
Chapter 8

Fourier Transforms

Fourier series and their ilk are designed to solve boundary value problems on bounded
intervals. The extension of the Fourier calculus to the entire real line leads naturally to the
Fourier transform, a powerful mathematical tool for the analysis of non-periodic functions.
The Fourier transform is of fundamental importance in a remarkably broad range of appli-
cations, including both ordinary and partial differential equations, probability, quantum
mechanics, signal and image processing, and control theory, to name but a few.

In this chapter, we motivate the construction by investigating how (rescaled) Fourier
series behave as the length of the interval goes to infinity. The resulting Fourier transform
maps a function defined on physical space to a function defined on the space of frequencies,
whose values quantify the “amount” of each periodic frequency contained in the original
function. The inverse Fourier transform then reconstructs the original function from its
transformed frequency components. The integrals defining the Fourier transform and its
inverse are, remarkably, almost identical, and this symmetry is often exploited, for example
when assembling tables of Fourier transforms.

One of the most important properties of the Fourier transform is that it converts
calculus: differentiation and integration — into algebra: multiplication and division. This
underlies its application to linear ordinary differential equations and, in the following
chapters, partial differential equations. In engineering applications, the Fourier transform
is sometimes overshadowed by the Laplace transform, which is a particular subcase. The
Fourier transform is used to analyze boundary value problems on the entire line. The
Laplace transform is better suited to solving initial value problems, [24], but will not be
developed in this text.

The Fourier transform is, like Fourier series, completely compatible with the calculus of
generalized functions, [74]. The final section contains a brief introduction to the analytical
foundations of the subject, including the basics of Hilbert space. However, a full, rigorous
development requires more powerful analytical tools, including the Lebesgue integral and
complex analysis, and the interested reader is therefore referred to more advanced texts,
including [39, 74, 103, 122].

8.1. The Fourier Transform.

We begin by motivating the Fourier transform as a limiting case of Fourier series.
Although the rigorous details are subtle, the underlying idea can be straightforwardly
explained. Let f(x) be a function defined for all −∞ < x < ∞. The goal is to construct a
Fourier expansion for f(x) in terms of basic trigonometric functions. One evident approach
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is to construct its Fourier series on progressively longer and longer intervals, and then
take the limit as their lengths go to infinity. This limiting process converts the Fourier
sums into integrals, and the resulting representation of a function is renamed the Fourier
transform. Since we are dealing with an infinite interval, there are no longer any periodicity
requirements on the function f(x). Moreover, the frequencies represented in the Fourier
transform are no longer constrained by the length of the interval, and so we are effectively
decomposing a quite general, non-periodic function into a continuous superposition of
trigonometric functions of all possible frequencies.

Let us present the details in a more concrete form. The computations will be signif-
icantly simpler if we work with the complex version of the Fourier series from the outset.
Our starting point is the rescaled Fourier series (3.86) on a symmetric interval [−ℓ , ℓ ] of
length 2 ℓ, which we rewrite in the adapted form

f(x) ∼
∞∑

ν =−∞

√
π

2

f̂ℓ(kν)

ℓ
e i kνx. (8.1)

The sum is over the discrete collection of frequencies

kν =
πν

ℓ
, ν = 0,±1,±2, . . . , (8.2)

corresponding to those trigonometric functions that have period 2 ℓ. For reasons that will
soon become apparent, the Fourier coefficients of f are now denoted as

cν =
1

2 ℓ

∫ ℓ

−ℓ

f(x) e− i kν x dx =

√
π

2

f̂ℓ(kν)

ℓ
, (8.3)

so that

f̂ℓ(kν) =
1√
2π

∫ ℓ

−ℓ

f(x) e− i kν x dx. (8.4)

This reformulation of the basic Fourier series formula allows us to easily pass to the limit
when the interval’s length ℓ → ∞.

