Partial Differential Equations in Physics and Engineering

- Superposition
- Vibration of Strings and the Wave Equation
- The Method of Separation of Variables
- Solution of the 1-dimensional Wave Equation
- A Stretched String with Fixed Edges
- D'Alembert's Method
- The 1-Dimensional Heat Equation
- Steady-State Heat Problem
- Heat Conduction in a Bar: Fourier's Problem
- Two-Dimensional Wave Equation: Membrane
- Two-Dimensional Heat Equation: Rectangular Plate
- Laplace's Equation: Dirichlet Problem
- Poisson's Equation and Eigenfunction Expansions

Superposition

Theorem 1 (Section 3.1)

If U_1 , U_2 are two solutions of a linear homogeneous partial differential equation, then any linear combination $u = c_1u_1 + c_2u_2$, where c_1 , c_2 are constants, is also a solution.

If in addition u_1 and u_2 satisfy a linear homogeneous boundary condition, then so will $u = c_1 u_1 + c_2 u_2$.

Example. Consider Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

Let $u_1 = x + y$, $u_2 = x^2 - y^2$, which are two harmonic functions. They are solutions of Laplace's equation satisfying the boundary condition u(0,0) = 0. Then $u = 2(x + y) + 3(x^2 - y^2)$ is also a solution of Laplace's equation satisfying the same boundary condition u(0,0) = 0.

Vibration of Strings and the Wave Equation

- Free vibrations
- Forced vibrations
- Rectangular membrane

The Method of Separation of Variables

Solution of the 1-dimensional Wave Equation

A Stretched String with Fixed Edges ____

D'Alembert's Method

The 1-Dimensional Heat Equation

Steady-State Heat Problem _____

Heat Conduction in a Bar: Fourier's Problem

Two-Dimensional Wave Equation: Membrane

Two-Dimensional Heat Equation: Rectangular Plate

Laplace's Equation: Dirichlet Problem _____

Poisson's Equation and Eigenfunction Expansions