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Linear systems. A linear system is a system of differential equa-
tions of the form

x′1 = a11x1 + · · · + a1nxn + f1,
x′2 = a21x1 + · · · + a2nxn + f2,

...
... · · ·

...
...

x′m = am1x1 + · · · + amnxn + fm,

(1)

where ′ = d/dt. Given are the functions aij(t) and fj(t) on some interval
a < t < b. The unknowns are the functions x1(t), . . . , xn(t).

The system is called homogeneous if all fj = 0, otherwise it is called
non-homogeneous.

Matrix Notation for Systems. A non-homogeneous system of
linear equations (1) is written as the equivalent vector-matrix system

x′ = A(t)x + f(t),
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where

x =

 x1
...
xn

 , f =

 f1
...
fn

 , A =

 a11 · · · a1n
... · · ·

...
am1 · · · amn

 .
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Brine Tank Cascade

Let brine tanks A, B, C be given of volumes 20, 40, 60, respectively, as
in Figure 1.
water

C

A

B

Figure 1. Three brine
tanks in cascade.
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It is supposed that fluid enters tank A at rate r, drains from A to B
at rate r, drains from B to C at rate r, then drains from tank C at
rate r. Hence the volumes of the tanks remain constant. Let r = 10, to
illustrate the ideas.

Uniform stirring of each tank is assumed, which implies uniform salt
concentration throughout each tank.

Let x1(t), x2(t), x3(t) denote the amount of salt at time t in each tank.
We suppose added to tank A water containing no salt. Therefore,
the salt in all the tanks is eventually lost from the drains. The cascade
is modeled by the chemical balance law

rate of change = input rate − output rate.

Application of the balance law, justified below in compartment analysis,
results in the triangular differential system

x′1 = −1

2
x1,

x′2 =
1

2
x1 −

1

4
x2,

x′3 =
1

4
x2 −

1

6
x3.

The solution, to be justified later in this chapter, is given by the equations

x1(t) = x1(0)e−t/2,

x2(t) = −2x1(0)e−t/2 + (x2(0) + 2x1(0))e−t/4,

x3(t) =
3

2
x1(0)e−t/2 − 3(x2(0) + 2x1(0))e−t/4

+ (x3(0)− 3

2
x1(0) + 3(x2(0) + 2x1(0)))e−t/6.

Cascades and Compartment Analysis

A linear cascade is a diagram of compartments in which input and
output rates have been assigned from one or more different compart-
ments. The diagram is a succinct way to summarize and document the
various rates.

The method of compartment analysis translates the diagram into a
system of linear differential equations. The method has been used to
derive applied models in diverse topics like ecology, chemistry, heating
and cooling, kinetics, mechanics and electricity.

The method. Refer to Figure 2. A compartment diagram consists of
the following components.

Variable Names Each compartment is labelled with a variable X.
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Arrows Each arrow is labelled with a flow rate R.

Input Rate An arrowhead pointing at compartment X docu-
ments input rate R.

Output Rate An arrowhead pointing away from compartment X
documents output rate R.

0

x3

x2x1

x3/6

x2/4

x1/2

Figure 2. Compartment
analysis diagram.
The diagram represents the
classical brine tank problem of
Figure 1.

Assembly of the single linear differential equation for a diagram com-
partment X is done by writing dX/dt for the left side of the differential
equation and then algebraically adding the input and output rates to ob-
tain the right side of the differential equation, according to the balance
law

dX

dt
= sum of input rates− sum of output rates

By convention, a compartment with no arriving arrowhead has input
zero, and a compartment with no exiting arrowhead has output zero.
Applying the balance law to Figure 2 gives one differential equation for
each of the three compartments x1 , x2 , x3 .

x′1 = 0− 1

2
x1,

x′2 =
1

2
x1 −

1

4
x2,

x′3 =
1

4
x2 −

1

6
x3.

Recycled Brine Tank Cascade

Let brine tanks A, B, C be given of volumes 60, 30, 60, respectively, as
in Figure 3.

A

B

C

Figure 3. Three brine tanks
in cascade with recycling.

Suppose that fluid drains from tank A to B at rate r, drains from tank
B to C at rate r, then drains from tank C to A at rate r. The tank
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volumes remain constant due to constant recycling of fluid. For purposes
of illustration, let r = 10.

Uniform stirring of each tank is assumed, which implies uniform salt
concentration throughout each tank.

Let x1(t), x2(t), x3(t) denote the amount of salt at time t in each tank.
No salt is lost from the system, due to recycling. Using compartment
analysis, the recycled cascade is modeled by the non-triangular system

x′1 = −1

6
x1 +

1

6
x3,

x′2 =
1

6
x1 − 1

3
x2,

x′3 =
1

3
x2 − 1

6
x3.

The solution is given by the equations

x1(t) = c1 + (c2 − 2c3)e
−t/3 cos(t/6) + (2c2 + c3)e

−t/3 sin(t/6),

x2(t) =
1

2
c1 + (−2c2 − c3)e−t/3 cos(t/6) + (c2 − 2c3)e

−t/3 sin(t/6),

x3(t) = c1 + (c2 + 3c3)e
−t/3 cos(t/6) + (−3c2 + c3)e

−t/3 sin(t/6).

At infinity, x1 = x3 = c1, x2 = c1/2. The meaning is that the total
amount of salt is uniformly distributed in the tanks, in the ratio 2 : 1 : 2.