On an interval of length 2 ℓ, the frequencies (8.2) required to represent a function in
Fourier series form are equally distributed, with interfrequency spacing

∆k = kν+1 − kν =
π

ℓ
. (8.5)

As ℓ → ∞, the spacing ∆k → 0, and so the relevant frequencies become more and more
densely packed in the line −∞ < k < ∞. In the limit, we thus anticipate that all possible
frequencies will be represented. Indeed, letting kν = k be arbitrary in (8.4), and sending
ℓ → ∞, results in the infinite integral

f̂(k) =
1√
2π

∫ ∞

−∞

f(x) e− i kx dx (8.6)

known as the Fourier transform of the function f(x). If f(x) is a sufficiently nice function,
e.g., piecewise continuous and decaying to 0 reasonably quickly as | x | → ∞, its Fourier
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transform f̂(k) is defined for all possible frequencies k ∈ R. The preceding formula will
sometimes conveniently be abbreviated as

f̂(k) = F [f(x) ], (8.7)

where F is the Fourier transform operator , that maps each (sufficiently nice) function of
the spatial variable x to a function of the frequency variable k.

To reconstruct the function from its Fourier transform, we apply a similar limiting
procedure to the Fourier series (8.1), which we first rewrite in a more suggestive form,

f(x) ∼ 1√
2π

∞∑

ν =−∞

f̂ℓ(kν) e i kν x ∆k, (8.8)

using (8.5). For each fixed value of x, the right hand side has the form of a Riemann sum
approximating the integral

1√
2π

∫ ∞

−∞

f̂ℓ(k) e i kx dk.

As ℓ → ∞, the functions (8.4) converge to the Fourier transform: f̂ℓ(k) → f̂(k); moreover,
the interfrequency spacing ∆k = π/ℓ → 0, and so one expects the Riemann sums to
converge to the limiting integral

f(x) ∼ 1√
2π

∫ ∞

−∞

f̂(k) e i kx dk. (8.9)

The resulting formula serves to define the inverse Fourier transform, which is used to re-
cover the original signal from its Fourier transform. In this manner, the Fourier series has
become a Fourier integral that reconstructs the function f(x) as a (continuous) superposi-

tion of complex exponentials e i kx of all possible frequencies, with f̂(k)/
√

2π quantifying
the amount contributed by the complex exponential of frequency k. In abbreviated form,
formula (8.9) can be written

f(x) = F−1[ f̂(k) ], (8.10)

thus defining the inverse of the Fourier transform operator (8.7).

It is worth pointing out that both the Fourier transform (8.7) and its inverse (8.10)
define linear maps on function space. This means that the Fourier transform of the sum
of two functions is the sum of their individual transforms, while multiplying a function by
a constant multiplies its Fourier transform by the same factor:

F [f(x) + g(x) ] = F [f(x) ] + F [g(x) ] = f̂(k) + ĝ(k),

F [cf(x) ] = cF [f(x) ] = c f̂(k).
(8.11)

A similar statement holds for the inverse Fourier transform F−1.

Recapitulating, by letting the length of the interval go to ∞, the discrete Fourier series
has become a continuous Fourier integral, while the Fourier coefficients, which were defined
only at a discrete collection of possible frequencies, have become a complete function f̂(k)
defined on all of frequency space k ∈ R. The reconstruction of f(x) from its Fourier
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transform f̂(k) via (8.9) can be rigorously justified under suitable hypotheses. For example,
if f(x) is piecewise C1 on all of R and decays reasonably rapidly, f(x) → 0 as | x | → ∞, in
order that its Fourier integral (8.6) converges absolutely, then it can be proved, [39, 122],
that the inverse Fourier integral (8.9) will converge to f(x) at all points of continuity, and
to the midpoint 1

2(f(x−) + f(x+)) at jump discontinuities — just like a Fourier series. In

particular, its Fourier transform f̂(k) → 0 must also decay as | k | → ∞, implying that (as
with Fourier series) the very high frequency modes make negligible contributions to the
reconstruction of such a signal. A more precise result will be formulated in Theorem 8.15
below.

