
Chapter 2

Reaction–Advection–
Dispersion
Equation

A problem of great importance in environmental science is to understand how
chemical or biological contaminants are transported through subsurface aquifer
systems. In this chapter we consider the transport of a chemical or biological
tracer carried by water through a uniform, one-dimensional, saturated, porous
medium, and we derive simple mathematical models based on mass balance that
incorporate advection, dispersion, and adsorption. Thus, we extend the ideas
in the Chapter 1, where we focused only on the diffusion process with no flow.
The approach we take is the traditional continuum mechanics approach.

Each variable, for example, density, is viewed in a mathematical sense as an
idealized point function over the domain of interest. Both physically and math-
ematically, the values these point functions take are regarded as averages over
small elementary, or representative, volume elements. The models we develop
are also highly deterministic. This means they contain coefficients and func-
tions that are regarded as completely known. In fact, the opposite may be
true. There is a natural variability of nature that lends itself to an alternate ap-
proach, namely, a stochastic approach. For example, the soil conductivity, which
characterizes how fast fluid can be transported through the soil fabric, is a highly
variable quantity because of the ever present heterogeneities in the subsurface;
one could view it as a random variable with a constant mean value over which
is superimposed random spatial “noise.” But this will not be the view here; this
kind of random variability is not in deterministic models. Continuum-based,
deterministic models include some variability, but it is disguised in through
phenomenological equations obtained by the averaging process.
A complicating factor in subsurface modeling is the variability caused by the

presence of several spatial scales. Aquifers can be of the order of 104 meters,
or larger, while heterogenieties within the aquifer can range over 10−2 – 102
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Figure 2.1: A one-dimensional porous medium showing the solid fabric, or
grains, and the interstitial spaces, or pores.

meters. The pores themselves can be as small as 10−4 meters, while adhesive
water layers, important in adsorption, may be 10−7 meters thick. Whether
a stochastic or deterministic model is more valid is not the issue; rather, the
goal is to develop a predictive model that captures the essential features of the
physical processes involved.

2.1 Mass Balance

We imagine that water is flowing underground through a fixed soil or rock
matrix; this soil or rock matrix, which is composed of solid material, will also be
referred to as the fabric that makes up the porous medium. In any fixed volume,
the fraction of space, called the pore space, available to the water is assumed
to be ω, which is called the porosity of the medium. Clearly, 0 < ω < 1. In
general, the porosity can vary with position, or even pressure, but in this chapter
we assume ω is constant throughout the medium. When we say the porosity is
constant, that means we are observing from a distance where there is uniformity
in the porosity. If we looked on a small scale, the porosity would be either zero
or one; but here we assume the representative volume element is on an order
where averages of percentage pore space are constant over the entire medium.
Furthermore, we assume that the flow is saturated, which means that all of
the available pore space is always filled with fluid. There are, of course, many
fuzzy issues here; for example, do we count dead end pores, where the water is
trapped, as part of the pore space? Generally, no; the pore space is that space
where there is mobile water. We will refer this, and other similar questions,
to texts on hydrogeology [see, e.g., deMarsily (1986)]. Again, our goal is to
develop simple, phenomenological mathematical models, and often some of the
fine detail is omitted.
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We will assume that the flow is one-dimensional, in the x-direction, and takes
place in a tube of cross-sectional area A (see figure 2.1). Assuming the areal
porosity is the same as the volume porosity, the cross-sectional area actually
available for flow is ωA. Now let C(x, t) be the concentration, measured in
mass per unit volume of water, of a chemical or biological tracer dissolved
in the liquid, and let Q(x, t) denote its flux, or the rate per unit area that
the contaminant mass crosses a cross section at x. We are assuming that the
contaminant, for example, ions, has no volume itself and therefore does not
affect the volume of the carrying liquid. We further assume that the tracer
is created or destroyed with rate F (x, t), measured in mass per unit volume
of porous medium, per unit time. For example, F , which we call a reaction
term or source term, can measure an adsorption rate, a decay rate, a rate
of consumption in a chemical reaction, or even a growth or death rate if the
tracer is biological. Note that the source Q can depend upon x and t through
its dependence on C, i.e., F = F (C). Finally, we denote by V the specific
discharge, or the volume of water per unit area per unit time that flows through
the medium. Note that V has velocity units, and for the present discussion we
assume V is constant. Later we investigate the driving mechanism of the flow
and set aside this constant assumption; for now we assume there is a driving
mechanism that is able to maintain a constant velocity flow. We call V the
Darcy velocity. The velocity v ≡ V/ω is called the average velocity; v is the
velocity that would be measured by a flow meter in the porous domain. Clearly,
the average velocity exceeds the Darcy velocity. Subsequently, in a constitutive
equation, we shall relate the flux to the Darcy velocity. Note that we have
taken the concentration to be measured in mass per unit volume. The reader
should be aware that in other contexts the concentration could be measured in
molarity (moles per unit volume of fluid) or molality (moles per unit mass of
fluid). Recall that a mole is the mass unit equal to the molecular weight.
The basic physical law for flow in a porous medium is derived from mass

balance of the chemical tracer. Mass balance states that the rate of change of
the total mass in an arbritrary section of the medium must equal the net rate
that mass flows into the section through its boundaries, plus the rate that mass
is created, or destroyed, within the section. Therefore, consider an arbitrary
section a ≤ x ≤ b of the medium. Mass balance, written symbolically, leads
directly to the integral conservation law

d

dt

∫ b

a

C(x, t)ωAdx = Q(a, t)A − Q(b, t)A+
∫ b

a

F (x, t)Adx. (2.1)

The term on the left-side is the rate of change of the total amount of tracer
in the section, and the first two terms on the right measure the rate that the
tracer flows into the section at x = a and the rate that it flows out at x = b;
the last term is the rate that the tracer is created in the section. We assume
that C and φ are continuously differentiable functions; thus, we may bring the
time derivative under the integral sign and appeal to the fundamental theorem
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of calculus to write the mass balance law as∫ b

a

(ωCt +Qx − F ) dx = 0.

Because the interval of integration [a, b] is arbitrary, the integrand must vanish
and we obtain the mass balance law in the local, differential form

ωCt +Qx = F. (2.2)

Some treatments on hydrogeology measure F in units of mass per time per unit
volume of water, rather than per unit volume of porous medium; then there will
be an ωF term on the right-side of (2.2).
At this point, a constitutive relation, usually based in empirics, must be

postulated regarding the form of the flux Q. We should ask how dissolved
particles get from one place to another in a porous medium. There are three
generally accepted ways. One way is by advection, which means that particles
are simply carried by the bulk motion of the fluid. This leads us to define the
advective flux Q(a) by

Q(a) = V C,

which is just the product of the velocity and concentration. Another method
of transport is by molecular diffusion. This is the spreading caused by the
random molecular motion and collisions of the particles themselves. This is
precisely the type of diffusion discussed in Chapter 1; there we stated that this
type of motion is driven by concentration gradients and the flux due to diffusion
is given by Fick’s law. We call this the molecular diffusion flux Q(m) and
we take

Q(m) = −ωD(m)Cx.

D(m) is the effective molecular diffusion coefficient in the porous medium.
The diffusion occurs in a liquid phase enclosed by the solid porous fabric. The
solid boundaries hinder the diffusion, and therefore D(m) is smaller than the
usual molecular diffusion coefficient D0 that one would measure in an immobile
liquid with no solid boundaries. The reduction in the diffusion coefficient is
therefore caused by the structure of the porous fabric and the presence of the
tortuous flow paths available to the fluid. The ratio D(m)/D0 is often called
the tortuosity of the medium and varies roughly from 0.1 to 0.7. Molecular
diffusion is present whether or not the fluid is moving.
There is a third contribution to the particle flux called kinematic (or, me-

chanical) dispersion. This is the spreading, or mixing phenomenon, caused
by the variability of the complex, microscopic velocities through the pores in
the medium. So, it is linked to the heterogeneities present in the medium and
is present only if there is flow. The idea is that different flow pathways have
different velocities and some have a greater than average velocity to carry the
solutes ahead of a position based only on the mean velocity. The mathematical
form of the dispersion flux φ(d) is taken to be Fickian and given by

Q(d) = −ωD(d)Cx,
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where D(d) is the dispersion coefficient. Thus, the net flux is given by the
sum of the advective, molecular, and dispersion fluxes:

Q = Q(a) +Q(m) +Q(d)

= V C − ω(D(m) +D(d))Cx.

If we define the hydrodynamic dispersion coefficient D by

D = D(m) +D(d),

then the net flux is given simply as

Q = V C − ωDCx.

The Fickian term −ωDCx is termed the hydrodynamic dispersion. It con-
sists of molecular diffusion and kinematic dispersion.
To summarize, when there is no flow velocity, the only flux is molecular

diffusion. When there is flow, we get advection and dispersion as well. So, if
there is a “plume” of contaminant in the subsurface, we expect it to advect
with the bulk motion of the fluid and spread out from diffusion and dispersion.
Thus, dispersion adds a spreading effect to the diffusional effects. Generally, it
is observed in three dimensions that the spreading caused by dipersion is greater
in the direction of the flow than in the transverse directions. If no dispersion
were present, a spherical plume would just spread uniformly as it advected with
the flow. This means that in a higher-dimensional formulation of the equations,
the hydrodynamic dispersion would be different in different directions.
Because dispersion is present in moving fluids, it has been an important

exercise to determine how the dispersion coefficient depends on the velocity
of the flow. Experiments have identified several flow regimes where different
mechanisms dominate. These flow regimes are usually characterized by the
Peclet number

Pe =
|V |l
ωD0

,

where l is an intrinsic length scale, say the mean diameter of pores. For very
low velocity flows, i.e., very small Peclet numbers, molecular diffusion dominates
dispersion. As the Peclet number increases, both processes are comparable un-
til dispersion begins to dominate and diffusion becomes negligible; this occurs
for approximately Pe > 10. Generally, for many velocities of interest, experi-
menters propose, in the direction of the flow, the linear constitutive relationship

D(d) = αL|V |,
where αL is the longitudinal dispersivity. In transverse directions to the flow,
the dispersion coefficient is taken to be αT |V |, where the transverse dispersivity
αT is roughly an order of magnitude smaller that the longitudinal dispersivity.
If we make these assumptions, the hydrodynamic dispersion coefficient in one-
dimensional flow can be written

D = D(m) + αL|V |.
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When the velocity is small, the dispersion is negligible, and when the velocity
is large, the dispersion will dominate the diffusion. Details of experiments and
numerical values of the Peclet number ranges and dispersivities can be found in
hydrogeology texts [see deMarsily (1986) or Domenico and Schwartz (1990)].
Combining the constitutive relations with the mass balance law (2.2) gives

the fundamental reaction-advection-dispersion equation

ωCt = (ωDCx)x − V Cx + F. (2.3)

If D is constant, then D can be pulled out of the derivative and we can write

Ct = DCxx − vCx + ω−1F.