Pond Pollution

Consider three ponds connected by streams, as in Figure 4. The first
pond has a pollution source, which spreads via the connecting streams
to the other ponds. The plan is to determine the amount of pollutant in
each pond.

1

23

f(t)

Figure 4. Three ponds 1, 2, 3
of volumes V1, V2, V3 connected
by streams. The pollution
source f(t) is in pond 1.

Assume the following.

• Symbol f(t) is the pollutant flow rate into pond 1 (lb/min).

• Symbols f1, f2, f3 denote the pollutant flow rates out of ponds 1,
2, 3, respectively (gal/min). It is assumed that the pollutant is
well-mixed in each pond.
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• The three ponds have volumes V1, V2, V3 (gal), which remain con-
stant.

• Symbols x1(t), x2(t), x3(t) denote the amount (lbs) of pollutant in
ponds 1, 2, 3, respectively.

The pollutant flux is the flow rate times the pollutant concentration, e.g.,
pond 1 is emptied with flux f1 times x1(t)/V1. A compartment analysis
is summarized in the following diagram.

x2

x3

x1
f1x1/V1f(t)

f3x3/V3 f2x2/V2

Figure 5. Pond diagram.
The compartment diagram
represents the three-pond
pollution problem of Figure 4.

The diagram plus compartment analysis gives the following differential
equations.

x′1(t) =
f3
V3
x3(t)−

f1
V1
x1(t) + f(t),

x′2(t) =
f1
V1
x1(t)−

f2
V2
x2(t),

x′3(t) =
f2
V2
x2(t)−

f3
V3
x3(t).

For a specific numerical example, take fi/Vi = 0.001, 1 ≤ i ≤ 3, and
let f(t) = 0.125 lb/min for the first 48 hours (2880 minutes), thereafter
f(t) = 0. We expect due to uniform mixing that after a long time there
will be (0.125)(2880) = 360 pounds of pollutant uniformly deposited,
which is 120 pounds per pond.

Initially, x1(0) = x2(0) = x3(0) = 0, if the ponds were pristine. The
specialized problem for the first 48 hours is

x′1(t) = 0.001x3(t)− 0.001x1(t) + 0.125,
x′2(t) = 0.001x1(t)− 0.001x2(t),
x′3(t) = 0.001x2(t)− 0.001x3(t),
x1(0) = x2(0) = x3(0) = 0.

The solution to this system is

x1(t) = e−
3t

2000

(
125
√

3

9
sin

( √
3t

2000

)
− 125

3
cos

( √
3t

2000

))
+

125

3
+

t

24
,

x2(t) = −250
√

3

9
e−

3t
2000 sin(

√
3t

2000
) +

t

24
,

x3(t) = e−
3t

2000

(
125

3
cos

( √
3t

2000

)
+

125
√

3

9
sin

( √
3t

2000

))
+

t

24
− 125

3
.
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After 48 hours elapse, the approximate pollutant amounts in pounds are

x1(2880) = 162.30, x2(2880) = 119.61, x3(2880) = 78.08.

It should be remarked that the system above is altered by replacing 0.125
by zero, in order to predict the state of the ponds after 48 hours. The
corresponding homogeneous system has an equilibrium solution x1(t) =
x2(t) = x3(t) = 120. This constant solution is the limit at infinity of
the solution to the homogeneous system, using the initial values x1(0) ≈
162.30, x2(0) ≈ 119.61, x3(0) ≈ 78.08.

Home Heating

Consider a typical home with attic, basement and insulated main floor.

Attic

Main
Floor

Basement
Figure 6. Typical home
with attic and basement.
The below-grade basement
and the attic are un-insulated.
Only the main living area is
insulated.

It is usual to surround the main living area with insulation, but the attic
area has walls and ceiling without insulation. The walls and floor in the
basement are insulated by earth. The basement ceiling is insulated by
air space in the joists, a layer of flooring on the main floor and a layer
of drywall in the basement. We will analyze the changing temperatures
in the three levels using Newton’s cooling law and the variables

z(t) = Temperature in the attic,

y(t) = Temperature in the main living area,

x(t) = Temperature in the basement,

t = Time in hours.

Initial data. Assume it is winter time and the outside temperature
in constantly 35◦F during the day. Also assumed is a basement earth
temperature of 45◦F. Initially, the heat is off for several days. The initial
values at noon (t = 0) are then x(0) = 45, y(0) = z(0) = 35.

Portable heater. A small electric heater is turned on at noon, with
thermostat set for 100◦F. When the heater is running, it provides a 20◦F
rise per hour, therefore it takes some time to reach 100◦F (probably
never!). Newton’s cooling law
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Temperature rate = k(Temperature difference)

will be applied to five boundary surfaces: (0) the basement walls and
floor, (1) the basement ceiling, (2) the main floor walls, (3) the main
floor ceiling, and (4) the attic walls and ceiling. Newton’s cooling law
gives positive cooling constants k0, k1, k2, k3, k4 and the equations

x′ = k0(45− x) + k1(y − x),
y′ = k1(x− y) + k2(35− y) + k3(z − y) + 20,
z′ = k3(y − z) + k4(35− z).

