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The Wronskian Determinant

Definition. The Wronskian Matrix of two functions f1(x), f2(x) is

W (x) =

(
f1(x) f2(x)
d

dx
f1(x)

d

dx
f2(x)

)
.

The Wronskian Determinant of two functions f1(x), f2(x) is det(W (x)). The deter-
minant of a 2× 2 matrix is defined by

det

(
a b
c d

)
= ad− bc.

1 Example (Compute a Wronskian Determinant) Find the Wronskian determinant
of the two function x2, x5. Answer:

W (x) =

∣∣∣∣ x2 x5

2x 5x4

∣∣∣∣ = 3x6.

The Pattern: For the Wronskian matrix of n functions f1, . . . , fn, construct the first row
of W (x) as the n values f1(x) to fn(x). Then differentiate row 1 successively to obtain
the other rows of W (x). The last row is dn−1

dxn−1 applied to row 1.



Quadrature, Arbitrary Constants and Arbitrary Functions

The linear ordinary differential equation y′′ = −32 has general solution y(x) =
−16x2 + c1x + c2, where c1, c2 are arbitrary constants. This is typical:

The order of a linear ordinary differential equation determines the number of arbi-
trary constants in the general solution.

The analog for partial differential equations is this:

The order of the partial differential equation determines the number of arbitrary
functions appearing in the general solution.



Theorem 1 (Quadrature for Partial Differential Equations)
Let u(x, y) satisfy the partial differential equation

∂u

∂x
= 0.

Then u(x, y) = f(y) where f is an arbitrary function of one variable.

Proof: Apply the method of quadrature to the equation
∂u

∂x
= 0, as follows:

∫ x

0

∂u(x, y)

∂x
dx =

∫ x

0

0dx Multiply by dx and integrate

u(x, y)− u(0, y) = 0 Fundamental Theorem of Calculus
u(x, y) = u(0, y) Function u(0, y) depends only on y
u(x, y) = f(y) Where f is an arbitrary function.

Remark. In general, u is an arbitrary function of all variables other than x.



Application: Change of variables

We’ll solve the advection equation ut + 15ux = 0 by an invertible change of variables
r = at + bx, s = ct + dx. The answer is u = f(x − 15t) where f(w) is an
arbitrary differentiable real-valued function of scalar variable w.

The Plan. The change of variables transforms (t, x) into (r, s), to obtain the new differ-
ential equation ∂u/∂r = 0. Then u is a constant for each fixed s, hence u = f(s) for
some arbitrary function f .

Details. Compute ut by the chain rule, then ut = urrt+usst = aur+cus. Similarly,
ux = bur + dus. Then ut + 15ux = 0 becomes upon substitution the new equation
(a+15b)ur+(c+15d)us = 0. The choices a+15b = 1 and c+15d = 0 will
make the new equation into ur = 0, as required. The constants a, b, c, d are selected as
a = −14, b = 1, c = −15, d = 1 in order to make the change of variables invertible
(nonzero determinant). Then s = −15t + x and u = f(s) = f(x− 15t).



Making a Filmstrip with Maple: The Advection Equation

Consider ∂u

∂t
+ 2∂u

∂x
= 0, u(0, t) = e−2t

2

. The solution is easily checked to be
u(t, x) = e−2(x−2t)

2

. We will make a filmstrip of 5 graphics at x = 0, 1, 2, 3, 4.
Each graphic is a plot of t against u on interval−1 < t < 5.

u:=(x,t)->exp(-2*(x-2*t)ˆ2);
mycolor:=[black,red,yellow,orange,green]:
xval:=[0,1,2,3,4]:
myplots:=[seq(plot(u(xval[i],t),t=-1..2,color=mycolor[i]),i = 1..5)]:
plots[display](myplots,insequence=true); # Animation
for i from 1 to 5 do myplots[i]; end do; # Make 5 individual plots



Method of Characteristics

Definition. A first order partial differential equation

v1(x, y)
∂u(x, y)

∂x
+ v2(x, y)

∂u(x, y)

∂y
= 0(1)

has characteristic curves defined by the implicit solution

w(x, y) = c

of the associated characteristic differential equation

−v2(x, y)dx + v1(x, y)dy = 0.

