4.4 Computing π, $\ln 2$ and e

The approximations $\pi \approx 3.1415927$, $\ln 2 \approx 0.69314718$, $e \approx 2.7182818$ can be obtained by numerical methods applied to the following initial value problems:

(1) \quad y' = \frac{4}{1 + x^2}, \quad y(0) = 0, \quad \pi = y(1),

(2) \quad y' = \frac{1}{1 + x}, \quad y(0) = 0, \quad \ln 2 = y(1),

(3) \quad y' = y, \quad y(0) = 1, \quad e = y(1).

Equations (1)--(3) define the constants π, $\ln 2$ and e through the corresponding initial value problems.

The third problem (3) requires a numerical method like RK4, while the other two can be solved using Simpson’s quadrature rule. It is a fact that RK4 reduces to Simpson’s rule for $y' = F(x)$, therefore, for simplicity, RK4 can be used for all three problems, ignoring speed issues. It will be seen that the choice of the DE-solver algorithm (e.g., RK4) affects computational accuracy.

Computing $\pi = \int_0^1 4(1 + x^2)^{-1}dx$

The easiest method is Simpson’s rule. It can be implemented in virtually every computing environment. The code below works in popular matlab-compatible numerical laboratories. It modifies easily to other computing platforms, such as maple and mathematica. To obtain the answer for $\pi = 3.1415926535897932385$ correct to 12 digits, execute the code on the right in Table 10, below the definition of f.

\begin{verbatim}
function ans = simp(x0,x1,n,f)
 h=(x1-x0)/n; ans=0;
 for i=1:n;
 ans1=f(x0)+4*f(x0+h/2)+f(x0+h);
 ans=ans+(h/6)*ans1;
 x0=x0+h;
 end

function y = f(x)
 y = 4/(1+x*x);
ans=simp(0,1,50,f)
\end{verbatim}

Table 10. Numerical integration of $\int_0^1 4(1 + x^2)^{-1}dx$.

Simpson’s rule is applied, using matlab-compatible code. About 50 subdivisions are required.

It is convenient in some laboratories to display answers with printf or fprintf, in order to show 12 digits. For example, scilab prints 3.1415927 by default, but 3.141592653589800 using printf.

The results checked in maple give $\pi \approx 3.1415926535897932385$, accurate to 20 digits, regardless of the actual maple numerical integration
algorithm chosen (three were possible). The checks are invoked by `evalf(X,20)` where X is replaced by `int(4/(1+x*x),x=0..1)`.

The results for an approximation to π using numerical solvers for differential equations varied considerably from one algorithm to another, although all were accurate to 5 rounded digits. A summary for `odepack` routines appears in Table 11, obtained from the `scilab` interface. A selection of routines supported by `maple` appear in Table 12. Default settings were used with no special attempt to increase accuracy.

The `Gear` routines refer to those in the 1971 textbook [?]. The Livermore stiff solver `lsode` can be found in reference [?]. The Runge-Kutta routine of order 7-8 called `dverk78` appears in the 1991 reference of Enright [?]. The multistep routines of Adams-Moulton and Adams-Bashforth are described in standard numerical analysis texts, such as [?]. Taylor series methods are described in [?]. The Fehlberg variant of RK4 is given in [?].

Table 11. Differential equation numeric solver results for `odepack` routines, applied to the problem $y' = 4/(1 + x^2), y(0) = 0$.

<table>
<thead>
<tr>
<th></th>
<th>Exact value of π</th>
<th>digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runge-Kutta 4</td>
<td>3.14159265358979323</td>
<td>20</td>
</tr>
<tr>
<td>Adams-Moulton lsode</td>
<td>3.1415926535897932</td>
<td>10</td>
</tr>
<tr>
<td>Stiff Solver lsode</td>
<td>3.1415926535897932</td>
<td>6</td>
</tr>
<tr>
<td>Runge-Kutta-Gear 45</td>
<td>3.1415926535897932</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 12. Differential equation numeric solver results for some `maple`-supported routines, applied to the problem $y' = 4/(1 + x^2), y(0) = 0$.

<table>
<thead>
<tr>
<th></th>
<th>Exact value of π</th>
<th>digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical RK4</td>
<td>3.1415926535897932</td>
<td>15</td>
</tr>
<tr>
<td>Gear</td>
<td>3.1415926535897932</td>
<td>11</td>
</tr>
<tr>
<td>Dverk78</td>
<td>3.1415926535897932</td>
<td>11</td>
</tr>
<tr>
<td>Taylor Series</td>
<td>3.1415926535897932</td>
<td>10</td>
</tr>
<tr>
<td>Runge-Kutta-Fehlberg 45</td>
<td>3.1415926535897932</td>
<td>8</td>
</tr>
<tr>
<td>Multistep Gear</td>
<td>3.1415926535897932</td>
<td>7</td>
</tr>
<tr>
<td>Lsode stiff solver</td>
<td>3.1415926535897932</td>
<td>6</td>
</tr>
</tbody>
</table>

Computing ln 2 = \int_{0}^{1} dx/(1 + x)

Like the problem of computing π, the formula for ln2 arises from the method of quadrature applied to $y' = 1/(1 + x), y(0) = 0$. The solution is $y(x) = \int_{0}^{x} dt/(1 + t)$. Application of Simpson’s rule with 150 points gives $\ln 2 \approx 0.693147180563800$, which agrees with the exact value $\ln 2 = 0.69314718055994530942$ through 12 digits.