The insulation constants will be defined as k0 = 1/2, k1 = 1/2, k2 = 1/4,
k3 = 1/4, k4 = 3/4 to reflect insulation quality. The reciprocal 1/k
is approximately the amount of time in hours required for 63% of the
temperature difference to be exchanged. For instance, 4 hours elapse for
the main floor. The model:

x′ =
1

2
(45− x) +

1

2
(y − x),

y′ =
1

2
(x− y) +

1

4
(35− y) +

1

4
(z − y) + 20,

z′ =
1

4
(y − z) +

3

4
(35− z).

The homogeneous solution in vector form is given in terms of constants
a = 1 +

√
5/4, b = 1 −

√
5/4, and arbitrary constants c1, c2, c3 by the

formula xh(t)
yh(t)
zh(t)

 = c1e
−t

 −1
0
2

+ c2e
−at

 2√
5
1

+ c3e
−bt

 2

−
√

5
1

 .
A particular solution is an equilibrium solution xp(t)

yp(t)
zp(t)

 =

 620
11
745
11
475
11

 .
The homogeneous solution has limit zero at infinity, hence the temper-
atures of the three spaces hover around x = 56.4, y = 67.7, z = 43.2
degrees Fahrenheit. Specific information can be gathered by solving for
c1, c2, c3 according to the initial data x(0) = 45, y(0) = z(0) = 35. The
answers are

c1 = 5, c2 =
25

2
+

7

2

√
5, c3 =

25

2
− 7

2

√
5.

Underpowered heater. To the main floor each hour is added 20◦F, but
the heat escapes at a substantial rate, so that after one hour y ≈ 68◦F.
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After five hours, y ≈ 68◦F. The heater in this example is so inadequate
that even after many hours, the main living area is still under 69◦F.

Forced air furnace. Replacing the space heater by a normal furnace
adds the difficulty of switches in the input, namely, the thermostat
turns off the furnace when the main floor temperature reaches 70◦F,
and it turns it on again after a 4◦F temperature drop. We will suppose
that the furnace has four times the BTU rating of the space heater,
which translates to an 80◦F temperature rise per hour. The study of
the forced air furnace requires two differential equations, one with 20
replaced by 80 (DE 1, furnace on) and the other with 20 replaced by 0
(DE 2, furnace off). The plan is to use the first differential equation on
time interval 0 ≤ t ≤ t1, then switch to the second differential equation
for time interval t1 ≤ t ≤ t2. The time intervals are selected so that
y(t1) = 70 (the thermostat setting) and y(t2) = 66 (thermostat setting
less 4 degrees). Numerical work gives the following results.

Time in minutes Main floor temperature Model Furnace

31.6 70 DE 1 on
40.9 66 DE 2 off
45.3 70 DE 1 on
54.6 66 DE 2 off

The reason for the non-uniform times between furnace cycles can be
seen from the model. Each time the furnace cycles, heat enters the main
floor, then escapes through the other two levels. Consequently, the initial
conditions applied to models 1 and 2 are changing, resulting in different
solutions to the models on each switch.

Chemostats and Microorganism Culturing

A vessel into which nutrients are pumped, to feed a microorganism,
is called a chemostat1. Uniform distributions of microorganisms and
nutrients are assumed, for example, due to stirring effects. The pumping
is matched by draining to keep the volume constant.

1The October 14, 2004 issue of the journal Nature featured a study of the co-
evolution of a common type of bacteria, Escherichia coli, and a virus that infects
it, called bacteriophage T7. Postdoctoral researcher Samantha Forde set up ”micro-
bial communities of bacteria and viruses with different nutrient levels in a series of
chemostats – glass culture tubes that provide nutrients and oxygen and siphon off
wastes.”
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Output EffluentInput Feed

Figure 7. A Basic
Chemostat. A stirred
bio-reactor operated as a
chemostat, with continuous inflow
and outflow. The flow rates are
controlled to maintain a constant
culture volume.

In a typical chemostat, one nutrient is kept in short supply while all
others are abundant. We consider here the question of survival of the
organism subject to the limited resource. The problem is quantified as
follows:

x(t) = the concentration of the limited nutrient in the vessel,

y(t) = the concentration of organisms in the vessel.

A special case of the derivation in J.M. Cushing’s text for the organism
E. Coli2 is the set of nonlinear differential equations3

x′ = −0.075x+ (0.075)(0.005)− 1

63
g(x)y,

y′ = −0.075y + g(x)y,
(2)

where g(x) = 0.68x(0.0016 + x)−1. Of special interest to the study of
this equation are two linearized equations at equilibria, given by

u′1 = −0.075u1 − 0.008177008175u2,
u′2 = 0.4401515152u2,

(3)

v′1 = −1.690372243 v1 − 0.001190476190 v2,
v′2 = 101.7684513 v1.

(4)

Although we cannot solve the nonlinear system explicitly, nevertheless
there are explicit formulas for u1, u2, v1, v2 that complete the picture of
how solutions x(t), y(t) behave at t = ∞. The result of the analysis is
that E. Coli survives indefinitely in this vessel at concentration y ≈ 0.3.

2In a biology Master’s thesis, two strains of Escherichia coli were grown in a glucose-
limited chemostat coupled to a modified Robbins device containing plugs of silicone
rubber urinary catheter material. Reference: Jennifer L. Adams and Robert J. C.
McLean, Applied and Environmental Microbiology, September 1999, p. 4285-4287,
Vol. 65, No. 9.