We remark that geologists, civil engineers, mathematicians, and so on, fre-
quently use different terminology in describing the phenomena embodied in
equation (1.3). Thus, advection is often termed convection, and dispersion is
replaced with diffusion. The reaction term F is a source. Therefore, equa-
tion (2.3) is sometimes called a reaction-convection-diffusion equation, or a
convection-diffusion equation with sources.
Observe that special cases of equation (2.3) are the dispersion (or diffu-

sion) equation,
Ct = DCxx,

which was the subject of Chapter 1, and the simple advection equation

Ct = −vCx.

The advection equation has a general solution of the form of a right-traveling
wave

C(x, t) = U(x − ct),

where U is an arbitrary function. These types of solutions are the subject of
Chapter 3.

Example 28 If the tracer is radioactive with decay rate λ, then F = −λωC
and we obtain the linear advection-dispersion-decay equation

Ct = DCxx − vCx − λC.

A change of dependent variable to w = Ceλt leads to an equation without the
decay term, and a transformation of independent variables to τ = t, ξ = x− vt
eliminates the advection term. Hence, the advection-dispersion-decay equation
can be transformed into a simple diffusion equation. The complete transforma-
tion is

c(x, t) = w(x, t)e
v

2D (x−vt)−λt,

which gives wt = Dwxx.
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Example 29 If the tracer is a biological species with logistic growth rate F =
rC(1 − C/K), where r is the growth constant and K is the carrying capacity,
then

Ct = DCxx − vCx +
r

ω
C

(
1− C

K

)
,

which is an advection-dispersion equation with growth.

2.2 Several Dimensions

Now let us consider a porous domain Ω in R3. Before stating the mass balance
law we briefly review some notation. Points in R3 are denoted by x = (x1, x2, x3)
or just (x, y, z). Because of the context, there should be no confusion in using
x sometimes as a point and other times as a coordinate. A volume element is
dx = dx1dx2dx3. Volume integrals over Ω are denoted by∫

Ω
f(x)dx,

and flux integrals over the surface ∂Ω of Ω are denoted by∫
∂Ω

Q · ndA.

Here, f is a scalar function, Q is a vector function,1 and n is the outward unit
normal. Note that we are dispensing with writing triple and double integrals.
If we apply mass balance to an arbitrary ball (spherical region) Ω′ in Ω, the

integral conservation law takes the form

d

dt

∫
Ω′
ωCdx = −

∫
∂Ω′

Q · ndA+
∫

Ω′
Fdx, (2.4)

where ∂Ω′ denotes the surface of the ball Ω′. Here, n is the outward unit normal
vector the concentration is C = C(x, t), where x ∈ R3, and the flux vector is
Q. As in one dimension, equation (2.4) states that the rate of change of solute
in the ball equals the net flux of solute through the surface of the ball plus the
rate that solute is produced in the ball. The divergence theorem allows us to
rewrite the surface integral and (2.4) becomes

d

dt

∫
Ω′
ωCdx = −

∫
Ω′

∇ · Q dx+
∫

Ω′
Fdx.

Owing to the arbitrariness of the domain Ω′, we obtain the local form of the
conservation law as

(ωC)t = −∇ · Q+ F, x ∈ Ω.
1We shall not use special notation for vectors; whether a quantity is a vector or scalar will

be clear from the context.
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Here we are assuming that the functions are sufficiently smooth to allow appli-
cation of the divergence theorem and permit pulling the time derivative inside
the integral. As in the one-dimensional case we have too many unknowns, and
so additional equations, in the form of constitutive relations, are needed. In
particular, we assume that the vector flux is made up of a dispersive-diffusion
term and an advective term and is thus related to the concentration via

Q = −ωD∇C + CV,

where V is the vector Darcy velocity and D is the hydrodynamic dispersion
coefficient. Then the mass balance law becomes

ωCt = ∇ · (ωD∇C)− ∇ · (CV ) + F.

If the flow is incompressible, then ∇ · V = 0 and we obtain

ωCt = ∇ · (ωD∇C)− V · ∇C + F, (2.5)

which is the reaction–advection–dispersion equation in three dimensions.
If the dispersion coefficient D is a pure constant, then it may be brought out of
the divergence and we obtain the equation in the form

Ct = D∆C − v · ∇C + ω−1F,

where ∆ is the three-dimensional Laplacian operator (recall the vector identity
∆C = ∇ · ∇C) and v = V/ω is the average velocity vector.

In general, the dispersion coefficient D in (2.5) is not constant; in fact, usu-
ally D = D(x,C), which means that it may depend on position if the medium is
nonhomogeneous or even the concentration. Furthermore, it may have different
values in different directions if the medium is not isotropic. In the special case
that the hydrodynamic dispersion coefficient varies in the coordinate directions
we have

D = diag(D(x), D(y), D(z)),

which is a diagonal matrix. Then the mass balance law is expanded to

ωCt = (ωD(x)Cx)x + (ωD(y)Cy)y + (ωD(z)Cz)z − V · ∇C + F.

In many hydrogeological applications the flow field and geometry lends it-
self to a description in cylindrical coordinates. This occurs, for example, in
the pumping of wells and boreholes. In cylindrical geometry the mass balance
equation (2.5) can be written as

Ct =
1
r
(rD(r)Cr)r +

1
r2 (D

(θ)Cθ)θ + (D(z)Cz)z − ∇ · (Cv) + ω−1F,

where we have used the fact that the gradient operator is

∇ = (∂r,
1
r
∂θ, ∂z),
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and the average velocity is v = (v(r), v(θ), v(z)) in cylindrical coordinates. The
quantities D(r), D(θ), D(z) represent the hydrodynamic dispersion coefficients
in the coordinate directions. [Expressions for the divergence, gradient, and
Laplacian in various coordinate systems can be found in many calculus texts,
texts in fluid mechanics or electromagnetic theory. A good reference is Bird,
Stewart, and Lightfoot (1960). See also Sun (1995) for a general formulation in
orthogonal curvilinear coordinates].
An important case of this latter equation occurs when the velocity field is

radial, i.e., v = (v(r), 0, 0), and there is negligible dispersion in the vertical or
angular directions, i.e., D(z) = D(θ) = 0. Then we obtain the radial reaction-
advection-dispersion equation

Ct =
1
r
(rD(r)Cr)r − v(r)Cr − C

r
(rv(r))r + ω−1F.

Specifically, if the radial velocity is

v(r) =
a

r
,

then the velocity field is divergence-free and the radial equation becomes

Ct =
1
r
(rD(r)Cr)r − a

r
Cr + ω−1F.

Using the constitutive assumption that the kinematic dispersion coefficient is
proportional to the magnitude of the velocity and diffusion is negligible, that is,
D(r) = αr||v|| = aαr/r, we have

Ct =
aαr
r

Crr − a

r
Cr + ω−1F. (2.6)

We can think of equation (2.6) as modeling the transport of a contaminant in
a radial flow field. If a < 0, then the flow is toward an extraction well and the
equation models a remediation process; if a > 0, then the flow is radially
outward from a well and the process is a contamination process. The value
of a depends on the pumping rate. In Section 2.5 we solve a special radial
dispersion problem.
Boundary conditions on the concentration are also a necessary ingredient in

model formulation. We discuss different types of boundary conditions in Section
2.7.

2.3 Adsorption Kinetics

Several geochemical mechanisms can change the character of transported sub-
stances through porous domains. One such important mechanism is adsorp-
tion. Adsorption is a process, often brought on by ion exchange, that causes
the mobile tracer, or solute, to adhere to the surface of the solid porous fabric,
and thus become immobile. To model such processes in one dimension we let
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Figure 2.2: Solute-site-adsorbed particle reaction.

S = S(x, t) denote the amount of solute adsorbed. Because the solutes become
attached to mineral particles, this amount S of solute adsorbed is usually mea-
sured in mass of solute per unit mass of soil. The mass of soil per unit volume
of porous medium is ρ(1− ω) and therefore the rate of adsorption is given by

F = −ρ(1− ω)St.

Consequently, under the assumption of constant D, the mass balance equation
(2.3) becomes

Ct = DCxx − vCx − ρ(1− ω)
ω

St, (2.7)

which is the adsorption-advection-dispersion equation. In Chapter 5 we
examine different kinds of geochemical reactions, namely, those that change the
mineralogy of the host rock and even change the porosity of medium.

2.3.1 Instantaneous Kinetics

In the simplest case we can envision the adsorption process as a reversible chem-
ical reaction where one adsorption site on the solid reacts with a solute particle
to produce an absorbed particle. The reversibility of the reaction means that,
in a strict sense, the process is an adsorption-desorption process. A schematic
is shown in figure 2.2, and we represent the reaction as

[σ] + [C] � [S].

Here σ denotes the density of adsorption sites on the immobile solid fabric.
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If the number of adsorption sites is large, then we may take σ to be constant.
Then the law of mass action states that the reaction rate is

r = kfσC − kbS,

where kf and kb are the forward and backward rate constants, respectively. If
we assume that the reaction equilibrates on a fast time scale compared to that
of dispersion and advection, then the reaction is always in equilibrium (r ≡ 0),
or

S = KdC, (2.8)

where Kd ≡ kfσ/kb. Thus, there is an instantaneous, algebraic, linear relation
between the concentration of solute and the concentration of adsorbed particles.
Equation (2.8) is called a linear adsorption isotherm and Kd is the distri-
bution constant (a typical value is Kd = 0.476 µgm/gm) . Substituting (2.8)
into (2.7) yields, after rearrangement, an advection–dispersion equation

RfCt = DCxx − vCx, (2.9)

where Rf is the retardation constant given by

Rf = 1 +
ρKd(1− ω)

ω
.