Example 8.1. The Fourier transform of the rectangular pulse†

f(x) = σ(x + a) − σ(x − a) =

{
1, − a < x < a,

0, | x | > a,
(8.12)

or box function, of width 2a, is easily computed:

f̂(k) =
1√
2π

∫ a

−a

e− i kx dx =
e i ka − e− i ka

√
2π i k

=

√
2

π

sin ak

k
. (8.13)

On the other hand, the reconstruction of the pulse via the inverse transform (8.9) tells us
that

1

π

∫ ∞

−∞

e i kx sin ak

k
dk = f(x) =





1, −a < x < a,
1
2 , x = ± a,

0, | x | > a.

(8.14)

Note the convergence to the middle of the jump discontinuities at x = ±a. The real part
of this complex integral produces a striking trigonometric integral identity

1

π

∫ ∞

−∞

cos xk sin ak

k
dk =





1, −a < x < a,
1
2 , x = ±a,

0, | x | > a.

(8.15)

Just as many Fourier series yield nontrivial summation formulae, the reconstruction of a
function from its Fourier transform often leads to nontrivial integration formulas. One
cannot compute the integral (8.14) by the Fundamental Theorem of Calculus, since there
is no elementary function whose derivative equals the integrand‡. In Figure 8.1 we display
the box function with a = 1, its Fourier transform, along with a reconstruction obtained
by numerically integrating (8.15). Since we are dealing with an infinite integral, we must
break off the numerical integrator by restricting it to a finite interval. The first graph is
obtained by integrating from −5 ≤ k ≤ 5 while the second is from −10 ≤ k ≤ 10. The

† σ(x) is the step function (3.46).

‡ One can use Euler’s formula (3.59) to reduce (8.14) to a complex version of the exponential

integral
Z

(eαk/k) dk, but it can be proved, [26], that neither integral can be written in terms of

elementary functions.
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Figure 8.1. Fourier Transform of a Rectangular Pulse.

non-uniform convergence of the integral leads to the appearance of a Gibbs phenomenon
at the two discontinuities, similar to what we observed in the non-uniform convergence of
a Fourier series.

On the other hand, the identity resulting from the imaginary part,

1

π

∫ ∞

−∞

sin kx sin ak

k
dk = 0,

is, on the surface, not surprising because the integrand is odd. However, it is far from
obvious that either integral converges; indeed, the amplitude of the oscillatory integrand
decays like 1/| k |, but the latter function does not have a convergent integral, and so the
usual comparison test for infinite integrals, [8, 102], fails to apply. Their convergence is
marginal at best, and the trigonometric oscillations somehow manage to ameliorate the
slow rate of decay of 1/k.

Example 8.2. Consider an exponentially decaying right-handed pulse†

fr(x) =

{
e−ax, x > 0,

0, x < 0,
(8.16)

where a > 0. We compute its Fourier transform directly from the definition:

f̂r(k) =
1√
2π

∫ ∞

0

e−ax e− i kx dx = − 1√
2π

e−(a+ i k)x

a + i k

∣∣∣∣
∞

x=0

=
1√

2π (a + i k)
.

† Note that we can’t Fourier transform the entire exponential function e−ax because it does
not go to zero at both ±∞, which is required for the integral (8.6) to converge.
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Figure 8.2. Exponential Pulses.

As in the preceding example, the inverse Fourier transform produces a nontrivial integral
identity:

1

2π

∫ ∞

−∞

e i kx

a + i k
dk =





e−ax, x > 0,
1
2

, x = 0,

0, x < 0.

(8.17)

Similarly, a pulse that decays to the left,

fl(x) =

{
eax, x < 0,

0, x > 0,
(8.18)

where a > 0 is still positive, has Fourier transform

f̂l(k) =
1√

2π (a − i k)
. (8.19)

This also follows from the general fact that the Fourier transform of f(−x) is f̂(−k); see
Exercise . The even exponentially decaying pulse

fe(x) = e−a | x | (8.20)

is merely the sum of left and right pulses: fe = fr + fl. Thus, by linearity,

f̂e(k) = f̂r(k) + f̂l(k) =
1√

2π (a + i k)
+

1√
2π (a − i k)

=

√
2

π

a

k2 + a2
, (8.21)