3More details can be found in The Theory of the Chemostat Dynamics of Microbial
Competition, ISBN-13: 9780521067348, by Hal Smith and Paul Waltman, June 2008.
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Culture vessel

pump

Effluent reservoir

magnetic stirrer

overflow

Feed Reservoir

stirring bar

heater/cooler
air inlet

air inlet

Figure 8. Laboratory Chemostat.
The components are the Feed reservoir, which contains the nutrients, a stirred
chemical reactor labeled the Culture vessel, and the Effluent reservoir,
which holds the effluent overflow from the reactor.

Irregular Heartbeats and Lidocaine

The human malady of ventricular arrhythmia or irregular heartbeat
is treated clinically using the drug lidocaine.

Figure 9. Xylocaine label, a brand name for
the drug lidocaine.

To be effective, the drug has to be maintained at a bloodstream concen-
tration of 1.5 milligrams per liter, but concentrations above 6 milligrams
per liter are considered lethal in some patients. The actual dosage de-
pends upon body weight. The adult dosage maximum for ventricular
tachycardia is reported at 3 mg/kg.4 The drug is supplied in 0.5%, 1%
and 2% solutions, which are stored at room temperature.

A differential equation model for the dynamics of the drug therapy uses

x(t) = amount of lidocaine in the bloodstream,

y(t) = amount of lidocaine in body tissue.

A typical set of equations, valid for a special body weight only, appears
below; for more detail see J.M. Cushing’s text [?].

x′(t) = −0.09x(t) + 0.038y(t),
y′(t) = 0.066x(t)− 0.038y(t).

(5)

4Source: Family Practice Notebook, http://www.fpnotebook.com/. The au-
thor is Scott Moses, MD, who practises in Lino Lakes, Minnesota.
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The physically significant initial data is zero drug in the bloodstream
x(0) = 0 and injection dosage y(0) = y0. The answers:

x(t) = −0.3367y0e
−0.1204t + 0.3367y0e

−0.0076t,

y(t) = 0.2696y0e
−0.1204t + 0.7304y0e

−0.0076t.

The answers can be used to estimate the maximum possible safe dosage
y0 and the duration of time that the drug lidocaine is effective.

Nutrient Flow in an Aquarium

Consider a vessel of water containing a radioactive isotope, to be used as
a tracer for the food chain, which consists of aquatic plankton varieties
A and B.

Plankton are aquatic organisms that drift with the currents, typically
in an environment like Chesapeake Bay. Plankton can be divided into
two groups, phytoplankton and zooplankton. The phytoplankton are
plant-like drifters: diatoms and other alga. Zooplankton are animal-like
drifters: copepods, larvae, and small crustaceans.

Figure 10. Left: Bacillaria
paxillifera, phytoplankton.
Right: Anomura Galathea
zoea, zooplankton.

Let

x(t) = isotope concentration in the water,

y(t) = isotope concentration in A,

z(t) = isotope concentration in B.

Typical differential equations are

x′(t) = −3x(t) + 6y(t) + 5z(t),
y′(t) = 2x(t)− 12y(t),
z′(t) = x(t) + 6y(t)− 5z(t).

The answers are

x(t) = 6c1 + (1 +
√

6)c2e
(−10+

√
6)t + (1−

√
6)c3e

(−10−
√
6)t,

y(t) = c1 + c2e
(−10+

√
6)t + c3e

(−10−
√
6)t,

z(t) =
12

5
c1 −

(
2 +
√

1.5
)
c2e

(−10+
√
6)t +

(
−2 +

√
1.5
)
c3e

(−10−
√
6)t.
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The constants c1, c2, c3 are related to the initial radioactive isotope
concentrations x(0) = x0, y(0) = 0, z(0) = 0, by the 3 × 3 system of
linear algebraic equations

6c1 + (1 +
√

6)c2 + (1−
√

6)c3 = x0,
c1 + c2 + c3 = 0,

12

5
c1 −

(
2 +
√

1.5
)
c2 +

(
−2 +

√
1.5
)
c3 = 0.

Biomass Transfer

Consider a European forest having one or two varieties of trees. We
select some of the oldest trees, those expected to die off in the next few
years, then follow the cycle of living trees into dead trees. The dead trees
eventually decay and fall from seasonal and biological events. Finally,
the fallen trees become humus.

Figure 11. Forest Biomass. Total biomass is a parameter used to assess

atmospheric carbon that is harvested by trees. Forest management uses biomass

subclasses to classify fire risk.

Let variables x, y, z, t be defined by

x(t) = biomass decayed into humus,

y(t) = biomass of dead trees,

z(t) = biomass of living trees,

t = time in decades (decade = 10 years).

A typical biological model is

x′(t) = −x(t) + 3y(t),
y′(t) = −3y(t) + 5z(t),
z′(t) = −5z(t).
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Suppose there are no dead trees and no humus at t = 0, with initially z0
units of living tree biomass. These assumptions imply initial conditions
x(0) = y(0) = 0, z(0) = z0. The solution is

x(t) =
15

8
z0
(
e−5t − 2e−3t + e−t

)
,

y(t) =
5

2
z0
(
−e−5t + e−3t

)
,

z(t) = z0e
−5t.

The live tree biomass z(t) = z0e
−5t decreases according to a Malthusian

decay law from its initial size z0. It decays to 60% of its original biomass
in one year. Interesting calculations that can be made from the other
formulas include the future dates when the dead tree biomass and the
humus biomass are maximum. The predicted dates are approximately
2.5 and 8 years hence, respectively.

