Derivation of the Laplacian in Polar Coordinates

We suppose that v is a smooth function of x and y, and of r and . We will show that
Upe + Uyy = U + (/7)1 + (1/7%)ugg (1)

and
ug]?® + Juy|? = fu|” + (1/77)|ug|?. (2)

We assume that our functions are always nice enough to make mixed partials equal: 1z, =
Uyz, €6C.

The chain rule says that, for any smooth function ,
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Now,
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(where the constant ¢ depends on the quadrant). Therefore, after differentiating and doing

some algebra,
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Formula (2) is now easy. (Apply the last two equations to ¥ = u.)
If we apply equation (3) to ¢ = u,, we get:
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Applying (3) to ¢ = cosf and ¢ = %ine, we get
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Applying it to ¥ = u, and ¥ = ug, we get
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implying
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Similarly, if we apply (4) to ¥ = u,, we get:

Uyy = (sin )y u, + (sinO)uy, + (CO:(Q) ug + (CO:H) Upy.-
Y

Now we apply (4) to ¢ =sinf and ¢ = @ and get:
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If we apply (4) to ¥ = u, and ¥ = up we get:

0
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Plugging these all in, we get
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If we add equations (5) and (6), exactly the RIGHT THINGS cancel, and exactly the
RIGHT THINGS add up to 1, and we get (1). We put the two equations on top of each
other to make this clearer:
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