frac{1}{x}+\cos (x)\right) y=0$.
(c) $[25 \%]$ Solve $4 \frac{d y}{d x}-24 y=\frac{2}{\pi}$ using the superposition principle $y=y_{h}+y_{p}$. Expected are three answers, y_{h}, y_{p} and y.

$$
\begin{aligned}
& 5 v=-160+\frac{12}{2 t+1} v \\
& v^{\prime}=-32+\frac{12}{10 t+5} v \\
&(D E) \quad v^{\prime}-\frac{12}{10 t+5} v=-32 \\
& W=e^{\int p d t}=e^{-\frac{6}{5} \ln / 10 t+51} \\
& W=(10 t+5)^{-6 / 5} \quad(t \text { near } 0) \\
& \frac{(V W)^{\prime}}{w}=-32 \quad \text { Replace LHS } \\
& \text { of (DE) } \\
& V W=-32 \int W+c \quad \text { Quake. } \\
&=-32 \frac{(10 t+5)^{-1 / 5}}{(-1 / 5)(10)}+c \\
& v=16(10 t+5)+c(10 t+5)^{6 / 5} \\
& v(0)=80 \Rightarrow c=0 \\
& v=16(10 t+5)=160 t+80
\end{aligned}
$$

ans check: IC \checkmark DE \checkmark

$$
160 \stackrel{?}{=}-32+12(16) \text { yes. }
$$

(b) $y=\frac{c}{w}$ shorten

$$
\begin{aligned}
& w=e^{\int p d x}=e^{-\ln (x)-\sin x} \\
& y=\frac{c x}{e^{-\sin x}}=c x e^{\sin x}
\end{aligned}
$$

(C) Equal. Sol:: $y_{p}=\frac{-2}{24 \pi}$

Homog. Sol.: $y^{\prime}-6 y=0$

$$
y_{n}=\frac{c}{e^{-6 x}}
$$

$$
\text { Sol: } y=\frac{y_{h}+y_{\rho}}{6 x}
$$

$$
=c e^{6 x}-\frac{1}{12 \pi}
$$

ans check:

$$
\begin{aligned}
4 y^{\prime}-24 y & =24 c e^{6 x}-24 y \\
& =-24\left(\frac{-1}{12 \pi}\right) \\
& =\frac{2}{\pi}
\end{aligned}
$$

Name.

5. (Stability)
(a) $[50 \%]$ Draw a phase line diagram for the differential equation

$$
\frac{d x}{d t}=\sinh (x+1)(2-|4 x-2|)^{3}(3-|x|)\left(x^{2}-9\right)\left(4-x^{2}\right) .
$$

Expected in the phase line diagram are equilibrium points and signs of $d x / d t$. Definition: $\sinh (u)=\frac{1}{2} e^{u}-\frac{1}{2} e^{-u}$.
roots $x=-1,1,0,3,-3,2,-2$

(b) [50\%] Assume an autonomous equation $x^{\prime}(t)=f(x(t))$. Draw a phase diagram with at least 12 threaded curves, using the phase line diagram given below. Add these labels as appropriate: funnel, spout, node [neither spout nor funnel], stable, unstable.

Calculations for problam 5(a)

$$
\begin{aligned}
& \sinh (x+1)=0 \Rightarrow x=-1 \\
& 2-|4 x-2|=0 \Rightarrow \quad 4 x-2= \pm 2 \Rightarrow x=\frac{1}{2} \pm \frac{1}{2}=1,0 \\
& 3-|x|=0 \Rightarrow x= \pm 3 \\
& x^{2}-9=0 \Rightarrow x= \pm 3 \\
& 4-x^{2}=0 \Rightarrow x= \pm 2 \\
& x=4: \quad+--+-=\Theta \\
& x=2.5: \quad+-+--=\Theta \\
& =5 / 2 \\
& \begin{aligned}
x & =2.5 \\
& =5 / 2 \\
x & =3 / 2:+-+-+=\oplus \\
& =1.5
\end{aligned} \\
& x=1 / 2:+t+*+=\Theta \\
& x=-1 / 2:+-t-t=t \\
& x=-3 / 2:-1+++=\Theta \\
& x=-5 / 2:-\cdots+\cdots \\
& x=-4:-\rightarrow-+-=(\\
& \overbrace{0}^{1}
\end{aligned}
$$