Thus, a linear adsorption process reduces the apparent speed of advection to
v/Rf . The literature in hydrogeology is full of closed-form, or analytic, solutions
to this equation with various initial and boundary data.
If there is a limited number of adsorption sites with density σ0, then

S + σ = σ0,

and the equilibrium condition is R = kf (σ0 − S)C − kbS = 0, or

S =
kfσ0C

kfC + kb
. (2.10)

This relationship is the Langmuir adsorption isotherm. Now the mass
balance equation (2.7) is nonlinear and given by(

C +
ρ(1− ω)

ω

kfσ0C

kfC + kb

)
t

= DCxx − vCx. (2.11)

In general, if the reaction equilibrates on a time scale that is fast compared
to that of advection and dispersion, then we assume an algebraic relationship
between the solute concentration C and the adsorbed concentration S. Such
relations, which hold in an equilibrium state, are said to be instantaneous and
define the adsorption kinetics. The algebraic relationship, called the adsorp-
tion isotherm, often takes the form

S = f(C), (2.12)
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where the function f usually has the properties:

f ∈ C2(0,∞); f(0) = 0; f ′(C) > 0, f ′′(C) < 0 for C > 0. (2.13)

For some isotherms f ′(0) may not exist, as in the case of the Freundlich isotherm
below.
In addition to the linear and the Langmuir isotherms, (2.8) and (2.10), re-

spectively, other adsorption isotherms are suggested in the literature. A partial
list is the following:

S = KdC, (linear)

S =
kfσ0C

kfC + kb
(Langmuir)

S = kC1/n, n > 1 (Freundlich)

S = k1C − k2C
2 (quadratic)

S =
k1C

m

1 + k2Cm
(generalized Langmuir)

S = k1e
−k2/C (exponential)

The Freundlich isotherm is one widely applied to the adsorption of various
metals and organic compounds in soils. Unfortunately there is no upper limit
to the amount of solute that can be adsorbed, so the Freundlich isotherm must
be used with caution in experimental studies.
In summary, with kinetics given by (2.12), the mass balance equation takes

the form
(C + βf(C))t = DCxx − vCx,

or, equivalently,
(1 + βf ′(C))Ct = DCxx − vCx, (2.14)

where β = ρ(1− ω)/ω and f satisfies the conditions (2.13).

2.3.2 Noninstantaneous Kinetics

If the reaction proceeds so slowly that it does not have time to come to local
chemical equilibrium, then the kinetics of adsorption–desorption is not instan-
taneous and reiquires a dynamic rate law for its description. Such a law has the
form

St = F (S,C). (2.15)

So the rate of adsorption depends on both C and S. We could reason, for
example, that the adsorption rate should increase as the concentration C of
solute increases (FC ≥ 0); but, as more and more chemical is adsorbed, the
ability of the solid to adsorb additional chemical will decrease (FS ≤ 0). The
simplest such model with these characteristics is

St = F (S,C) = k1C − k2S, k1, k2 > 0.
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For nonequilibrium adsorption–desorption, solute-soil reactions, the coupled
pair of equations

Ct = DCxx − vCx − ρ(1− ω)
ω

St, (2.16)

St = F (S,C) (2.17)

form a general model. We shall always assume that

FC ≥ 0, FS ≤ 0. (2.18)

Exercise 30 For the linear system

Ct = DCxx − vCx − βSt, β ≡ ρ(1− ω)
ω

(2.19)

St = k1C − k2S, (2.20)

eliminate S to obtain a single equation for C by the following scheme. Substitute
(2.20) into (2.19) and then take the time derivative to get

Ctt = DCxxt − vCxt − β(k1Ct − k2St).

Then multiply (2.19) by k2 and subtract the result from the last equation to
obtain

Ctt + (βk1 − k2)Ct = DCxxt − k2DCxx − vCxt + vk2Cx.

This is a third-order differential equation for the concentration C. It can be
compared with the wave equation with internal damping

utt = c2uxx + auxxt

[see, for example, Guenther and Lee (1991)].

Example 31 In the case that the transported particles are colloids, Saiers, et
al. (1994) have given a kinetics law of the form

St =
ωKd
ρb

C
a − S

a
− kS,

where ρb is the bulk density of the solid fabric, k is the entrainment coefficient,
a is the colloidal retention capacity. [A mathematical analysis of this model can
be found in Cohn and Logan (1995)].

2.3.3 Mulitple-Site Kinetics

In some cases attachment of the solute to soil particles can occur in different
ways with different kinetics. For example, such differences can arise because
of different adsorption behavior of planar sites and edge sites on the soil. Or,
different adsorption sites may have different accessibility. Let us assume there
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Figure 2.3: Solute-particle reaction for multiple sites represented schematically
by interior and surface locations.

are two ensembles of adsorption sites represented by densities σ1 and σ2. See
figure 2.3.
Let S1 = S1(x, t) and S2 = S2(x, t) denote the concentrations of adsorbed

material at sites 1 and 2, respectively. The reaction can be represented symbol-
ically by [

σ1]+ [C] �
[
S1] ,[

σ2]+ [C] �
[
S2] .

The net rate of adsorption is St = (S1 + S2)t and therefore the adsorption–
advection–dispersion equation becomes

Ct = DCxx − vCx − ρ(1− ω)
ω

(S1
t + S2

t ).

In the case both reactions are in local chemical equilibrium we supplement this
equation with the two isothermal relations

S1 = f1(C), S2 = f2(C).

If both are slow to equilibrate, then we have

S1
t = F1(C, S1), S2

t = F2(C, S2).

In the mixed case where the first reaction equilibrates rapidly and the second
equilibrates slowly, we have

S1 = f1(C), S2
t = F2(C, S2).
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2.4 Dimensionless Equations

Generally, in applied mathematics we study equations in their dimensionless
form. Not only does the dimensionless model usually contain fewer parameters,
but in applying perturbation methods to obtain approximations it is essential
to scale the problem properly so that small parameters are correctly place in
the governing equations [see Lin and Segel (1989) or Logan (1997c) for a general
discussion of the importance of scaling and dimensional analysis]. If L is some
length scale for the problem, then, unless otherwise noted, we select the time
scale to be L/v, which is the advection time scale. Other time scales can be
chosen, for example, one based on diffusion or one based on the reaction rate.
Concentrations can be scaled by some reference concentration C0, which could
be the maximum initial or boundary concentration at an inlet. Therefore, we
introduce dimensionless space, time, and concentration variables via

ξ =
x

L
, τ =

t

L/v
, u =

C

C0
.

Then the reaction–advection–dispersion model

Ct = DCxx − vCx + ω−1F

becomes
uτ = αuξξ − uξ + f,

where
α ≡ Pe−1 =

D

vL
, q ≡ L

ωvC0
F

are dimensionless quantities. Here, α is the reciprocal of what is called the
Peclet number, which measures the ratio of advection to dispersion; q is the
source term and u is the dimensionless concentration. Usually, we will just use
x and t for the dimensionless spatial and time variables in place of ξ and τ and
write the reaction–advection–dispersion model as

ut = αuxx − ux + q. (2.21)

In the same manner, we will write the equilibrium model (2.7) and (2.12)
in dimensionless form as

ut = αuxx − ux − βst, (2.22)
s = f(u). (2.23)

Here s is the dimensionless adsorbed concentration (scaled by C0) and β > 0 is
a dimensionless constant. The dimensionless nonequilibrium model (2.16)–
(2.17) is

ut = αuxx − ux − βst, (2.24)
st = F (u, s). (2.25)
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Observe that the equilibrium equation is of the form

g(u)t = αuxx − ux,

where g(u) = u + βf(u). Because g′(u) > 0, we may define the one-to-one
transformation w = g(u). Then, if u = h(w) is the inverse transformation, we
have ux = h′(w)wx and the equation may be written

wt = α(h′(w)wx)x − h′(w)wx.

Thus we have succeeded in transforming the equilibrium equation to a uniformly
parabolic equation.
Much is known about nonlinear reaction–diffusion equations, without

advection, of the form
ut = (k(u)ux)x + F (u).

For example, they are discussed in detail in Samarski et al. (1995). Such
nonlinear models are commonplace in population dynamics and in combustion
theory.

2.5 Nonlinear Equations

In the preceding sections we developed some of the basic nonlinear mathematical
models in contaminant transport. We now illustrate, by way of examples, some
of the elementary properties of nonlinear equations and techniques used to study
them. These techniques include comparison methods, similarity methods, and
energy methods. Later, in Chapter 3, we study traveling waves.
The partition of differential equations into linear and nonlinear models is a

significant one. Linear equations are sometimes solvable; in any case, they have
a form that permits the vast tools of linear analysis, or functional analysis, to
be applied to determine their behavior and solution structure. Nonlinear equa-
tions are nearly always unsolvable by analytic methods, and to obtain specific
solutions we nearly always resort to numerical methods. Generally, the tools of
nonlinear analysis are not so nearly well-developed and all-encompassing as in
linear analysis. Nevertheless, there are some general principles and techniques
that are available that take us beyond just ad hoc methods.
We emphasize again that we are studying model equations. Using the term

“model” helps us realize the distinction between reality and theory. Models
do not include all of the details of the physical reality. In the best of all pos-
sible worlds, the model should give a reasonable description of some part of
reality. This is why we often separate out the mechanisms and study equa-
tions only with diffusion or only with advection. Understanding the behavior
of these simple models can then give us clues into the behavior of more gen-
eral problems. For example, if we can show that some simple, model, nonlinear
reaction–advection–dispersion equation has solutions that blow up (go to in-
finity, or have their derivatives go to infinity) at a finite time, then we have
succeeded in creating a healthy skepticism about such equations. Therefore,
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when we as applied scientists or mathematicians develop detailed descriptions
of other, more complicated, systems, we will have insights into their behavior
and may not unconscientiously believe that our model has solutions that ex-
ist for all time. It is always tempting (and dangerous!) to believe that our
descriptions of reality automatically lead to well-posed problems.

2.5.1 A Comparison Principle

In Section 1.5 we stated and proved a comparison principle for a linear parabolic
equation. Such results extend to nonlinear equations. We begin with some
terminology. Consider the partial differential equation

ut = F (x, t, u, ux, uxx). (2.26)

For notational simplicity, we denote p = ux, r = uxx, and we write the function
F as F = F (x, t, u, p, q). We assume that F is a continuously differentiable
function of its five variables. We say the function F is elliptic with respect to
a function u = u(x, t) at a point (x, t) if

Fr(x, t, u, p, r) > 0 at (x, t). (2.27)

The function F is elliptic in a domain D of space time if it is elliptic at each
point of D. If F is elliptic in D, then we say that equation (2.26) is parabolic
in D. We say the function F is uniformly elliptic with respect to a function
u = u(x, t) in D if Fr is bounded away from zero; that is, there exists a positive
constant µ such that

Fr(x, t, u, p, r) ≥ µ > 0 for all (x, t) ∈ D. (2.28)

In this case we say that equation (2.26) is uniformly parabolic inD. Although
D may be quite general, we usually take D = I × (0, T ), where I is an open
interval in R (possibly unbounded).
For example, if D(u) is a nonnegative, continuously differentiable function

and H(u) is continuously differentiable, then the nonlinear advection–dispersion
equation

ut = (D(u)ux)x +H(u)x (2.29)

is parabolic for all functions u; the parabolicity condition (2.27) becomes simply
D(u) > 0. If the dispersion coefficient is bounded away from zero, that is,
D(u) ≥ d0 > 0, then it is uniformly parabolic; in this case we say the equation
(2.26) is nondegenerate. If the diffusion coefficient satisfies only the condition
D(u) > 0, then we say the advection–dispersion equation (2.28) is degenerate.