The resulting Fourier transform is real and even because fe(x) is a real-valued even func-
tion; see Exercise . The inverse Fourier transform (8.9) produces another nontrivial
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integral identity:

e−a | x | =
1

π

∫ ∞

−∞

a e i kx

k2 + a2
dk =

a

π

∫ ∞

−∞

cos kx

k2 + a2
dk. (8.22)

(The imaginary part of the integral vanishes because its integrand is odd.) On the other
hand, the odd exponentially decaying pulse,

fo(x) = (signx) e−a |x | =

{
e−ax, x > 0,

− eax, x < 0,
(8.23)

is the difference of the right and left pulses, fo = fr − fl, and has purely imaginary and
odd Fourier transform

f̂o(k) = f̂r(k) − f̂l(k) =
1√

2π (a + i k)
− 1√

2π (a − i k)
= − i

√
2

π

k

k2 + a2
. (8.24)

The inverse transform is

(sign x) e−a | x | = − i

π

∫ ∞

−∞

k e i kx

k2 + a2
dk =

1

π

∫ ∞

−∞

k sin kx

k2 + a2
dk. (8.25)

As a final example, consider the rational function

f(x) =
1

x2 + a2
, where a > 0. (8.26)

Its Fourier transform requires integrating

f̂(k) =
1√
2π

∫ ∞

−∞

e− i kx

x2 + a2
dx. (8.27)

The indefinite integral (anti-derivative) does not appear in basic integration tables, and,
in fact, cannot be done in terms of elementary functions. However, we have just managed
to evaluate this particular integral! Look at (8.22). If we change x to k and k to −x,

then we exactly recover the integral (8.27) up to a factor of a
√

2/π. We conclude that the
Fourier transform of (8.26) is

f̂(k) =

√
π

2

e−a | k |

a
. (8.28)

This last example is indicative of an important general fact. The reader has no doubt
already noted the remarkable similarity between the Fourier transform (8.6) and its inverse
(8.9). Indeed, the only difference is that the former has a minus sign in the exponential.
This implies the following Symmetry Principle relating the direct and inverse Fourier
transforms.

Theorem 8.3. If the Fourier transform of the function f(x) is f̂(k), then the Fourier

transform of f̂(x) is f(−k).
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The Symmetry Principle allows us to reduce the tabulation of Fourier transforms by
half. For instance, referring back to Example 8.1, we deduce that the Fourier transform of
the function

f(x) =

√
2

π

sin ax

x
is

f̂(k) = σ(−k + a) − σ(−k − a) = σ(k + a) − σ(k − a) =





1, −a < k < a,
1
2
, k = ±a,

0, | k | > a.

(8.29)

Note that, by linearity, we can divide both f(x) and f̂(k) by
√

2/π to deduce the Fourier

transform of
sin ax

x
.

Warning : Some authors omit the
√

2π factor in the definition (8.6) of the Fourier

transform f̂(k). This alternative convention does have a slight advantage of eliminating

many
√

2π factors in the Fourier transform expressions. However, this necessitates an
extra such factor in the reconstruction formula (8.9), which is achieved by replacing

√
2π

by 2π. A significant disadvantage is that the resulting formulae for the Fourier transform
and its inverse are less similar, and so the Symmetry Principle of Theorem 8.3 requires
some modification. (On the other hand, convolution — to be discussed below — is a little
easier without the extra factor.) Yet another, more recent convention can be found in
Exercise . When consulting any particular reference, the reader always needs to check
which version of the Fourier transform is being used.

All of the functions in Example 8.2 required a > 0 for the Fourier integrals to converge.
The functions that emerge in the limit as a goes to 0 are of special interest. Let us start
with the odd exponential pulse (8.23). When a → 0, the function fo(x) converges to the
sign function

f(x) = sign x = σ(x) − σ(−x) =

{
+1, x > 0,

−1, x < 0.
(8.30)

Taking the limit of the Fourier transform (8.24) leads to

f̂(k) = − i

√
2

π

1

k
. (8.31)

The nonintegrable singularity of f̂(k) at k = 0 is indicative of the fact that the sign function
does not decay as | x | → ∞. In this case, neither the Fourier transform integral nor its
inverse are well-defined as standard (Riemann, or even Lebesgue) integrals. Nevertheless, it
is possible to rigorously justify these results within the framework of generalized functions.