The predictions made by this model are trends extrapolated from rate
observations in the forest. Like weather prediction, it is a calculated
guess that disappoints on a given day and from the outset has no pre-
dictable answer.

Total biomass is considered an important parameter to assess atmo-
spheric carbon that is harvested by trees. Biomass estimates for forests
since 1980 have been made by satellite remote sensing data with instances
of 90% accuracy (Science 87(5), September 2004).

Pesticides in Soil and Trees

A Washington cherry orchard was sprayed with pesticides.

Figure 12. Cherries in June.

Assume that a negligible amount of pesticide was sprayed on the soil.
Pesticide applied to the trees has a certain outflow rate to the soil, and
conversely, pesticide in the soil has a certain uptake rate into the trees.
Repeated applications of the pesticide are required to control the insects,
which implies the pesticide levels in the trees varies with time. Quantize
the pesticide spraying as follows.
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x(t) = amount of pesticide in the trees,

y(t) = amount of pesticide in the soil,

r(t) = amount of pesticide applied to the trees,

t = time in years.

A typical model is obtained from input-output analysis, similar to the
brine tank models:

x′(t) = 2x(t)− y(t) + r(t),
y′(t) = 2x(t)− 3y(t).

In a pristine orchard, the initial data is x(0) = 0, y(0) = 0, because the
trees and the soil initially harbor no pesticide. The solution of the model
obviously depends on r(t). The nonhomogeneous dependence is treated
by the method of variation of parameters infra. Approximate formulas
are

x(t) ≈
∫ t

0

(
1.10e1.6(t−u) − 0.12e−2.6(t−u)

)
r(u)du,

y(t) ≈
∫ t

0

(
0.49e1.6(t−u) − 0.49e−2.6(t−u)

)
r(u)du.

The exponential rates 1.6 and −2.6 represent respectively the accumu-
lation of the pesticide into the soil and the decay of the pesticide from
the trees. The application rate r(t) is typically a step function equal to
a positive constant over a small interval of time and zero elsewhere, or a
sum of such functions, representing periodic applications of pesticide.

Forecasting Prices

A cosmetics manufacturer has a marketing policy based upon the price
x(t) of its salon shampoo.

Figure 13. Salon
shampoo sample.
The marketing strategy for
the shampoo is to set the
price x(t) dynamically to
reflect demand for the
product.
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The production P (t) and the sales S(t) are given in terms of the price
x(t) and the change in price x′(t) by the equations

P (t) = 4− 3

4
x(t)− 8x′(t) (Production),

S(t) = 15− 4x(t)− 2x′(t) (Sales).

The differential equations for the price x(t) and inventory level I(t) are

x′(t) = k(I(t)− I0),
I ′(t) = P (t)− S(t).

The inventory level I0 = 50 represents the desired level. The equations
can be written in terms of x(t), I(t) as follows.

x′(t) = kI(t) − kI0,

I ′(t) =
13

4
x(t) − 6kI(t) + 6kI0 − 11.

If k = 1, x(0) = 10 and I(0) = 7, then the solution is given by

x(t) =
44

13
+

86

13
e−13t/2,

I(t) = 50− 43e−13t/2.

The forecast of price x(t) ≈ 3.39 dollars at inventory level I(t) ≈ 50 is
based upon the two limits

lim
t→∞

x(t) =
44

13
, lim

t→∞
I(t) = 50.

Coupled Spring-Mass Systems

Three masses are attached to each other by four springs as in Figure 14.

m1 m3

k2 k3 k4k1

m2

Figure 14. Three masses
connected by springs. The masses
slide along a frictionless horizontal
surface.

The analysis uses the following constants, variables and assumptions.

Mass
Constants

The masses m1, m2, m3 are assumed to be point masses
concentrated at their center of gravity.

Spring
Constants

The mass of each spring is negligible. The springs op-
erate according to Hooke’s law: Force = k(elongation).
Constants k1, k2, k3, k4 denote the Hooke’s constants.
The springs restore after compression and extension.

Position
Variables

The symbols x1(t), x2(t), x3(t) denote the mass posi-
tions along the horizontal surface, measured from their
equilibrium positions, plus right and minus left.
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Fixed Ends The first and last spring are attached to fixed walls.

The competition method is used to derive the equations of motion.
In this case, the law is

Newton’s Second Law Force = Sum of the Hooke’s Forces.

The model equations are

m1x
′′
1(t) = −k1x1(t) + k2[x2(t)− x1(t)],

m2x
′′
2(t) = −k2[x2(t)− x1(t)] + k3[x3(t)− x2(t)],

m3x
′′
3(t) = −k3[x3(t)− x2(t)]− k4x3(t).

(6)

The equations are justified in the case of all positive variables by observ-
ing that the first three springs are elongated by x1, x2 − x1, x3 − x2,
respectively. The last spring is compressed by x3, which accounts for the
minus sign.

Another way to justify the equations is through mirror-image symmetry:
interchange k1 ←→ k4, k2 ←→ k3, x1 ←→ x3, then equation 2 should be
unchanged and equation 3 should become equation 1.