Another example is the equilibrium model

g(u)t = αuxx − ux, g(u) ≡ u+ βf(u), (2.30)

where the isotherm is positive, increasing, and concave downward, and f(0) = 0.
As noted in Section 2.2, we can transform this equation to standard parabolic
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form by letting w = g(u). This mapping is one-to-one and invertible; we denote
the inverse transformation by u = h(w). Then the model (2.28) becomes

wt = (αh′(w)wx)x − h′(x)wx,

where
h′(w) =

1
g′(u)

=
1

1 + βf ′(u)
, u = h(w).

Clearly, if f ′(0+) = +∞, then h′(0+) = 0 and the equation is degenerate.

Exercise 32 In the case of a Freundlich isotherm f(u) =
√
u, we have f ′(0+) =

0 and equation (2.30) is degenerate. Show that

h(w) = (
√
(β/2)2 + w − β/2)2,

which gives

h′(w) =

√
β2 + 4w − β√
β2 + 4w

.

Note that h′(0) = 0.

Exercise 33 In the case of a Langmuir isotherm f(u) = u
1+u , show that

h′(w) =
(1 + u)2

β + (1 + u)2
.

Check that h′(v) ≥ 1/(1 + β), so the equation (2.30) is nondegenerate.

Nonlinear parabolic equations of the form (2.26) admit what is called a com-
parison principle, which allows us to compare solutions to similar problems,
say, differing only in their initial or boundary data. If one of the problems can
be solved, then a comparison principle can give bounds on the solution to the
problem that perhaps cannot be solved. This information can be used, for ex-
ample, to prove positivity of solutions, to obtain asymptotic estimates of the
behavior of solutions for large times, or produce a priori bounds that guarantee
existence of solutions.
The basic comparison result can be stated as follows [see Protter and Wein-

berger (1967)]:

Theorem 34 Let I be a bounded spatial interval in R and let D = I × (0, T ],
and let L denote the operator defined by

Lu ≡ ut − F (x, t, u, ux, uxx).

Suppose that u,w, and W are continuous on the closure of D and twice contin-
uously differentiable on D. Furthermore, assume that F is elliptic on D with
respect to the functions θw + (1− θ)u and θW + (1− θ)u for all 0 ≤ θ ≤ 1. If

Lw ≤ Lu ≤ LW in D,
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and

w(x, 0) ≤ u(x, 0) ≤ W (x, 0) x ∈ I,

and

w(x, t) ≤ u(x, t) ≤ W (x, t) x ∈ ∂I, 0 ≤ t ≤ T,

then

w(x, t) ≤ u(x, t) ≤ W (x, t) in D.

Example 35 Consider the initial boundary value problem

ut = (D(u)ux)x − ux, x ∈ (a, b), t > 0, (2.31)
u(x, 0) = u0(x), x ∈ (a, b), (2.32)
u(a, t) = u1(t), u(b, t) = u2(t), t > 0, (2.33)

where u1, u2, and u0 are nonnegative. Taking w to be the identically zero func-
tion w ≡ 0 shows that u(x, t) ≥ 0, giving a positivity result for a classical
solution u(x, t).

Exercise 36 Consider the equilibrium model

g(u)t = αuxx − ux, x ∈ (a, b), t > 0, (2.34)
u(x, 0) = u0(x), x ∈ (a, b), (2.35)
u(a, t) = u1(t), u(b, t) = u2(t), t > 0, (2.36)

where g(u) ≡ u + βf(u) and where u0, u1, and u2 are nonnegative. Show that
this problem can be transformed into

wt = (αh′(w)wx)x − h′(x)wx, x ∈ (a, b), t > 0, (2.37)
w(x, 0) = w0(x), x ∈ (a, b), (2.38)
w(a, t) = ww1(t), w(b, t) = w2(t), t > 0, (2.39)

where w0 = u0+βf(u0) ≥ 0, w1 = u1+βf(u1) ≥ 0, w2 = u2+βf(u2) ≥ 0. Use
the comparison principle to show that w(x, t), and hence u(x, t), is nonnegative.

The comparison principle can also be applied to prove a maximum principle
for the equilibrium model (2.37)–(2.39). Let m > 0 be the maximum of the
data {w0, w1, w2} for x ∈ [a, b] or t ∈ [0, T ]. Then, if w is a classical solution to
(2.37)–(2.39), then

Lw ≡ wt − (αh′(w)wx)x + h′(x)wx = 0 ≤ L(m) = 0.

This implies w(x, t) ≤ m in [a, b]× [0, T ].
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2.5.2 Similarity Solutions

In Chapter 1 we observed that the classical, linear diffusion equation has so-
lutions that are smooth, even when the boundary and initial data are discon-
tinuous. The diffusion equation smooths out solutions. When the diffusion is
nonlinear, however, this smoothing property no longer holds; nonlinear diffusion
or dispersion equations can propagate piecewise smooth solutions in much the
same manner as a wave-like equation. This type of phenomenon occurs when
the equation is degenerate, i.e., when the dispersion coefficient D = D(u) can
vanish. Intuitively, one can think physically that when the dispersion coeffi-
cient vanishes, then dispersion is not present to smooth out irrregularities in
the solution.
We illustrate this type of behavior using a standard technique for obtain-

ing solutions to nonlinear parabolic problems on unbounded domains. Let us
consider the equilibrium model on a semi-infinite domain with no advection:

(u+ βf(u))t = αuxx, x > 0, t > 0, (2.40)
u(0, t) = 1, t > 0, (2.41)
u(x, 0) = 0, x > 0, (2.42)
u(x, t) → 0 as x → ∞, (2.43)

where f satisfies the conditions f(0) = 0, f ∈ C1[0,∞) ∪ C2(0,∞), with f >
0, f ′ > 0, f ′′ < 0. The similarity method is a general method to construct
solutions when the differential equation is invariant under a local Lie group of
transformations. These internal symmetries lead to classes of invariant solu-
tions called similarity solutions. We refer the reader to one of the following
references for a general discussion of the similiarity method: Dresner (1983),
Logan (1987, 1994). Here, motivated by the form of solutions to the classical,
linear heat equation, we shall attempt a solution of the form

u(x, t) = y(s),

where the similarity variable s is given by

s =
x√
t
.

Substituting the expresson for u into the PDE gives an ordinary differential
equation for the function y, namely,

−s

2
d

ds
(y + βf(y)) = α

d2y

ds2
.

The initial and boundary conditions force

y(0) = 1, y(+∞) = 0.
Integrating the differential equation with respect to s and using the boundary
condition at s = +∞ to evaluate the constant of integration yields

dy

ds
= − s

2α
(y + βf(y)).
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Separating variables and integrating gives the formal, implicit solution to (2.40)–
(2.43) as ∫ y

1

dw

w + βf(w)
= − s2

4α
,

or, in original variables, ∫ u

1

dw

w + βf(w)
= − x2

4αt
.

Exercise 37 As an example of the preceding calculation, verify the details of
the following special case. Consider the case of a Langmuir isotherm where

f(u) =
k1u

k2 + u
.

A partial fractions expansion gives∫
dw

w + βf(w)
= ln(wa(w +A)b),

where a = k2/A, b = 1 − k2/A, A = βk1 + k2 > 0. Moreover, 0 < a < 1 and
b > 0. Therefore,

ln(wa(w +A)b) |y1= − s2

4α
,

or

s2 = −4α ln
(
ya
(
y +A

1 +A

)b)
.

This equation defines, implicitly, a solution u(x, t) = y(x/
√
t).

To illustrate another property of nonlinear diffusion equations, consider

ut = (uux)x, x ∈ R, t > 0. (2.44)

This is a special case of the porous media equation

ut = (unux)x,

which occurs in many contexts. In (2.44) the flux is Q = −D(u)ux, where
the dispersion coefficient D(u) = u depends on the concentration. We say the
equation is degenerate because the dispersion coefficient has the property that
D(u) → 0 as u → 0; it is not bounded away from zero. This degeneracy gives
the equation distinctive properties that do not occur if D(u) ≥ ε > 0. We
append to (2.44) the conditions

u(x, 0) = 0, x 
= 0, (2.45)∫
R

u(x, t)dx = 1, t 
= 0. (2.46)
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These conditions represent the release of a unit amount of contaminant at the
origin at t = 0 [in other symbols, u(x, 0) = δ(x), the delta distribution]. This
problem admits a similarity solution of the form

u = t−1/3y(s), s = x/t1/3,

where
(yy′)′ +

1
3
(sy)′ = 0.

Integrating once gives
y(y′ +

s

3
) = 0.

We have set the constant of integration to equal zero because y(±∞) = 0. It
follows that

y = 0 or y =
1
6
(s20 − s2),

where s0 is an arbitrary constant. Neither solution alone can satisfy the condi-
tions (2.45)–(2.46) on R, so we piece together these two solutions to obtain

u(x, t) = 0, |s| > s0; u(x, t) =
1
6
(s20 − s2)t−1/3, |s| < s0.

We choose s0 so that ∫
R

y(s)dx = 1,

which gives s0 = 32/3/21/3. Consequently,

u(x, t) = 0, |x| > s0t
1/3; u(x, t) =

t−1/3

6
(s20− x2

t2/3
), |x| < s0t

1/3. (2.47)

Figure 2.4 shows several time snapshots of the concentration. The solution is
continuous, but ux is not continuous. There are sharp “wavefronts” propagating
along the spacetime loci |x| = s0t

1/3, much like one can observe in a hyperbolic
problem. Thus, this is not a solution in the classical sense; it is an example of
a weak solution.

Exercise 38 Find solutions of the equation

xut = uxx, x, t > 0

of the form u = tγF (x/t1/3). Obtain the solution u = t−2/3 exp(−x3/9t).