More interesting are the even pulse functions fe(x), which, in the limit a → 0, become
the constant function

f(x) ≡ 1. (8.32)

The limit of the Fourier transform (8.21) is

lim
a→ 0

√
2

π

2a

k2 + a2
=

{
0, k 6= 0,

∞, k = 0.
(8.33)
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This limiting behavior should remind the reader of our construction (6.10) of the delta
function as the limit of the functions

δ(x) = lim
n→∞

n

π (1 + n2 x2)
= lim

a→ 0

a

π (a2 + x2)
.

Comparing with (8.33), we conclude that the Fourier transform of the constant function
(8.32) is a multiple of the delta function in the frequency variable:

f̂(k) =
√

2π δ(k). (8.34)

The direct transform integral

δ(k) =
1

2π

∫ ∞

−∞

e− i kx dx (8.35)

is, strictly speaking, not defined because the infinite integrals of the oscillatory sine and
cosine functions don’t converge! However, this identity can be validly interpreted within
the framework of weak convergence and generalized functions. On the other hand, the
inverse transform formula (8.9) yields

∫ ∞

−∞

δ(k) e i kx dk = e i k0 = 1,

which is in accord with the basic definition (6.16) of the delta function. As in the preceding
case, the delta function singularity at k = 0 manifests the lack of decay of the constant
function.

Conversely, the delta function δ(x) has constant Fourier transform

δ̂(k) =
1√
2π

∫ ∞

−∞

δ(x) e− i kx dx =
e− i k0

√
2π

≡ 1√
2π

, (8.36)

a result that also follows from the Symmetry Principle of Theorem 8.3. To determine the
Fourier transform of a delta spike δξ(x) = δ(x − ξ) concentrated at position x = ξ, we
compute

δ̂ξ(k) =
1√
2π

∫ ∞

−∞

δ(x − ξ) e− i kx dx =
e− i kξ

√
2π

. (8.37)

The result is a pure exponential in frequency space. Applying the inverse Fourier transform
(8.9) leads, at least on a formal level, to the remarkable identity

δξ(x) = δ(x − ξ) =
1

2π

∫ ∞

−∞

e i k(x−ξ) dk =
1

2π
〈 e ikx ; e i kξ 〉 , (8.38)

where 〈 · ; · 〉 denotes the L2 Hermitian inner product of complex-valued functions of k ∈
R. Since the delta function vanishes for x 6= ξ, this identity is telling us that complex
exponentials of differing frequencies are mutually orthogonal. However, as with (8.35),
this only make sense within the language of generalized functions. On the other hand,
multiplying both sides of (8.38) by f(ξ), and then integrating with respect to ξ produces

f(x) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

f(ξ) e ik(x−ξ) dx dk. (8.39)
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This is a perfectly valid formula, being a restatement (or, rather, combination) of the
basic formulae (8.6) and (8.9) connecting the direct and inverse Fourier transforms of the
function f(x).

Vice versa, the Symmetry Principle tells us that the Fourier transform of a pure
exponential e i κx will be a shifted delta spike

√
2π δ(k − κ), concentrated at frequency

k = κ. Both results are particular cases of the following Shift Theorem, whose proof is left
as an exercise for the reader.

Theorem 8.4. If f(x) has Fourier transform f̂(k), then the Fourier transform of the

shifted function f(x − ξ) is e− i kξ f̂(k). Similarly, the transform of the product function

e i κx f(x), for real κ, is the shifted transform f̂(k − κ).

In a similar vein, the Dilation Theorem gives the effect of a scaling transformation on
the Fourier transform. Again, the proof is left to the reader.

Theorem 8.5. If f(x) has Fourier transform f̂(k), then the Fourier transform of the

rescaled function f(cx) for 0 6= c ∈ R is
1

| c | f̂

(
k

c

)
.