Matrix Formulation. System (6) can be written as a second order
vector-matrix systemm1 0 0

0 m2 0
0 0 m3


x′′1x′′2
x′′3

 =

−k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4


x1x2
x3

 .
More succinctly, the system is written as

Mx′′(t) = Kx(t)

where the displacement x, mass matrix M and stiffness matrix K
are defined by the formulas

x=

x1x2
x3

 , M=

m1 0 0
0 m2 0
0 0 m3

 , K=

−k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4

 .
Numerical example. Let m1 = 1, m2 = 1, m3 = 1, k1 = 2, k2 = 1,
k3 = 1, k4 = 2. Then the system is given by x′′1

x′′2
x′′3

 =

 −3 1 0
1 −2 1
0 1 −3


 x1
x2
x3

 .
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The vector solution is given by the formula x1
x2
x3

 = (a1 cos t+ b1 sin t)

 1
2
1


+
(
a2 cos

√
3t+ b2 sin

√
3t
) 1

0
−1


+ (a3 cos 2t+ b3 sin 2t)

 1
−1

1

 ,
where a1, a2, a3, b1, b2, b3 are arbitrary constants.

Boxcars

A special case of the coupled spring-mass system is three boxcars on a
level track connected by springs, as in Figure 15.

k k

m mm

Figure 15. Three identical
boxcars connected by
identical springs.

Except for the springs on fixed ends, this problem is the same as the one
of the preceding illustration, therefore taking k1 = k4 = 0, k2 = k3 = k,
m1 = m2 = m3 = m gives the systemm 0 0

0 m 0
0 0 m


x′′1x′′2
x′′3

 =

−k k 0
k −2k k
0 k −k


x1x2
x3

 .
Take k/m = 1 to obtain the illustration

x′′ =

−1 1 0
1 −2 1
0 1 −1

x,

which has vector solution

x = (a1 + b1t)

 1
1
1

+ (a2 cos t+ b2 sin t)

 1
0
−1


+
(
a3 cos

√
3t+ b3 sin

√
3t
) 1
−2

1

 ,
where a1, a2, a3, b1, b2, b3 are arbitrary constants.
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The solution expression can be used to discover what happens to the
boxcars when the springs act normally upon compression but disengage
upon expansion. An interesting physical situation is when one car moves
along the track, contacts two stationary cars, then transfers its momen-
tum to the other cars, followed by disengagement.

Electrical Network I

Consider the LR-network of Figure 16.

R1

i3
R3R2

L3L2

L1i1

i2

Figure 16. An
electrical network.
There are three
resistors R1, R2, R3

and three inductors
L1, L2, L3. The
currents i1, i2, i3 are
defined between
nodes (black dots).

The derivation of the differential equations for the loop currents i1, i2,
i3 uses Kirchhoff’s laws and the voltage drop formulas for resistors and
inductors. The black dots in the diagram are the nodes that determine
the beginning and end of each of the currents i1, i2, i3. Currents are
defined only on the outer boundary of the network. Kirchhoff’s node law
determines the currents across L2, L3 (arrowhead right) as i2 − i1 and
i3−i1, respectively. Similarly, i2−i3 is the current across R1 (arrowhead
down). Using Ohm’s law VR = RI and Faraday’s law VL = LI ′ plus
Kirchhoff’s loop law algebraic sum of the voltage drops is zero around a
closed loop (see the maple code below), we arrive at the model

i′1 = −
(
R2

L1

)
i2 −

(
R3

L1

)
i3,

i′2 = −
(
R2

L2
+
R2

L1

)
i2 +

(
R1

L2
− R3

L1

)
i3,

i′3 =

(
R1

L3
− R2

L1

)
i2 −

(
R1

L3
+
R3

L1
+
R3

L3

)
i3

A computer algebra system is helpful to obtain the differential equations
from the closed loop formulas. Part of the theory is that the number of
equations equals the number of holes in the network, called the connec-
tivity. Here’s some maple code for determining the equations in scalar
and also in vector-matrix form.

loop1:=L1*D(i1)+R3*i3+R2*i2=0;

loop2:=L2*D(i2)-L2*D(i1)+R1*(i2-i3)+R2*i2=0;

loop3:=L3*D(i3)-L3*D(i1)+R3*i3+R1*(i3-i2)=0;



750 Systems of Differential Equations

f1:=solve(loop1,D(i1));

f2:=solve(subs(D(i1)=f1,loop2),D(i2));

f3:=solve(subs(D(i1)=f1,loop3),D(i3));

with(linalg):

jacobian([f1,f2,f3],[i1,i2,i3]);

Electrical Network II

Consider the LR-network of Figure 17. This network produces only two
differential equations, even though there are three holes (connectivity
3). The derivation of the differential equations parallels the previous
network, so nothing will be repeated here.

A computer algebra system is used to obtain the differential equations
from the closed loop formulas. Below is maple code to generate the
equations i′1 = f1, i

′
2 = f2, i3 = f3.

loop1:=L1*D(i1)+R2*(i1-i2)+R1*(i1-i3)=0;

loop2:=L2*D(i2)+R3*(i2-i3)+R2*(i2-i1)=0;

loop3:=R3*(i3-i2)+R1*(i3-i1)=E;

f3:=solve(loop3,i3);

f1:=solve(subs(i3=f3,loop1),D(i1));

f2:=solve(subs(i3=f3,loop2),D(i2));

E

R1 R2

i1 L1

R3

i3 i2

L2

Figure 17. An electrical network.

There are three resistors R1, R2, R3, two inductors L1, L2 and a battery E.

The currents i1, i2, i3 are defined between nodes (black dots).