2.5.3 Blowup of Solutions

Another chacteristic phenomenon often occurring in nonlinear parabolic prob-
lems is blow up of solutions in finite time. In other words, the growth of the
solution, measured in some manner, becomes infinite at a finite time. This re-
minds us of similar behavior for ordinary differential equations. For example,
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Figure 2.4: Time snapshots of the solution (2.47).

the initial value problem y′ = 1 + y2, y(0) = 0, has solution y(t) = tan t,
which blows up at t = π/2. To illustrate this type of behavior we consider the
semilinear reaction–diffusion equation

ut = uxx + u3, x ∈ (0, π), t > 0, (2.48)
u(0, t) = u(π, t) = 0, t > 0, (2.49)
u(x, 0) = u0(x), x ∈ (0, π). (2.50)

The initial datum u0 is assumed to be continuous and nonnegative on (0, π),
and ∫ π

0
u0(x) sinx dx > 2.

From the comparison principle we observe that the solution is nonnegative so
long as it exists. We define

s(t) =
∫ π

0
u(x, t) sinx dx.

Using integration by parts,

s′(t) =
∫ π

0
ut(x, t) sinx dx

=
∫ π

0
(uxx(x, t) sinx+ u3 sinx)dx

= −s(t) +
∫ π

0
u3(x, t) sinx dx.
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Now we apply Holder’s inequality2 with p = 3 and q = 3/2 to obtain

s(t) =
∫ π

0
u sinx dx =

∫ π

0
sin2/3 x u sin1/3 x dx

≤
(∫ π

0
(sin2/3 x)3/2 dx

)2/3(∫ π

0
(u sin1/3 x)3 dx

)1/3

≤ 22/3
(∫ π

0
u3 sinx dx

)1/3

.

In other words,

s(t) ≤ 4
(∫ π

0
u3 sinx dx

)1/3

,

and therefore

s′(t) ≥ −s(t) +
s(t)3

4
, t > 0, s(0) > 2.

This inequality will imply that s(t) → ∞ at a finite time t. To show this is the
case let v = 1/s2. Then the differential inequality becomes

v′(t) ≤ 2v(t)− 1
2
.

Multiplying by exp(−2t) and integrating gives

v(t) ≤ 1
4
(1− e−2t) + v(0)e2t.

Consequently,

s(t) ≥
(
e2t(

1
s(0)2

− 1
4
) +

1
2

)−2

.

Because s(0) > 2, the right-side of this inequality goes to infinity at a finite
value of t. Therefore the solution blows up in finite time.
Reaction-diffusion equations can have this type of behavior where solutions

only exist locally, for finite times. The situation would not improve if we added
a linear advection term. This type of phenomenon is characteristic for some
equations containing reaction terms. In (2.48)–(2.50) the presence of diffusion,
or dispersion, does not cause decay; reaction wins the competition and the solu-
tion blows up. Blow up for reaction diffusion equations is discussed thoroughly
in Samarski et al (1995).

2.5.4 Stability of the Zero Solution

Another method to aid in understanding the behavior of nonlinear evolution
equations is to inquire about the linearized stability of steady-state solutions.
This study is really about the permanence of steady solutions when they are

2If 1/p+ 1/q = 1, then
∫ |fg|dx ≤ (

∫ |f |pdx)1/p(
∫ |g|qdx)1/q .
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subjected to small perturbations. Let us consider the equilibrium model on a
bounded domain:

(u+ βf(u))t = αuxx − ux, 0 < x < 1, t > 0, (2.51)
u(0, t) = u(1, t) = 0, t > 0, (2.52)

where f satisfies the conditions f(0) = 0, f ∈ C1[0,∞) ∪ C2(0,∞), with f >
0, f ′ > 0, f ′′ < 0. It is clear that u ≡ 0 is a steady-state solution to the
problem. If w = w(x, t) represents a small perturbation to the zero solution,
then f(w) = f(0)+f ′(0)w+ 1

2f
′′(w̃)w2, where 0 < w̃ < w, and the perturbation

w satisfies the linearized problem

(w + βf ′(0)w)t = αwxx − wx, 0 < x < 1, t > 0, (2.53)
w(0, t) = w(1, t) = 0, t > 0. (2.54)

The linearized equation (2.53) can be written

wt = dwxx − awx, 0 < x < 1, t > 0,

where d = α/(1+ f ′(0)) and a = 1/(1+ f ′(0)). To analyze this equation we use
an energy method. First multiply the equation by w and then integrate over
0 < x < 1 to get ∫ 1

0
wwtdx =

∫ 1

0
dwwxxdx −

∫ 1

0
awwxdx.

Now observe that 2wwt = (w2)t, 2wwx = (w2)x, and integrate the first term on
the right-side by parts. We obtain

d

dt

∫ 1

0
w2dx = 2dwwx |10 −

∫ 1

0
w2
xdx − w2 |10 .

But the boundary conditions (2.54) force the two boundary terms to vanish and
we obtain

d

dt

∫ 1

0
w2dx = −2d

∫ 1

0
w2
xdx.

Therefore
d

dt
||w(·, t)||2 ≤ 0,

where

||w(·, t)|| =
(∫ 1

0
w2dx

)1/2

is the L2[0, 1] or energy norm. Therefore, the energy norm of small perturbations
remain bounded for all t > 0.
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The previous calculation shows that small perturbations stay under control
when a linearized analysis is performed. We can sometimes analyze the non-
linear equation in the same manner, using an energy method. Note that the
nonlinear equation can be written

g(u)t = αuxx − ux,

where g(u) = u + βf(u) > 0. Multiplying by g(u) and integrating from over
0 < x < 1 yields

d

dt
||g(u(·, t)||2 = 2α

∫ 1

0
g(u)uxxdx − 2

∫ 1

0
g(u)uxdx

= 2αg(u)ux |10 −2α
∫ 1

0
g′(u)u2

xdx − 2
∫ 1

0
g(u)uxdx

= −2α
∫ 1

0
g′(u)u2

xdx − 2
∫ 1

0
g(u)uxdx.

Because g′(u) = 1 + f ′(u) > 0, the first term on the right is nonpositive.
To estimate the second term let G(u) be the antiderivative of g, i.e., G(u) =∫ u
0 g(y)dy. Then ∫ 1

0
g(u)uxdx =

∫ 1

0
G(u)xdx = G(u) |10= 0.

Therefore
d

dt
||g(u(·, t)||2 = −2α

∫ 1

0
g′(u)u2

xdx ≤ 0,

and so the norm of g(u) stays under control. Thus ||u(·, t)|| remains bounded
and the energy stays under control.
Arguments like those given above are predicated on the assumption that

solutions exist and are called a priori estimates.

2.6 The Reaction–Advection Equation

2.6.1 Semilinear Equations

For completeness, we now examine some properties of the preceding equations
when dispersion is absent, i.e., α = 0, and when the reaction term is given by
Φ = Φ(u). In deep bed filtration theory (Chapter 3), we shall observe that
the dispersion term is neglected in some models. With neglect of dispersion,
equation (2.3) becomes the reaction–advection equation

ut + vux = Φ(u), (2.55)

which is, in general, a semilinear hyperbolic equation. Therefore, this equation
is not parabolic at all and we do not have some of the properties expected
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in parabolic equations. To solve reaction-advection equations we introduce a
moving coordinate system, or characteristic coordinates, defined by

ξ = x − vt, τ = t.

Then the equation becomes
Uτ = Φ(U),

where U(ξ, τ) = u(ξ + vτ , τ). (Easily, by the chain rule for derivatives, the
advection operator ∂t + v∂x simplifes to just ∂τ in characteristic coordinates.)
Therefore, ∫ U dw

Φ(w)
= τ + ψ(ξ),

where ψ is an arbitrary function. Thus, the equation∫ u dw

Φ(w)
= t+ ψ(x − vt)

defines, implicitly, the general solution of (2.55). The arbitrary function is
determined specifically by initial or boundary data. The following exercise and
example give two illustrations: a Cauchy problem with initial datum given on
the entire real line and a Cauchy–Dirichlet problem where initial datum is given
on a half line and a Dirichlet condition is prescribed at the boundary.

Exercise 39 Consider the Cauchy problem for the reaction–advection equation
with Langmuir kinetics:

ut + vux = − k1u

k2 + u
, x ∈ R, t > 0, (2.56)

u(x, 0) = u0(x), x ∈ R, (2.57)

where u0(x) ≥ 0. Show that the solution is given implicitly by

−t =
∫ u

u0

(
k2

k1w
+
1
k1

)
dw,

or, after simplification,

u − k1t − u0 = k2 ln(u/u0).

Using graphical techniques show that for each x and t > 0 there is a unique
value u = u(x, t) < u0(x). For t > 0 the single root at t = 0 bifurcates into two
roots, the smaller of which is the solution. As t → 0+ it is clear that u → 0.
Therefore show that the Cauchy problem (2.56)–(2.57) has a global solution.

Example 40 Consider the Cauchy–Dirichlet problem for the reaction-advection
equation with Freundlich-type kinetics:

ut + vux = −√
u, x > 0, t > 0, (2.58)

u(x, 0) = u0(x), x > 0, (2.59)
u(0, t) = g(t), t > 0, (2.60)
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where u0(x) ≥ 0 and g(t) ≥ 0. In characteristic coordinates the equation be-
comes

Uτ = −
√
U.

Integration yields the general solution
√
U = −τ

2
+ ψ(ξ)

or √
u = − t

2
+ ψ(x − vt) (2.61)

where ψ is an arbitrary function. Because signals in this system travel at speed
v, we treat the regions x > vt and x < vt separately. The region x > vt, which
is ahead of the leading signal x = vt, is influenced by the initial data (2.59)
along t = 0. Thus, applying the initial condition to the general formula for u
gives √

u0(x) = ψ(x),

thereby determining the arbitrary function for this region. Therefore

√
u = − t

2
+
√
u0(x − vt), x > vt.

For the region 0 < x < vt we apply the boundary condition to the general
solution to get √

g(t) = − t

2
+ ψ(−vt).

Thus, replacing −vt by t − x/v,

ψ(x − vt) =
t − x/v

2
+
√
g(t − x/v).

Therefore, √
u = − x

2v
+
√
g(t − x/v), 0 < x < vt.

We observe that these solution formulas hold only for those times for which
the right-hand sides are nonnegative. For times greater than the loci where the
right-hand sides vanish, we set u(x, t) ≡ 0.

