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11.8 Second-order Systems

A model problem for second order systems is the system of three masses
coupled by springs studied in section 11.1, equation (6):

mix(t) = —kiz1(t) + kalxa(t) — z1(t)],
(1) maxy(t) = —kalwa(t) — 21(t)] + kslas(t) — @2(t)];
m;;(lfg(t) = —k3 [wg(t) — wg(t)] — ]{?4373(t).
k1 ko ks ks Figure 21. Three.: masses
OO RO RO R connected by springs. The masses
slide along a frictionless horizontal
mp Mo ms surface.

In vector-matrix form, this system is a second order system
Mx"(t) = Kx(t)

where the displacement x, mass matrix M and stiffness matrix K
are defined by the formulas

1 mi 0 0 —kl — kQ kQ 0
X=1x9 ], M= 0 my 0 5 K= k?g *kjg - kg k‘g
T3 0 0 ms3 0 kg —k3 - k4

Because M is invertible, the system can always be written as

x" = Ax, A= M'K.

Converting x” = Ax to u’' = Cu

Given a second order n x n system x” = Ax, define the variable u and
the 2n x 2n block matrix C' as follows.

o e (3) e (2h)

Then each solution x of the second order system x” = Ax produces a
corresponding solution u of the first order system u’ = Cu. Similarly,
each solution u of u’ = Cu gives a solution x of x” = Ax by the formula
x = diag(7,0)u.

Characteristic Equation for x”" = Ax

The characteristic equation for the n x n second order system x” = Ax
can be obtained from the corresponding 2n x 2n first order system u’ =
Cu. We will prove the following identity.
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Theorem 31 (Characteristic Equation)
Let x” = Ax be given with A n x n constant and let W = Cu be its
corresponding first order system, using (2). Then

(3) det(C — XI) = (—1)" det(A — NI).
Proof: The method of proof is to verify the product formula
-l ‘ 1 1 ‘ 0\ 0 ‘ 1
A‘—)\I /\I‘I - A—)\QI‘—)\I '
Then the determinant product formula applies to give

(4) det(C — AI) det (%%) _ det( PR R ) .

Cofactor expansion is applied to give the two identities

I10Y 0| IY_ n 2

Then (4) implies (3). The proof is complete.

Solving u' = Cu and x”" = Ax

Consider the n x n second order system x” = Ax and its corresponding
2n x 2n first order system

(5) u = Cu, Cz(%), uz()}z,).

Theorem 32 (Eigenanalysis of A and ()
Let A be a given n x n constant matrix and define the 2n x 2n block matrix
C by (5). Then

_ 2
(6) (C’AI)(‘Z):O if and only if {AV; A

= Aw.

Proof: The result is obtained by block multiplication, because
-\ I
C=A= <Tﬁ) ~

Theorem 33 (General Solutions of u' = Cu and x” = Ax)

Let A be a given n x n constant matrix and define the 2n x 2n block matrix
C by (5). Assume C has eigenpairs {()\j,yj)}?zl and yi, ..., yo, are
independent. Let I denote the n x n identity and define w; = diag(/,0)y;,
j=1,...,2n. Then u’ = Cu and x” = Ax have general solutions

Aty (2n x 1),

Aontygrg, (nx1).

u(t) = creMly) + -+ cope

x(t) = c1eMtwy+ -+ cope



11.8 Second-order Systems 807

Proof: Let x;(t) = e*'w;, j = 1,...,2n. Then x; is a solution of x” = Ax,
because x/(t) = e*(\;)*w; = Ax;(t), by Theorem 32. To be verified is the
independence of the solutions {x; }?Zr Let z; = A\jw; and apply Theorem 32

W
. _ 7 _ 2 .
to write y; = ( 2 ), Aw; = )\jwj. Suppose constants ay, ..., as, are given

such that ijl apx; = 0. Differentiate this relation to give 2321 apetitz; =0

for all t. Set t = 0 in the last summation and combine to obtain Z?Zl ary; = 0.
Independence of yq, ..., y2, implies that a; = --- = ag, = 0. The proof is
complete.

Eigenanalysis when A has Negative Eigenvalues. If all eigen-
values p of A are negative or zero, then, for some w > 0, eigenvalue p
is related to an eigenvalue A of C by the relation g = —w? = A?. Then
A = fwi and w = y/— . Consider an eigenpair (—w?,v) of the real n x n
matrix A with w > 0 and let

u(t) = crcoswt + cogsinwt w > 0,
] e +oeot w=0.

Then u”(t) = —w?u(t) (both sides are zero for w = 0). It follows that
x(t) = u(t)v satisfies x”(t) = —w?x(t) and Ax(t) = u(t)Av = —w?x(t).
Therefore, x(t) = u(t)v satisfies x"(t) = Ax(t).

Theorem 34 (Eigenanalysis Solution of x” = Ax)

Let the nxn real matrix A have eigenpairs { (1, v;)}]_;. Assume p; = —wjz»
withw; > 0,7 =1,...,n. Assumethatvy, ..., v, arelinearly independent.
Then the general solution of x”(t) = Ax(t) is given in terms of 2n arbitrary

constants ai, ..., an, b1, ..., by by the formula

n . +
(7) x(t) = Z (aj cosw;t + b; e | ) \
j=1

J

In this expression, we use the limit convention

sin wt

Proof: The text preceding the theorem and superposition establish that x(¢) is
a solution. It only remains to prove that it is the general solution, meaning that
the arbitrary constants can be assigned to allow any possible initial conditions
x(0) = xg, x'(0) = yo. Define the constants uniquely by the relations

X0 = 2?21 ajvi,
n
Yo Zj:l bjvj,
which is possible by the assumed independence of the vectors {v;}}_;. Then

(7) implies x(0) = 37, a;v; = xo and x'(0) = 3°7_, bjv; = yo. The proof is
complete.