The model, in the special case L1 = L2 = 1 and R1 = R2 = R3 = R:

i′1 = − 3R

2
i1 +

3R

2
i2 +

E

2
,

i′2 =
3R

2
i1 − 3R

2
i2 +

E

2
,

i3 =
1

2
i1 +

1

2
i2 +

E

2R
.

It is easily justified that the solution of the differential equations for
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initial conditions i1(0) = i2(0) = 0 is given by

i1(t) =
E

2
t, i2(t) =

E

2
t.

Logging Timber by Helicopter

Certain sections of National Forest in the USA do not have logging ac-
cess roads. In order to log the timber in these areas, helicopters are
employed to move the felled trees to a nearby loading area, where they
are transported by truck to the mill. The felled trees are slung beneath
the helicopter on cables.

Figure 18. Helicopter logging.
Left: An Erickson helicopter lifts felled
trees.
Right: Two trees are attached to the
cable to lower transportation costs.

The payload for two trees approximates a double pendulum, which oscil-
lates during flight. The angles of oscillation θ1, θ2 of the two connecting
cables, measured from the gravity vector direction, satisfy the following
differential equations, in which g is the gravitation constant, m1, m2

denote the masses of the two trees and L1, L2 are the cable lengths.

(m1 +m2)L
2
1θ
′′
1 + m2L1L2θ

′′
2 + (m1 +m2)L1gθ1 = 0,

m2L1L2θ
′′
1 + m2L

2
2θ
′′
2 + m2L2gθ2 = 0.

This model is derived assuming small displacements θ1, θ2, that is,
sin θ ≈ θ for both angles, using the following diagram.

θ2

L1

L2

m2

m1
θ1

Figure 19. Logging Timber by Helicopter.
The cables have lengths L1, L2. The angles θ1, θ2 are
measured from vertical.

The lengths L1, L2 are adjusted on each trip for the length of the trees,
so that the trees do not collide in flight with each other nor with the
helicopter. Sometimes, three or more smaller trees are bundled together
in a package, which is treated here as identical to a single, very thick
tree hanging on the cable.

Vector-matrix model. The angles θ1, θ2 satisfy the second-order
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vector-matrix equation(
(m1 +m2)L1 m2L2

L1 L2

)(
θ1
θ2

)′′
= −

(
m1g +m2g 0

0 g

)(
θ1
θ2

)
.

This system is equivalent to the second-order system

(
θ1
θ2

)′′
=

 −
m1g +m2g

L1m1

m2g

L1m1

m1g +m2 g

L2m1
−(m1 +m2) g

L2m1


(
θ1
θ2

)
.

Earthquake Effects on Buildings

A horizontal earthquake oscillation F (t) = F0 cosωt affects each floor of
a 5-floor building; see Figure 20. The effect of the earthquake depends
upon the natural frequencies of oscillation of the floors.

In the case of a single-floor building, the center-of-mass position x(t)
of the building satisfies mx′′ + kx = E and the natural frequency of
oscillation is

√
k/m. The earthquake force E is given by Newton’s second

law: E(t) = −mF ′′(t). If ω ≈
√
k/m, then the amplitude of x(t) is large

compared to the amplitude of the force E. The amplitude increase in
x(t) means that a small-amplitude earthquake wave can resonant with
the building and possibly demolish the structure.

3

F

4

5

1

2

Figure 20. A 5-Floor
Building.
A horizontal earthquake wave F
affects every floor. The actual wave
has wavelength many times larger
than the illustration.

The following assumptions and symbols are used to quantize the oscilla-
tion of the 5-floor building.

• Each floor is considered a point mass located at its center-of-mass.
The floors have masses m1, . . . , m5.

• Each floor is restored to its equilibrium position by a linear restor-
ing force or Hooke’s force −k(elongation). The Hooke’s constants
are k1, . . . , k5.

• The locations of masses representing the 5 floors are x1, . . . , x5.
The equilibrium position is x1 = · · · = x5 = 0.
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• Damping effects of the floors are ignored. This is a frictionless
system.

The differential equations for the model are obtained by competition:
the Newton’s second law force is set equal to the sum of the Hooke’s
forces and the external force due to the earthquake wave. This results in
the following system, where k6 = 0, Ej = mjF

′′ for j = 1, 2, 3, 4, 5 and
F = F0 cosωt.

m1x
′′
1 = −(k1 + k2)x1 + k2x2 + E1,

m2x
′′
2 = k2x1 − (k2 + k3)x2 + k3x3 + E2,

m3x
′′
3 = k3x2 − (k3 + k4)x3 + k4x4 + E3,

m4x
′′
4 = k4x3 − (k4 + k5)x4 + k5x5 + E4,

m5x
′′
5 = k5x4 − (k5 + k6)x5 + E5.

In particular, the equations for a floor depend only upon the neighboring
floors. The bottom floor and the top floor are exceptions: they have just
one neighboring floor.

Vector-matrix second order system. Define

M =


m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 m5

 , x =


x1
x2
x3
x4
x5

 , H =


E1

E2

E3

E4

E5

 ,

K =


−k1 − k2 k2 0 0 0

k2 −k2 − k3 k3 0 0
0 k3 −k3 − k4 k4 0
0 0 k4 −k4 − k5 k5
0 0 0 k5 −k5 − k6

 .