Example 8.6. Let us determine the Fourier transform of the Gaussian function

g(x) = e−x2

. To evaluate its Fourier integral, we first complete the square in the exponent:

ĝ(k) =
1√
2π

∫ ∞

−∞

e−x2− i kx dx =
1√
2π

∫ ∞

−∞

e−(x− i k/2)2−k2/4 dx

=
e−k2/4

√
2π

∫ ∞

−∞

e−y2

dy =
e−k2/4

√
2

.

The next to last equality employed the change of variables† y = x − 1
2 i k, while the final

step used formula (Gaussint ).

More generally, to find the Fourier transform of ga(x) = e−ax2

, where a > 0, we

invoke the Dilation Theorem 8.5 with c =
√

a to deduce that ĝa(k) = e−k2/(4a)/
√

2a.

Since the Fourier transform uniquely associates a function f̂(k) on frequency space
with each (reasonable) function f(x) on physical space, one can characterize functions by
their transforms. Many practical applications rely on tables (or, even better, computer
algebra systems such as Mathematica or Maple) that recognize a wide variety of trans-
forms of basic functions of importance in applications. The accompanying table lists some
of the most important examples of functions and their Fourier transforms, based on our
convention (8.6). Keep in mind that, by applying the Symmetry Principle of Theorem 8.3,
each entry can be used to deduce two different Fourier transforms. A more extensive
collection of Fourier transforms can be found in [89].

† Since this represents a complex change of variables, a fully rigorous justification of this step
requires the use of complex integration.

2/17/13 302 c© 2013 Peter J. Olver



Concise Table of Fourier Transforms

f(x) f̂(k)

1
√

2π δ(k)

δ(x)
1√
2π

σ(x)

√
π

2
δ(k) − i√

2π k

sign x − i

√
2

π

1

k

σ(x + a) − σ(x − a)

√
2

π

sin ak

k

e−ax σ(x)
1√

2π (a + i k)

eax (1 − σ(x))
1√

2π (a − i k)

e−a | x |

√
2

π

a

k2 + a2

e−ax2 e−k2/(4a)

√
2a

tan−1 x
π3/2

√
2

δ(k) − i

√
π

2

e− | k |

k

f(cx + d)
e i k d/c

| c | f̂

(
k

c

)

f(x) f̂(−k)

f̂(x) f(−k)

f ′(x) i k f̂(k)

xf(x) i f̂ ′(k)

f ∗ g(x)
√

2π f̂(k) ĝ(k)

Note: The parameters a, c, d are real, with a > 0 and c 6= 0.

2/17/13 303 c© 2013 Peter J. Olver



8.2. Derivatives and Integrals.

One of the most significant features of the Fourier transform is that it converts calculus
into algebra! More specifically, the two basic operations in calculus — differentiation and
integration of functions — are realized as algebraic operations on their Fourier transforms.
(The downside is that algebraic operations become more complicated in the frequency
domain.)

Differentiation

Let us begin with derivatives. If we differentiate† the basic inverse Fourier transform
formula

f(x) ∼ 1√
2π

∫ ∞

−∞

f̂(k) e i kx dk.

with respect to x, we obtain

f ′(x) ∼ 1√
2π

∫ ∞

−∞

i k f̂(k) e i kx dk. (8.40)

The resulting integral is itself in the form of an inverse Fourier transform, namely of i k f̂(k)
which immediately implies the following key result.

Proposition 8.7. The Fourier transform of the derivative f ′(x) of a function is

obtained by multiplication of its Fourier transform by i k:

F [f ′(x) ] = i k f̂(k). (8.41)

Similarly, the Fourier transform of the product function x f(x) is obtained by differentiating

the Fourier transform of f(x):

F [x f(x) ] = i
df̂

dk
. (8.42)

The second statement follows easily from the first via the Symmetry Principle of The-
orem 8.3. While the result is stated for ordinary functions, as noted earlier, the Fourier
transform — just like Fourier series — is entirely compatible with the calculus of general-
ized functions.

Example 8.8. The derivative of the even exponential pulse fe(x) = e−a | x | is a
multiple of the odd exponential pulse fo(x) = (signx) e−a | x |:

f ′
e(x) = −a (signx) e−a | x | = − afo(x).