2.6.2 Quasilinear Equations

In the absence of dispersion, the equilibrium model (2.22)–(2.23) becomes

(1 + βf ′(u))ut + ux = 0. (2.62)

Unlike a semilinear equation where the nonlinearity appears in the reaction, or
source term, this equation is quasilinear and the nonlinearity occurs in the dif-
ferential operator. We can anticipate the development of singularities (shocks)
as a solution propagates in time.
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We rewrite (2.62) as
ut + c(u)ux = 0,

where

c(u) =
1

1 + βf ′(u)
.

Observe, from the assumptions on the isotherm f , that

c(u) > 0 c′(u) > 0.

Thus we have a standard kinematic wave equation. The analysis of such equa-
tions is straightforward and can be found in many texts [e.g., see Logan (1997c,
1994), Whitham (1974), or Smoller (1994)].
To illustrate the analysis, let us consider the Cauchy problem, or the pure

initial value problem on R. We impose the initial concentration

u(x, 0) = u0(x), x ∈ R.

We define the characteristic curves as solutions of the equation

dx

dt
= c(u(x, t)).

On these curves the PDE becomes

du

dt
= 0 or u = const.

From the calculation

d2x

dt2
=

d

dt
c(u) = c′(u)

du

dt
= 0,

it follows that the characteristic curves are straight lines. If (x, t) is an arbitrary
point in spacetime, then the characteristic line connecting (x, t) to a point (ξ, 0)
on the x axis has speed c(u0(ξ)) and is given by

x − ξ = c(u0(ξ))t. (2.63)

By the constancy of u on the characteristic, the solution u at (x, t) is given by

u(x, t) = u0(ξ). (2.64)

The two equations (2.63)–(2.64) define the solution, if it exists; the solution is
(2.64) where ξ = ξ(x, t) is defined implicitly by (2.63). To determine the validity
of the solution, let us calculate the partials ux and ut. We have

ux = u′
0(ξ)ξx =

u′
0(ξ)

1 + tc′(u0(ξ))u′
0(ξ)

,
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where ξx was computed from (2.63). A similar calculation shows

ut = u′
0(ξ)ξt = − c(u0(ξ))u′

0(ξ)
1 + tc′(u0(ξ))u′

0(ξ)
.

It is easy to verify that ut + c(u)ux = 0, provided the denominator in the
expression for the derivatives never vanishes, i.e.,

1 + tc′(u0(ξ))u′
0(ξ) 
= 0.

Because c′(u) > 0, if the initial concentration u0(x) is nondecreasing, then the
denominator is always positive and the solution to the Cauchy problem exists
for all time. On the other hand, if there is a value of x0 where u′

0(x0) < 0, then
there will be two characteristic lines that cross, contradicting the constancy of
u on the characteristics. In this case the solution will blow up and a “gradient
catastrophe” will occur in finite time; at this time the classical solution must
terminate. At this blowup time a shock will form and a weak solution will be
propagated.

2.7 Examples

2.7.1 Advection–Dispersion Equation

In Chapter 1 we discussed several properties of the diffusion, or dispersion,
equation. In this section we solve some sample problems associated with the
advection-dispersion equation

Ct = DCxx − vCx (2.65)

and some of its variants. As we have noted, the equation can be put into
dimensionless form

ut = αuxx − ux, (2.66)

where α is the inverse of the Peclet number, i.e., Pe= α−1 = Lv/D, where L is
a length for the problem.
As in the case of the dispersion equation we can inquire about plane wave

solutions of (2.66) of the form u = ei(kx−ωt). Substituting into the equation
(2.66) we find that the wave number k and frequency ω are related by the
dispersion relation ω = k−αk2i. Therefore, plane wave solutions have the form

u(x, t) = e−αk2teik(x−t),

which are oscillatory, decaying, waves moving at the unit advection speed.
The fundamental solution of the advection-dispersion equation (2.66) is the

solution of the Cauchy problem

ut = αuxx − ux, x ∈ R, t > 0 (2.67)
u(x, 0) = δ(x), x ∈ R, (2.68)
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where δ is the delta distribution. Hence, it is the response to a unit, point source
at x = 0 applied at the time t = 0. The simplest way to solve (2.67)–(2.68) is
to transform to characterisitic, moving coordinates ξ = x − t, τ = t. Then the
problem becomes

uτ = αuξξ, ξ ∈ R, t > 0, (2.69)
u(ξ, 0) = δ(ξ), ξ ∈ R, (2.70)

which is the Cauchy problem for the diffusion equation. By the results in Section
1.1 we have

u(ξ, τ) = g(ξ, τ),

where g is the fundamental solution of the diffusion equation. Consequently,
the fundamental solution of the advection-dispersion equation is

u(x, t) = g(x − t, t) =
1√
4παt

e−(x−t)2/4αt.

By superimposing the responses caused by a distributed initial source φ, we can
obtain the solution to the general Cauchy problem

ut = αuxx − ux, x ∈ R, t > 0, (2.71)
u(x, 0) = φ(x), x ∈ R, (2.72)

as

u(x, t) =
∫ ∞

−∞

1√
4παt

e−(x−y−t)2/4αtφ(y)dy. (2.73)

Exercise 41 In the case where the initial condition is Gaussian, i.e., φ(x) =
e−x2/a, show that the integral in (2.73) can be calculated in analytic form to
obtain

u(x, t) =
√
a√

a+ 4αt
e−(x−t)2/(a+4αt).

Conclude that, as time increases, the Gaussian concentration profile decays,
advects to the right with speed one, and spreads outward.

Exercise 42 If the initial condition is a step function φ(x) = 1−H(x), where
H is the Heaviside function, show that the solution to (2.71)–(2.72) is

u(x, t) =
1
2

(
1 + erf

(
t − x√
4αt

))
, x < t,

and

u(x, t) = erf c
(
x − t√
4αt

)
, x > t,

where erfc = 1− erf.
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2.7.2 Boundary Conditions

Problems with boundaries require boundary data. In addition to the usual
Dirichlet condition, where the concentration is specified on a boundary, there
are other important boundary conditions that arise from the fact that the flux
has two parts, an advective part caused by the bulk flow and a dispersive part
caused by diffusion and mechanical dispersion. Every problem must be analyzed
carefully to determine which condition best models the physical situation.
An important boundary condition at an inlet boundary arises naturally for

the advection–dispersion equation (2.65). Assume that the problem is defined
on a semi-infinite domain x > 0 with inlet boundary at x = 0. The flux is given
by Q ≡ −DCx + vC, and if we require that the flux be continuous across the
boundary, we have

−DCx(0+, t) + vC(0+, t) = −DCx(0−, t) + vC(0−, t),

where 0+ and 0− denote the right and left limits, respectively. If the region to
the left of the boundary is a reservoir (e.g., a well or a lake) where the chemical
has concentration C0(t) and is perfectly stirred, then there are no gradients and
we have

Cx(0−, t) = 0, C(0−, t) = C0(t).

Thus, we obtain the Fourier boundary condition

−DCx(0, t) + vC(0, t) = vC0(t), t > 0.

If x = l is an outflow boundary, we can make a similar argument as in the
last example and equate the flux on both sides of the boundary, or

−DCx(l+, t) + vC(l+, t) = −DCx(l−, t) + vC(l−, t).

Assuming the region to the right of x = l is a perfectly stirred reservoir and
that its concentration is the same as the concentration exiting the domain, then
we get the condition

Cx(l, t) = 0, t > 0.

Observe that this is not a no-flux condition; it must be remembered that the
flux involves an advection term that is not zero. This boundary condition is
called a zero-gradient condition.

Exercise 43 The advection–dispersion equation (2.65) on a bounded domain
can be solved by the eigenfunction expansion method (see Chapter 1). Consider
the problem with Dirichlet boundary conditions:

Ct = DCxx − vCx, 0 < x < l, t > 0,
C(0, t) = C(l, t) = 0, t > 0,
C(x, 0) = f(x), 0 < x < l.
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Show that the associated Sturm–Liouville problem is

Dy′′ − vy′ = λy, 0 < x < l; y(0) = y(l) = 0,

and that the eigenvalues and eigenfunctions are given by

λn = −v2l2 + 4n2π2D2

4Dl2
, yn(x) = evx/2D sin

nπx

l
, n = 1, 2, . . .

Thus, obtain the solution

u(x, t) =
∞∑
n=1

ane
λntevx/2D sin

nπx

l
,

where

an =
(f, yn)
||yn||2 .

In Chapter 1 we introduced a pure boundary value problem associated with
the diffusion equation. Such a problem models the flow in a half-space when
boundary conditions are imposed for a long time. We can proceed in the same
manner for more general equations. Consider the two boundary value problems

ct = Dcxx − vcx − λc, x > 0, t ∈ R, (2.74)
−Dcx(0, t) + vc(0, t) = vf(t), t ∈ R, (2.75)

and

ut = Duxx − vux − λu, x > 0, t ∈ R, (2.76)
u(x, 0) = f(t), t ∈ R, (2.77)

where the first has a Fourier boundary condition and the second has a Dirichlet
condition. It is straightforward to verify that bounded solutions to the two
problems are connected by the relation

c(x, t) =
v

D
evx/D

∫ ∞

x

u(y, t)e−vy/Ddy,

which effectively allows the reduction of a problem with a Fourier condition to
one with a Dirichlet condition. The connection is also defined by the differential
relation

vu(x, t) = −Dcx(x, t) + vc(x, t).

It is well-known [e.g., see Guenther and Lee (1996)] that the solution to (2.76)–
(2.77) is

u(x, t) =
2√
π
evx/2D

∫ ∞

0
e
−y2− (λ+v2/4D)x2

4Dy2 f(t − x2

4Dy2 )dy.

Observe that if f is a periodic function, then so is u. Further results on periodic
boundary conditions and other references can be found in Logan and Zlotnik
(1995).

Exercise 44 Verify the details in the last few paragraphs.
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2.7.3 A Perturbation Problem

Perturbation methods provide a powerful technique to obtain approximate so-
lutions to difficult problems when a large or small parameter is present. In the
next few paragraphs we use perturbation methods to analyze a simple problem
that can be solved analytically by other methods. Consider the problem

Ct = DCxx − vCx − λC, x > 0, t > 0, (2.78)
C(0, t) = Cb(t), t > 0, (2.79)
C(x, 0) = 0, x > 0, (2.80)

that models the advection, dispersion, and decay of a chemical tracer on the
semi-infinite domain x > 0, with a given Dirichlet boundary condition. Fur-
thermore, assume that the dispersion constant is small in some sense (which we
clarify later). We have already observed that this problem can be transformed
into one involving the diffusion equation by letting

C(x, t) = u(x, t)evx/2D−(λ+v2/4D).

