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The Wronskian Determinant

Definition. The Wronskian Matrix of two functions f;(x), fo() is

wi = (S0 B0,

The Wronskian Determinant of two functions f; (), fo(x) is det(W (x)). The deter-
minant of a 2 X 2 matrix is defined by

det(i Z) = ad — bec.

Example (Compute a Wronskian Determinant) Find the Wronskian determinant
of the two function x2, z>. Answer:

— 3x°.

W(@) = | 5, i

The Pattern: For the Wronskian matrix of m functions fi, ..., f,, construct the first row
of W () as the i values f; () to f,,(x). Then differentiate row 1 successively to obtain

the other rows of W (). The last row is dd - 11 applied to row 1.




Quadrature, Arbitrary Constants and Arbitrary Functions

The linear ordinary differential equation y” = —32 has general solution y(x) =
—16x? + c;x + ¢y, where ¢;, ¢, are arbitrary constants. This is typical:

The order of a linear ordinary differential equation determines the number of arbi-
trary constants in the general solution.

The analog for partial differential equations is this:

The order of the partial differential equation determines the number of arbitrary
functions appearing in the general solution.



Theorem 1 (Quadrature for Partial Differential Equations)
Let u(x, y) satisfy the partial differential equation

ou

— = 0.

ox
Then u(x,y) = f(y) where f is an arbitrary function of one variable.

u
Proof: Apply the method of quadrature to the equation . = 0, as follows:
T

* Qu(zx,y) v ; :
————dx = Odax Multiply by dx and integrate
0

Oox 0
u(x,y) —u(0,y) =0 Fundamental Theorem of Calculus
u(x,y) = u(0,y) Function ©(0, y) depends only on y
u(xz,y) = f(y) Where f is an arbitrary function.

Remark. In general, w is an arbitrary function of all variables other than .



Application: Change of variables

We’ll solve the advection equation u; + 15w, = 0 by an invertible change of variables
r = at 4+ bx, s = ct + dx. The answeris u = f(x — 15t) where f(w) is an
arbitrary differentiable real-valued function of scalar variable w.

The Plan. The change of variables transforms (£, ) into (7, s), to obtain the new differ-
ential equation Ou /81 = 0. Then w is a constant for each fixed s, hence u = f(s) for
some arbitrary function f.

Details. Compute u; by the chain rule, then u; = u,r;+u;8; = au, 4+ cu,. Similarly,
u, = bu, + du,. Then u; + 15u, = 0 becomes upon substitution the new equation
(a+15b)u, + (c+ 15d)u, = 0. The choices @ 4+ 15b = 1 and ¢+ 15d = 0 will
make the new equation into u,, = 0, as required. The constants a, b, ¢, d are selected as
a=—14,b =1,c = —15,d = 1 in order to make the change of variables invertible
(nonzero determinant). Then s = —15t + x and u = f(s) = f(x — 15¢).



Making a Filmstrip with Maple: The Advection Equation

Conmder .+ 28“ = 0, u(0,t) = e~2". The solution is easily checked to be

u(t,x) = 6_2(‘” 2t)2. We will make a filmstrip of 5 graphics at x = 0,1, 2, 3,4.

Each graphic is a plot of ¢ against w on interval —1 < t < 5.

u:=(x,t)-—>exp(-2*(x-2xt) "2);

mycolor:=[black, red,yellow, orange, green] :

xval:=[0,1,2,3,4]:

myplots:=[seqg(plot (u(xval[i],t),t=-1..2,color=mycolor([i]),i = 1..5)]:
plots[display] (myplots, insequence=true); # Animation

for i from 1 to 5 do myplots[i]; end do; # Make 5 individual plots



Method of Characteristics

Definition. A first order partial differential equation

Ou(x,y)
ox +

has characteristic curves defined by the implicit solution

ou(z,y)
oy -

(1) 'Ul(wa y) 'Uz(wvy) 0

w(x,y) = c
of the associated characteristic differential equation
—v2(z, y)dz + vi(z, y)dy = 0.