Theorem 2 (General Solution)
Let f(w) denote an arbitrary function. Then the general solution of (1) is given by

u(x, y) = f(w(x, y)).



Application: the Method of Characteristics

We solve the equation−xux + yuy = 0 by the method of characteristics. The answer
is u = f(xy) where f(w) is a real-valued arbitrary differentiable function of scalar
variable w.

Solution: First we construct the characteristic equation, by the formal replacement process
ux → −dy and uy → dx. The ODE is −x(−dy) + ydx = 0 or equivalently
y′ = −y/x. This is a first order linear homogeneous ODE with solution y = con-
stant/integrating factor = c/x. We solve y = c/x for c to get the implicit equation
xy = c. Then w(x, y) = xy in the Theorem (see the previous slide) and we have
general solution u = f(w(x, y)), reported as u = f(xy).

Answer check: Compute LHS = −xux+yuy = −x∂x(f(xy))+y∂y(f(xy)) =
−xf ′(xy)y+yf ′(xy)x = 0, and RHS = 0, therefore LHS = RHS for all symbols.



General Solution by the Method of Characteristics: The Proof

Proof: Let f(w) denote an arbitrary function. We prove that the general solution of (1)
is given by u(x, y) = f(w(x, y)). First, suppose that (x0, y0) is a point of the
characteristic curve w(x, y) = c and y is locally determined as a function of x, e.g.,
v1(x, y) 6= 0 and y = y(x). Then y(x) is differentiable and y′ = v2/v1. Assume
u(x, y) is a solution of (1), then we compute

d

dx
u(x, y(x)) =

∂u

∂x
+ y′(x)

∂u

∂y

=
1

v1(x, y)

(
v1(x, y)

∂u

∂x
+ v2(x, y)

∂u

∂y

)
= 0.

If the derivative is zero, then u(x, y(x)) must be a constant which depends only on
(x0, y0), or ultimately on the constant c in the equation w(x0, y0) = c. There-
fore, u(x, y(x)) = f(c) for some function f(w). Using the implicit solution, then
u(x, y(x)) = f(c) = f(w(x, y(x)) or simply u(x, y) = f(w(x, y)). The
proof is completed by showing directly that this solution satisfies the partial differential
equation.



d’Alembert’s Solution to the Wave Equation

The wave equation for an infinite string is
∂2u

∂t2
= c2

∂2u

∂x2
, where−∞ < x <∞ and

t ≥ 0 is time.

Theorem 3 (d’Alembert’s Solution)
The infinite string equation has general solution

u(x, t) = F (x + ct) + G(x− ct)

where F and G are twice continuously differentiable functions of one variable.

Proof: The change of variables r = x+ct, s = x−ct from (x, t) into (r, s) implies
the partial differential equation ∂

∂s

∂

∂r
u((r+ s)/2, (r− s)/(2c)) = 0. This equation

is solved by quadrature to obtain the result.



Application: d’Alembert’s Solution

We solve the wave equation for an infinite string,
∂2u

∂t2
= c2

∂2u

∂x2
, where−∞ < x <

∞ and t ≥ 0 is time. The initial conditions are u(x, 0) =
1

4 + x2
, ut(x, 0) = 0.

Solution. The method is d’Alembert’s solution u(x, t) = F (x + ct) + G(x − ct) where F and G are twice
continuously differentiable functions of one variable. Let h(x) = u(x, 0) = 1

4+x2 . We get from setting t = 0

in the conditions the two equations F (x) + G(x) = h(x), cF ′(x) − cG′(x) = 0. The second equation
implies G(x) = F (x) + d for some constant d. Then F (x) + F (x) + d = u(x, 0) determines F . Re-label
f(x) = F (x) + d/2. Then F (x) + G(x) = f(x) − d/2 + f(x) + d/2 = 2f(x), or f(x) = (1/2)h(x).
Finally, u(x, t) = f(x + ct)− d/2 + f(x− ct) + d/2 = f(x + ct) + f(x− ct). Then

u(x, t) =
1

2
(h(x + ct) + h(x− ct))

=
1/2

4 + (x + ct)2
+

1/2

4 + (x− ct)2
.