Then u satisfies

ut = Duxx, x > 0, t > 0,

u(0, t) = h(t) ≡ Cb(t)e(λ+v
2/4D)t, t > 0,

u(x, 0) = 0, x > 0.

Using Laplace transforms, the solution to this problem is

u(x, t) = −2D
∫ t

0
gx(x, t − τ)h(τ)dτ,

where g(x, t) is the fundamental solution. Therefore we have obtained the exact
solution to the problem, but it is somewhat obscured because of the complicated
integral formula. We can often get a better idea of the behavior of the solution
using a singular perturbation method. Such a strategy is common; asymptotic
methods are often preferred over difficult integral representations (which, by the
way, usually require asymptotic approximations anyway). The reader unfamiliar
with singular perturbation methods can consult Kevorkian and Cole (1981), Lin
and Segel (1989), or Logan (1997c).
First we recast the problem into dimensionless form. Scaling t by λ−1, x by

v/λ, and C by the maximum value of Cb(t), we obtain the model

ct = εcxx − cx − c, x > 0, t > 0, (2.81)
c(0, t) = cb(t), t > 0, (2.82)
c(x, 0) = 0, x > 0, (2.83)

where
ε =

λD

v2 .



2.7. EXAMPLES 63

�

�

�

������


����������


���

���

���

	

Figure 2.5: Spacetime diagram.

The assumption that the dispersion constant is small means precisely that ε <<
1, or the constant D is small compared to v2/λ.

When we set ε = 0, we obtain the outer problem

c0t = −c0x − c0,

which is a hyperbolic equation. The general solution to this simple advection
equations is (see Section 2.4)

c0(x, t) = G(x − t)e−t,

where G is an arbitrary function. In the domain x > t, i.e., ahead of the leading
signal from the boundary, we clearly have

c0(x, t) = 0, x > t.

Behind the wave, i.e., for 0 < x < t we apply the boundary condition to deter-
mine G(t) = cb(−t)e−t. Therefore, behind the wave we have

c0(x, t) = cb(t − x)e−x, 0 < x < t.

Thus, the outer solution is defined in two pieces. Along the leading edge x = t
we expect exponential decay because c0(t−, t) = cb(0)e−x = e−x. But we note
that the two solutions do not match along the line x = t. It is here, in a
neighborhood of x = t, that we require an “inner” approximation that will tie
together the two pieces of the outer approximation. Figure 2.5 shows depicts
the situation geometrically.
To find the inner approximation we change to characteristic coordinates:

η = x, τ = t − x. In these variables the PDE becomes

cηη − 2εcητ + εcττ − cη − c = 0,
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and the inner region, or boundary layer, is now along τ = 0. Selecting a new
scaled variable

ξ = τ/
√
ε,

we obtain
εcηη − 2√εcηξ + cξξ − cη − c = 0,

which is the inner problem. The dominant balance must be among the last
three terms. Thus, to leading order,

ciξξ − ciη − ci = 0,

where ci denotes the leading-order inner approximation. Letting u = cieη then
transforms the last equation into the diffusion equation

uη = uξξ.

Matching the inner approximation with the two outer approximation gives the
boundary conditions

ci → 0 as ξ → −∞
and

ci → e−η as ξ → +∞.

Thus, u → 0 as ξ → −∞ and u → 1 as ξ → +∞. Therefore, the solution to the
u problem is

u(ξ, η) =
1
2

(
1 + erf

(
ξ√
4η

))
.

Hence

ci(τ , η) =
1
2
(1 + erf

(
τ/

√
ε√

4η

)
e−η.

Returning to the original coordinates, we have inner approximation

ci(x, t) =
1
2

(
1 + erf

(
t − x√
4εx

))
e−x.

This is the approximation that joins the two pieces of the outer approximation.
Finally, we can form a uniform approximation by adding the inner and outer

approximations and then subtracting their common limit. We obtain

c(x, t) =
1
2

(
1 + erf

(
t − x√
4εx

))
e−x, x > t,

c(x, t) = cb(t − x)e−x +
1
2

(
1 + erf

(
t − x√
4εx

))
e−x − e−x, 0 < x < t.

Exercise 45 Find bounded solutions to the following model with spatially de-
pendent dispersion:

ct = ((a+ vx)cx)x − vcx − λc, x > 0, t ∈ R,

c(0, t) = sinωt, t ∈ R,

and describe how the amplitude and phase depend on ω. Hint: assume that
c = φ(x)eiωt and then change the independent variable to ξ = a+ vx.
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2.7.4 Radial Dispersion

The one-dimensional advection–dispersion equation in the semi-infinite domain
x > 0 is

ut = αuxx − ux, x > 0, t > 0.

With initial and boundary conditions given by

u(x, 0) = 0, x > 0; u(0, t) = u0 = const.,

it is well-known [e.g., see Sun (1995)] that the solution is given by

u(x, t) =
u0

2

(
erf c

(
x − t√
4αt

)
+ ex/α erf c

(
x+ t√
4αt

))
.

Here, erf c is the complementary error function defined by erf c (z) = 1−erf (z),
where erf(z) is the error function. For each fixed x, the second term in the
solution becomes negligible quickly and so the solution is often approximated
by first term.
The solution to the one-dimensional advection–dispersion equation with de-

cay, subject to the same initial and boundary data, can be found in, for example,
de Marsily (1986). Many other solutions are given Sun (1995). Most of these
analytic solutions are found using transform methods. A compendium is given
in van Genuchten and Alves (1982).
In the next few paragraphs we examine a simple advection-dispersion equa-

tion in radial geometry:

ct =
αa

r
crr − a

r
cr, r > r0, t > 0, (2.84)

c(r, 0) = 0, r > r0, c(r0, t) = c0, t > 0. (2.85)

We assume that solutions remain bounded as r → 0. Rescaling the problem via

r =
r

α
, t =

t

α2/a
, u =

c

c0

gives, upon dropping the overbars, the dimensionless model

ut =
1
r
urr − 1

r
ur, r > R, t > 0, (2.86)

u(r, 0) = 0, r > R, u(R, t) = 1, t > 0, (2.87)

where R ≡ r0/α.
Now let U(r, s) denote the Laplace transform of u(r, t). Then, taking Laplace

transforms of the PDE and boundary condition gives

U ′′ − U ′ − srU = 0, U(R, s) =
1
s
,

where prime denotes the r derivative. The first derivative term can be eliminated
by making a transformation of the dependent variable to

W = Ue−r/2.
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Then the differential equation becomes

W ′′ −
(
1
4
+ sr

)
W = 0.

Changing the independent variable to

z = (
1
4
+ sr)/s2/3

transforms the equation into Airy’s equation

d2W

dz2 − zW = 0.

Here we have used the same symbol for the dependent variable W . The general
solution to Airy’s equation is [see Abramowitz and Stegun (1962)]

W (z, s) = c1(s) Ai(z) + c2(s) Bi(z).

To keep solutions bounded we must set c2(s) = 0. Hence,

W (r, s) = c1(s) Ai
(
0.25 + sr

s2/3

)
,

or

U(r, s) = c1(s)er/2 Ai
(
0.25 + sr

s2/3

)
.

Finally we apply the boundary condition U(R, s) = 1/s and we obtain the
solution to the problem (2.86)–(2.87) in the transform domain:

U(r, s) =
1
s
e(r−R)/2 Ai(

0.25 + sr

s2/3
)/ Ai(

0.25 + sR

s2/3
).

Although the inversion appears formidable (and it is in the analytic sense),
it is relatively easy if carried out numerically. There are several numerical
algorithms available to invert Laplace transforms, and two of them are discussed
briefly in Appendix C. Here we use the Stehfest algorithm. The Maple V
(version 5) worksheet, presented in Appendix C, can produce the plots shown
in figure 2.6, which are two profiles of the concentration u(r, t). The scaled well
radius is R = 1.

Exercise 46 Exercise 47 Consider the model advection–adsorption–dispersion-
decay model

ut = auxx − ux + s − c,

st = u − s,

on the domain x, t > 0 with u(x, 0) = s(x, 0) = 0 and u(0, t) = u0. Take Laplace
transforms and show that the bounded solution in the transform domain is

U(x, p) =
u0

p
emx,
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Figure 2.6: Two radial concentration profiles showing how a solute disperses
and advects from a well.

where

m =
1
2a

− 1√
a

√
1
4a
+

p(p+ 2)
p+ 1

.

Obtain an approximation for t >> 1 (large t) and for t << 1 (small t) by
considering p << 1 and p >> 1, respectively. Show that

U(x, p) ∼ u0

p
ex/2ae

− x√
a

√
1
4a +ks

,

where k = 1 for p >> 1 and k = 2 for p << 1. Thus, show

u(x, t) ∼ u0

2πi
ex/2a

∫
B

e
− x√

a

√
1
4a +ks

eptdp,

where k = 1 for t << 1 and k = 2 for t >> 1. Here, B is a Bromwich path.
Finally, use a table of Laplace transforms to invert the last expression, obtaining
the approximation

u(x, t) ∼ u0

2
{ erf c

[
1
2
√
a

(
x

√
k

t
−
√

t

k

)]

+ex/a erf c

[
1
2
√
a

(
x

√
k

t
+

√
t

k

)]
}

where k = 1 for small t and k = 2 for large t.
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Figure 2.7: Single-fracture medium.