More robust numerical integration algorithms produce the exact answer for ln 2, within the limitations of machine representation of numbers.
Differential equation methods, as in the case of computing π, have results accurate to at least 5 digits, as is shown in Tables 13 and 14. Lower order methods such as classical Euler will produce results accurate to three digits or less.

Table 13. Differential equation numeric solver results for odepack routines, applied to the problem $y' = 1/(1 + x)$, $y(0) = 0$.

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact value of $\ln 2$</td>
<td>0.69314718055994530942</td>
<td>20</td>
</tr>
<tr>
<td>Adams-Moulton lsode</td>
<td>0.69314720834637</td>
<td>7</td>
</tr>
<tr>
<td>Stiff Solver lsode</td>
<td>0.69314702723982</td>
<td>6</td>
</tr>
<tr>
<td>Runge-Kutta 4</td>
<td>0.69314718056011</td>
<td>11</td>
</tr>
<tr>
<td>Runge-Kutta-Fehlberg 45</td>
<td>0.69314973055488</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 14. Differential equation numeric solver results for maple-supported routines, applied to the problem $y' = 1/(1 + x)$, $y(0) = 0$.

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact value of $\ln 2$</td>
<td>0.69314718055994530942</td>
<td>20</td>
</tr>
<tr>
<td>Classical Euler</td>
<td>0.6943987430550621</td>
<td>2</td>
</tr>
<tr>
<td>Classical Heun</td>
<td>0.6931487430550620</td>
<td>5</td>
</tr>
<tr>
<td>Classical RK4</td>
<td>0.6931471805611659</td>
<td>11</td>
</tr>
<tr>
<td>Gear</td>
<td>0.6931471805646605</td>
<td>11</td>
</tr>
<tr>
<td>Gear Poly-extr</td>
<td>0.6931471805664855</td>
<td>11</td>
</tr>
<tr>
<td>Dverk78</td>
<td>0.6931471805696615</td>
<td>11</td>
</tr>
<tr>
<td>Adams-Bashforth</td>
<td>0.6931471793736268</td>
<td>8</td>
</tr>
<tr>
<td>Adams-Bashforth-Moulton</td>
<td>0.693147180648283</td>
<td>10</td>
</tr>
<tr>
<td>Taylor Series</td>
<td>0.6931471806</td>
<td>10</td>
</tr>
<tr>
<td>Runge-Kutta-Fehlberg 45</td>
<td>0.6931481489496502</td>
<td>5</td>
</tr>
<tr>
<td>Lsode stiff solver</td>
<td>0.6931470754312113</td>
<td>7</td>
</tr>
<tr>
<td>Rosenbrock stiff solver</td>
<td>0.6931473787603164</td>
<td>6</td>
</tr>
</tbody>
</table>

Computing e from $y' = y$, $y(0) = 1$

The initial attack on the problem uses classical RK4 with $f(x, y) = y$. After 300 steps, classical RK4 finds the correct answer for e to 12 digits: $e \approx 2.71828182846$. In Table 15, the details appear of how to accomplish the calculation using matlab-compatible code. Corresponding maple code appears in Table 16 and in Table 17. Additional code for octave and scilab appear in Tables 18 and 19.
4.4 Computing π, $\ln 2$ and e

Table 15. Numerical solution of $y' = y$, $y(0) = 1$.
Classical RK4 with 300 subdivisions using \texttt{matlab}-compatible code.

```matlab
function [x,y]=rk4(x0,y0,x1,n,f)
x=x0; y=y0; h=(x1-x0)/n;
for i=1:n;
k1=h*f(x,y);
k2=h*f(x+h/2,y+k1/2);
k3=h*f(x+h/2,y+k2/2);
k4=h*f(x+h,y+k3);
y=y+(k1+2*k2+2*k3+k4)/6;
x=x+h;
end
```

```
function yp = ff(x,y)
  yp= y;
```

```
[x,y]=rk4(0,1,1,300,ff)
```

Table 16. Numerical solution of $y' = y$, $y(0) = 1$ by \texttt{maple} internal classical RK4 code.

```maple
de:=diff(y(x),x)=y(x):
ic:=y(0)=1:
Y:=dsolve({de,ic},y(x),
           type=numeric,method=classical[rk4]):
Y(1);
```

Table 17. Numerical solution of $y' = y$, $y(0) = 1$ by classical RK4 with 300 subdivisions using \texttt{maple}-compatible code.

```maple
rk4 := proc(x0,y0,x1,n,f)
local x,y,k1,k2,k3,k4,h,i:
x=x0: y=y0: h=(x1-x0)/n:
for i from 1 to n do
  k1:=h*f(x,y):k2:=h*f(x+h/2,y+k1/2):
k3:=h*f(x+h/2,y+k2/2):k4:=h*f(x+h,y+k3):
y:=evalf(y+(k1+2*k2+2*k3+k4)/6,Digits+4):
x:=x+h:
od:
RETURN(y):
end:
f:=(x,y)->y;
rk4(0,1,1,300,f);
```