In the last row, k6 = 0, to reflect the absence of a floor above the fifth.
The second order system is

Mx′′(t) = Kx(t) + H(t).

The matrix M is called the mass matrix and the matrix K is called the
Hooke’s matrix. The external force H(t) can be written as a scalar
function E(t) = −F ′′(t) times a constant vector:

H(t) = −ω2F0 cosωt


m1

m2

m3

m4

m5

 .
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Identical floors. Let us assume that all floors have the same mass
m and the same Hooke’s constant k. Then M = mI and the equation
becomes

x′′ = m−1


−2k k 0 0 0
k −2k k 0 0
0 k −2k k 0
0 0 k −2k k
0 0 0 k −k

x− F0ω
2 cos(ωt)


1
1
1
1
1

 .

The Hooke’s matrix K is symmetric (KT = K) with negative entries
only on the diagonal. The last diagonal entry is −k (a common error is
to write −2k).

Particular solution. The method of undetermined coefficients predicts
a trial solution xp(t) = c cosωt, because each differential equation has
nonhomogeneous term −F0ω

2 cosωt. The constant vector c is found
by trial solution substitution. Cancel the common factor cosωt in the
substituted equation to obtain the equation

(
m−1K + ω2 I

)
c = F0ω

2b,
where b is column vector of ones in the preceding display. Let B(ω) =

m−1K + ω2 I. Then the formula B−1 =
adj(B)

det(B)
gives

c = F0ω
2 adj(B(ω))

det(B(ω))
b.

The constant vector c can have a large magnitude when det(B(ω)) ≈ 0.
This occurs when −ω2 is nearly an eigenvalue of m−1K.

Homogeneous solution. The theory of this chapter gives the homo-
geneous solution xh(t) as the sum

xh(t) =
5∑

j=1

(aj cosωjt+ bj sinωjt)vj

where r = ωj and v = vj 6= 0 satisfy(
1

m
K + r2 I

)
v = 0.

Special case k/m = 10. Then

1

m
K =



−20 10 0 0 0

10 −20 10 0 0

0 10 −20 10 0

0 0 10 −20 10

0 0 0 10 −10


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and the values ω1, . . . , ω5 are found by solving the determinant equation
det((1/m)K + ω2I) = 0, to obtain the values in Table 1.

Table 1. The natural frequencies for the special case k/m = 10.

Frequency Value

ω1 0.900078068
ω2 2.627315231
ω3 4.141702938
ω4 5.320554507
ω5 6.068366391

General solution. Superposition implies x(t) = xh(t) + xp(t). Both
terms of the general solution represent bounded oscillations.

Resonance effects. The special solution xp(t) can be used to obtain
some insight into practical resonance effects between the incoming earth-
quake wave and the building floors. When ω is close to one of the fre-
quencies ω1, . . . , ω5, then the amplitude of a component of xp can be
very large, causing the floor to take an excursion that is too large to
maintain the structural integrity of the floor.

The physical interpretation is that an earthquake wave of the proper
frequency, having time duration sufficiently long, can demolish a floor
and hence demolish the entire building. The amplitude of the earthquake
wave does not have to be large: a fraction of a centimeter might be
enough to start the oscillation of the floors.

Earthquakes and Tsunamis

The original Richter scale, with depreciated use in seismology, was
invented by seismologist C. Richter to rate earthquake power.

The moment magnitude scale (MW ) has largely replaced the original
Richter scale and its modified versions. The highest reported magnitude
is 9.5 MW by the United States Geological Survey for the Concepción,
Chile earthquake of May 22, 1960. News reports and the general public
still refer to earthquake magnitude using the term Richter Scale.

The Sumatra earthquake of December 26, 2004 occurred close to a deep-
sea trench, a subduction zone where one tectonic plate slips beneath
another. Most of the earthquake energy is released in these areas as the
two plates grind towards each other. Estimates of magnitude 8.8 MW

to 9.3 MW followed the event. The US Geological Survey estimated
9.2 MW .

The Chile earthquake and tsunami of 1960 has been documented well.
Here is an account by Dr. Gerard Fryer of the Hawaii Institute of Geo-
physics and Planetology, in Honolulu.
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The tsunami was generated by the Chile earthquake of May 22,
1960, the largest earthquake ever recorded: it was magnitude 9.6.
What happened in the earthquake was that a piece of the Pacific
seafloor (or strictly speaking, the Nazca Plate) about the size of
California slid fifty feet beneath the continent of South America.
Like a spring, the lower slopes of the South American continent
offshore snapped upwards as much as twenty feet while land along
the Chile coast dropped about ten feet. This change in the shape of
the ocean bottom changed the shape of the sea surface. Since the
sea surface likes to be flat, the pile of excess water at the surface
collapsed to create a series of waves — the tsunami.

The tsunami, together with the coastal subsidence and flooding,
caused tremendous damage along the Chile coast, where about
2,000 people died. The waves spread outwards across the Pa-
cific. About 15 hours later the waves flooded Hilo, on the island
of Hawaii, where they built up to 30 feet and caused 61 deaths
along the waterfront. Seven hours after that, 22 hours after the
earthquake, the waves flooded the coastline of Japan where 10-foot
waves caused 200 deaths. The waves also caused damage in the
Marquesas, in Samoa, and in New Zealand. Tidal gauges through-
out the Pacific measured anomalous oscillations for about three
days as the waves bounced from one side of the ocean to the other.