Theorem 2 (General Solution)
Let f(w) denote an arbitrary function. Then the general solution of (1) is given by



Application: the Method of Characteristics

We solve the equation —xu, + yu, = 0 by the method of characteristics. The answer
is u = f(axy) where f(w) is a real-valued arbitrary differentiable function of scalar
variable w.

Solution: First we construct the characteristic equation, by the formal replacement process
u, — —dy and v, — dx. The ODE is —x(—dy) + ydx = 0 or equivalently

y' = —y/x. This is a first order linear homogeneous ODE with solution y = con-
stant/integrating factor = c¢/ax. We solve y = c¢/x for ¢ to get the implicit equation
xy = c. Then w(x,y) = xy in the Theorem (see the previous slide) and we have

general solution u = f(w(x,y)), reported as u = f(xy).

Answer check: Compute LHS = —zu,+yu, = —x0,.(f(xy))+yd,(f(xy)) =
—xf'(xy)y+yf'(xy)x = 0,and RHS = 0, therefore LHS = RHS for all symbols.



General Solution by the Method of Characteristics: The Proof

Proof: Let f(w) denote an arbitrary function. We prove that the general solution of (1)
is given by u(x,y) = f(w(x,y)). First, suppose that (xq, Yo) is a point of the
characteristic curve w(x,y) = c and y is locally determined as a function of x, e.g.,
vi(x,y) # 0and y = y(x). Then y(x) is differentiable and Yy = v, /v;. Assume
u(x, y) is a solution of (1), then we compute

d ou ou

—u(z,y(z)) = —+y'(z)—

dx ox Oy
B 1 ( ( )Bu Iy )811,)
vz, y) I Y T Y Oy
= 0.

If the derivative is zero, then w(x, y(ax)) must be a constant which depends only on
(20, Yo), or ultimately on the constant ¢ in the equation w(xg,yg) = c. There-
fore, u(x, y(x)) = f(c) for some function f(w). Using the implicit solution, then
u(z,y(z)) = f(c) = f(w(z,y(z)) or simply u(z,y) = f(w(z,y)). The
proof is completed by showing directly that this solution satisfies the partial differential
equation.



d’Alembert’s Solution to the Wave Equation
o*u o*u

:cz

ot? ox?

, where —oo < & < oo and

The wave equation for an infinite string is
t > 0is time.

Theorem 3 (d’Alembert’s Solution)
The infinite string equation has general solution

u(x,t) = F(x + ct) + G(x — ct)
where F' and G are twice continuously differentiable functions of one variable.
Proof: The change of variables 7 = x +ct, s = x — ct from (x, t) into (7, 8) implies

the partial differential equation = 2>-u((r + s)/2, (r — s)/(2¢)) = 0. This equation
is solved by quadrature to obtain the result.



Application: d’Alembert’s Solution

_ o - O%u 28211,
We solve the wave equation for an infinite string, B2 = 8— where —oco0 < ¢ <
x?
oo and t > 0 is time. The initial conditions are u(x, 0) = pRIpe ui(x,0) = 0.
€T

Solution. The method is d’Alembert’s solution u(z,t) = F(x + ct) + G(x — ct) where F' and G are twice
continuously differentiable functions of one variable. Let h(x) = u(x,0) = 3 +w2 We get from setting ¢t = 0

in the conditions the two equations F(z) + G(xz) = h(x), cF'(x) — ¢G’(x) = 0. The second equation
implies G(x) = F(x) + d for some constant d. Then F(x) + F(x) + d = u(x,0) determines F. Re-label
f(x) = F(x) +d/2. Then F(x) + G(x) = f(zx) —d/2+ f(x) + d/2 = 2f(x), or f(x) = (1/2)h(x).
Finally, u(xz,t) = f(x 4+ ct) —d/2 + f(x — ct) + d/2 = f(x + ct) + f(x — ct). Then

u(z,t) = %(h(w 4+ ct) + h(x — ct))
1/2 1/2
4+ (xz + ct)? +4—|—(a:—ct)2'