A \texttt{matlab} \texttt{m}-file "rk4.m" is loaded into \texttt{scilab}-4.0 by \texttt{getf("rk4.m")}.
Most \texttt{scilab} code is loaded by using default file extension \texttt{.sci}, e.g., \texttt{rk4scilab.sci} is a \texttt{scilab} file name. This code must obey \texttt{scilab} rules. An example appears below in Table 18.
Table 18. Numerical solution of $y' = y$, $y(0) = 1$ by classical RK4 with 300 subdivisions, using scilab-4.0 code.

<table>
<thead>
<tr>
<th>function ([x,y]=rk4sci(x0,y0,x1,n,f))</th>
<th>function (yp = ff(x,y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x=x0; y=y0; h=(x1-x0)/n) for (i=1:n) (k1=hf(x,y)) (k2=hf(x+h/2,y+k1/2)) (k3=hf(x+h/2,y+k2/2)) (k4=hf(x+h,y+k3)) (y=y+(k1+2k2+2k3+k4)/6) (x=x+h) end endfunction</td>
<td>(yp= y) endfunction ([x,y]=rk4sci(0,1,1,300,ff))</td>
</tr>
</tbody>
</table>

The popularity of octave as a free alternative to matlab has kept it alive for a number of years. Writing code for octave is similar to matlab and scilab, however readers are advised to look at sample code supplied with octave before trying complicated projects. In Table 19 can be seen some essential agreements and differences between the languages. Versions of scilab after 4.0 have a matlab to scilab code translator.

Table 19. Numerical solution of $y' = y$, $y(0) = 1$ by classical RK4 with 300 subdivisions using octave-2.1.

<table>
<thead>
<tr>
<th>function ([x,y]=rk4oct(x0,y0,x1,n,f))</th>
<th>function (yp = ff(x,y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x=x0; y=y0; h=(x1-x0)/n;) for (i=1:n) (k1=hfeval(f,x,y);) (k2=hfeval(f,x+h/2,y+k1/2);) (k3=hfeval(f,x+h/2,y+k2/2);) (k4=hfeval(f,x+h,y+k3);) (y=y+(k1+2k2+2k3+k4)/6;) (x=x+h;) end for</td>
<td>(yp= y;) end ([x,y]=rk4oct(0,1,1,300,'ff'))</td>
</tr>
</tbody>
</table>

Exercises 4.4

Computing \(\pi\). Compute $\pi = y(1)$ from the initial value problem $y' = 4/(1 + x^2)$, $y(0) = 0$, using the given method.

1. Use the Rectangular integration rule. Determine the number of steps for 5-digit precision.
2. Use the Rectangular integration rule. Determine the number of steps for 8-digit precision.
3. Use the Trapezoidal integration rule. Determine the number of steps for 5-digit precision.
4. Use the Trapezoidal integration rule.
4.4 Computing π, $\ln 2$ and e

rule. Determine the number of steps for 8-digit precision.

5. Use classical RK4. Determine the number of steps for 5-digit precision.

6. Use classical RK4. Determine the number of steps for 10-digit precision.

7. Use computer algebra system assist for RK4. Report the number of digits of precision using system defaults.

8. Use numerical workbench assist for RK4. Report the number of digits of precision using system defaults.

9. Use the Rectangular integration rule. Determine the number of steps for 5-digit precision.

10. Use the Rectangular integration rule. Determine the number of steps for 8-digit precision.

11. Use the Trapezoidal integration rule. Determine the number of steps for 5-digit precision.

12. Use the Trapezoidal integration rule. Determine the number of steps for 8-digit precision.

13. Use classical RK4. Determine the number of steps for 5-digit precision.

15. Use computer algebra system assist for RK4. Report the number of digits of precision using system defaults.

Computing e. Compute $e = y(1)$ from the initial value problem $y' = y$, $y(0) = 1$, using the given computer assist. Report the number of digits of precision using system defaults.

17. Improved Euler method, also known as Heun’s method.

18. RK4 method.

19. RKF45 method.

Stiff Differential Equation. The flame propagation equation $y' = y^2(1 - y)$ is known to be stiff for initial conditions $y(0) = y_0$ with $y_0 > 0$ and small. Use classical RK4 and then a stiff solver to compute and plot the solution $y(t)$ in each case. Expect 3000 steps with RK4 versus 100 with a stiff solver.

The exact solution of this equation can be expressed in terms of the Lambert function $w(u)$, defined by $u = w(x)$ if and only if $ue^u = x$. For example, $y(0) = 0.01$ gives

$$y(t) = \frac{1}{w(99e^{99-t}) + 1}.$$

21. $y(0) = 0.01$

22. $y(0) = 0.005$

23. $y(0) = 0.001$

24. $y(0) = 0.0001$