2.7.5 Fractured Media

Fractures in porous media are rapidly conducting pathways that channel the
water through the domain. The presence of fractures in the porous fabric
can have a significant influence on groundwater transport. For example, it
is reported in the literature that fracture networks can significantly retard the
transport of migrating radionuclides through the medium. Unfortunately, the
structure of fracture systems can be quite complex and difficult to model. There-
fore, many of the mathematical models developed in the literature apply only
to idealized conditions and fracture geometries. These studies using simplified
fissure structures are often considered worst-case scenarios in that, for example,
a porous region with a single fracture will retain more of a decaying contam-
inant than will a complicated fracture network and will therefore lead to an
overestimate of the retardation capacity of the porous blocks.
The simplified geometry we consider (figure 2.7) is the same as that studied

by Tang et al. (1981) and others, namely a single fracture channel of width b
in an infinite porous domain [also see Sun (1995), p. 69]. For the final form
of the model, in the fracture we consider advection, decay, linear adsorption to
the fracture surface, and loss to the fabric; in the porous blocks, or fabric, that
bound the channel we impose unidirectional dispersion, perpendicular to the
fracture channel, linear adsorption, and decay. This mathematical model leads
to a single, degenerate, parabolic problem in a quarter-space with evolutionary,
oblique boundary data and source terms.
To fix the notation, let m(ξ, η, τ) denote the concentration of a chemical

contaminant (mass per unit volume of water) in the porous block ξ, η > 0.
Here, τ is time. For the present, the contaminant is assumed to diffuse in both
the ξ and η directions, and it experiences first-order decay and linear adsorption
throughout the region. In the standard way, mass balance of the contaminant
gives the governing equation

ωmτ = D1mξξ +D2mηη − ωΛm − ρbsτ ,
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where ω is the constant porosity, D1 and D2 are the molecular diffusion con-
stants in the ξ and η directions, Λ is the decay constant, ρb = ρ(1 − ω) is the
bulk density of the solid porous matrix, and s = s(ξ, η, τ) is the sorbed concen-
tration given in mass per unit mass of solid fabric. We assume linear adsorption,
that is, s = Kdm, where Kd is the distribution constant. We may combine the
conditions above to write the mass balance equation in the porous domain as

R′mτ = D′mξξ +D′′mηη − Λm, ξ, η > 0, τ > 0, (2.88)

where R′ = 1 + ρbKd/ω is the retardation constant, D′ = D1/ω, D′′ = D2/ω.
It is clearly sufficient, by our symmetry assumption, to formulate and solve the
problem in the quarter–space ξ > 0, η > 0.
In the fracture channel −b < η < 0, ξ > 0, the concentration, measured

in mass per unit volume of water, is given by c(ξ, τ). Thus, we are assuming
no variation in the concentration across the fracture. To derive the governing
equation in the fracture we take a small section of the fracture channel of length
∆ξ, width b, and unit thickness. Mass balance applied to this section yields

∂

∂t
(cb∆ξ) = b(φ(ξ, τ)− φ(ξ +∆ξ, τ))− (b∆ξ)Λc − (2∆ξ)Q − (2∆ξ)s′

t.

The left-hand side is the time rate of change of the mass in the section; the first
term on the right-hand side is the net flux through the cross sections at ξ and
ξ +∆ξ (φ is the flux); the second term is the decay rate and the third term is
rate of loss of contaminant to the porous blocks through the upper and lower
faces [Q = Q(ξ, τ) is measured in mass per unit area per unit time]; the last
term is the rate of adsorption to the fracture walls, with s′ = s′(ξ, η, τ) given in
mass of contaminant per unit area. We assume linear adsorption, i.e., s′ = K ′

dc,
and we assume that the loss term is proportional to the concentration gradient
in the porous block, i.e., we assume the constitutive relation

Q = −D′′ωmη(ξ, 0, τ).

The constitutive relation for the flux φ consists of a dispersive flux term and a
convection term; that is,

φ = −Dcξ + V c,

where D is the constant dispersivity and V is the Darcy velocity. Upon dividing
the mass balance law by b∆ξ, taking the limit as ∆ξ goes to zero, and using the
definitions above, we obtain the mass balance equation in the fracture channel
in the form

Rcτ = Dcξξ − V cξ − Λc+ 2ωD
′′

b
mη(ξ, 0, τ), (2.89)

where R is a surface retardation factor in the fracture given by R = 1+ 2K ′
d/b.

Note that our assumption is that the fracture is a channel; that is, we have
chosen the porosity to be unity.
Along the interface η = 0 between the fracture and the porous block we

assume that the concentration is continuous, i.e.,

m(ξ, 0, τ) = c(ξ, τ).



70 CHAPTER 2. REACTION–ADVECTION–DISPERSION EQUATION

Thus, also, m(ξ,−b, τ) = c(ξ, τ) along the lower fracture interface.
There are several characteristic times that could be used to rescale the prob-

lem and reduce it to dimensionless form. For example, there are time scales for
convection, dfor iffusion, and for the rate that contaminant is being injected at
the input boundary. We shall scale time on the basis of convection, which is
reasonable because the intended observations will often involve measuring con-
taminant output from the fracture at some distance downstream. Let L be a
length scale in the ξ direction, and let T = L/V be the time scale. We take
the η length scale to be Y =

√
D′′T . For simplicity we assume the retardation

parameters to be unity, i.e., R = R′ = 1. Then, a change to dimensionsless
variables x, y, and t defined by

x =
ξ

L
, y =

η

Y
, t =

τ

T
,

transforms (2.88) and (2.89) into

mt = εmxx +myy − λm, (2.90)
ct = αcxx − cx − λc+ γmy(x, 0, t), (2.91)

where

ε ≡ D′

V L
, α ≡ D

V L
,

and

γ ≡ 2ω
√
LD′′/V
b

.

Here, λ = LΛ/V . At the inlet boundary of the fracture we assume a Dirichlet
condition

c(0, t) = c0(t), t > 0,

where c0 is a given continuous function representing an input concentration,
and c0(0) = 0. Initially we assume the absence of contaminant, or

m(x, y, 0) = 0, x, y ≥ 0; c(x, 0) = 0, x ≥ 0.

Along the boundary x = 0 we impose a no-flux condition

mx(0, y, t) = 0, y, t > 0. (2.92)

Our basic assumptions to simplify the model are

ε � 1, α � 1, γ = 0(1).

So, on a convection time scale, diffusion in the ξ direction in the porous block
is assumed to be small. Furthermore, the smallness of α imposes the condition
that dispersion can be neglected in the fracture; such an assumption is valid
when the advective flux in the fracture is large [Sudicky and Frind (1982)].
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Therefore, the simplified model equations (α = ε = 0) become

mt = myy − λm, (2.93)
ct = −cx − λc+ γmy(x, 0, t). (2.94)

We now observe that, because m(x, 0, t) = c(x, t), (2.94) can be regarded as an
evolutionary boundary condition on m along the fracture interface y = 0. Thus,
we write (2.94) as

mt(x, 0, t) = −mx(x, 0, t)− λm(x, 0, t) + γmy(x, 0, t).

Furthermore, one can remove decay from the preceding equations by the trans-
formation u(x, y, t) = m(x, y, t)eλt. Then the final form of the boundary value
problem becomes

ut = uyy, x, y > 0, t > 0, (2.95)
ut + ux = γuy, x, t > 0, y = 0, (2.96)
u(0, 0, t) = u0(t), t > 0, (2.97)
u(x, y, 0) = 0, x, y ≥ 0, (2.98)

where u0 ≡ c0e
λt.

Observe that the no-flux boundary condition (2.92) has not been included
in the problem (2.95)–(2.98). Indeed, neglecting diffusion in the porous block
in the x direction precludes a boundary condition along x = 0; otherwise we
obtain an ill-posed problem. This means that, in the simplified model, there
can be contaminant flux along the boundary x = 0. [Logan, Ledder, and Homp
(1998) have shown that this problem (2.95)–(2.98) is the leading order problem
corresponding to a singular perturbation problem (2.90)–(2.91) with α = O(

√
ε),

with a boundary layer in the gradient along x = 0.]
Using Laplace transforms we now obtain the solution to (2.95)–(2.98). We

proceed formally. Let ψ(x, t) denote the (unknown) value of the concentration
u along y = 0, and consider the following boundary value problem in y and t:

ut = uyy, y > 0, t > 0, (2.99)
u(x, 0, t) = ψ(x, t), t > 0, (2.100)
u(x, y, 0) = 0, y > 0, (2.101)

where x > 0 is regarded as a parameter. From the results in Chapter 1 we know
that the solution to (2.99)–(2.101) is given by the convolution integral

u(x, y, t) = h(y, ·) 4 ψ(x, ·) =
∫ t

0
h(y, t − s)ψ(x, s)ds, (2.102)

where h is given by

h(y, t) =
ye−y2/4t
√
4πt3

.



72 CHAPTER 2. REACTION–ADVECTION–DISPERSION EQUATION

If U(x, y, p) and Ψ(x, p) denote the Laplace transforms (on t) of u and ψ, re-
spectively (here, we use the symbol p is the transform variable, rather than s),
then applying the convolution theorem to (2.102) gives

U(x, y, p) = e−y√pΨ(x, p). (2.103)

Now take the Laplace transform of (2.96) to obtain

pU(x, 0, p) = −Ux(x, 0, p) + γUy(x, 0, p),

or
Ψx(x, p) = −(p+ γ

√
p)Ψ(x, p),

which is a differential equation for Ψ. From condition (2.97) we obtain Ψ(0, p) =
U0(p), where U0 is the transform of u0. Thus,

Ψ(x, p) = U0(p)e−(p+γ
√
p)x.

This gives, from (2.103),

U(x, y, p) = U0(p)e−(p+γ
√
p)x−y√p,

which is the solution to the problem in the transform domain. By the convolu-
tion theorem we then obtain

u(x, y, t) = u0(t) 4
H(t − x)(γx+ y)√

4π(t − x)3/2
e−(γx+y)2/4(t−x), (2.104)

where H is the Heaviside function. Here we have used the well-known transform
[see, for example, Carslaw and Jaeger (1959)]

L
(

z√
4πt3/2

e−z2/4t
)
= e−z√p,

and the shift theorem

L(H(t − z)f(t − z)) = F (p)e−pz.

Equation (2.104) can be written concisely as

u(x, y, t) =
∫ t−x

0
h(γx+ y, t − s − x)u0(s)ds,

which is the solution to (2.95)–(2.98).

Exercise 48 Follow the ideas presented in this section and formulate a model
of flow on the domain x > 0 through an infinite system of parallel fractures
(parallel to the x-axis), each of width b and each separated by a porous block
of width h. Assume zero initial conditions and a periodic boundary condition
on the solute concentration at the inlets to the fractures along x = 0. Reduce
the model to dimensionless form, neglect dispersion in the porous blocks in the
x-direction and obtain a solution for the problem. Logan, Zlotnik, and Cohn
(1996) can be consulted for details.
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2.8 Reference Notes

There are several elementary, hydrogeology books that have a mathematical
flavor, for example, de Marsily (1986) and Fetter (1993). Books that discuss
mathematical modeling from an advanced viewpoint are Fowler (1997), Lin
and Segel (1989), and Logan (1987, 1997c). Accessible texts for the under-
lying mathematical fluid mechanics are Acheson (1990), Chorin and Marsden
(1993), and Bird, Stewart, and Lightfoot (1960). There are many reference
texts for nonlinear PDEs; books dealing strictly with the subject are Logan
(1994), Smoller (1994), and Whitham (1974). The book by Knobel (2000) is
an excellent introduction to nonlinear waves. Gelhar (1993) has an introduction
to the stochastic approach to groundwater problems.
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