Proposition 8.7 says that their Fourier transforms are related by

i k f̂e(k) = i

√
2

π

ka

k2 + a2
= −a f̂o(k),

† We are assuming the integrand is sufficiently nice so that we can bring the derivative under
the integral sign; see [39, 122] for a fully rigorous justification.
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as previously noted in (8.21, 24). On the other hand, the odd exponential pulse has a jump
discontinuity of magnitude 2 at x = 0, and so its derivative contains a delta function:

f ′
o(x) = − a e−a | x | + 2 δ(x) = − afe(x) + 2 δ(x).

This is reflected in the relation between their Fourier transforms. If we multiply (8.24) by
i k we obtain

i k f̂o(k) =

√
2

π

k2

k2 + a2
=

√
2

π
−

√
2

π

a2

k2 + a2
= 2 δ̂(k) − a f̂e(k).

Higher order derivatives are handled by iterating the first order formula (8.41).

Corollary 8.9. The Fourier transform of f (n)(x) is ( i k)n f̂(k).

This result has an important consequence: the smoothness of the function f(x) is

manifested in the rate of decay of its Fourier transform f̂(k). We already noted that the

Fourier transform of a (nice) function must decay to zero at large frequencies: f̂(k) → 0
as | k | → ∞. (This result can be viewed as the Fourier transform version of the Riemann–
Lebesgue Lemma 3.46.) If the nth derivative f (n)(x) is also a reasonable function, then its

Fourier transform f̂ (n)(k) = ( i k)n f̂(k) must go to zero as | k | → ∞. This requires that

f̂(k) go to zero more rapidly than | k |−n. Thus, the smoother f(x), the more rapid the
decay of its Fourier transform. As a general rule of thumb, local features of f(x), such

as smoothness, are manifested by global features of f̂(k), such as the rate of decay for
large | k |. The Symmetry Principle implies that reverse is also true: global features of

f(x) correspond to local features of f̂(k). For instance, the degree of smoothness of f̂(k)
governs the rate decay of f(x) as x → ±∞. This local-global duality is one of the major
themes of Fourier theory.

Integration

Integration is the inverse operation to differentiation, and so should correspond to
division by i k in frequency space. As with Fourier series, this is not completely correct;
there is an extra constant involved, which contributes an additional delta function.

Proposition 8.10. If f(x) has Fourier transform f̂(k), then the Fourier transform

of its integral g(x) =

∫ x

−∞

f(y)dy is

ĝ(k) = − i

k
f̂(k) + π f̂(0) δ(k). (8.43)

Proof : First notice that

lim
x→−∞

g(x) = 0, lim
x→+∞

g(x) =

∫ ∞

−∞

f(x) dx =
√

2π f̂(0).

Therefore, subtracting a suitable multiple of the step function from the integral, the re-
sulting function

h(x) = g(x)−
√

2π f̂(0) σ(x)
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decays to 0 at both ±∞. Consulting our table of Fourier transforms, we find

ĥ(k) = ĝ(k) − π f̂(0) δ(k) +
i

k
f̂(0) . (8.44)

On the other hand,
h′(x) = f(x) −

√
2π f̂(0) δ(x).

Since h(x) → 0 as | x | → ∞, we can apply our differentiation rule (8.41), and conclude
that

i k ĥ(k) = f̂(k) − f̂(0). (8.45)

Combining (8.44) and (8.45) establishes the desired formula (8.43). Q.E.D.

Example 8.11. The Fourier transform of the inverse tangent function

f(x) = tan−1 x =

∫ x

0

dy

1 + y2
=

∫ x

−∞

dy

1 + y2
− π

2

can be computed by combining Proposition 8.10 with (8.28, 34):

f̂(k) =

(
− i

k

√
π

2

e− | k |

k
+

π3/2

√
2

δ(k)

)
− π3/2

√
2

δ(k) = − i

√
π

2

e− | k |

k
.

The singularity at k = 0 reflects the lack of decay of the inverse tangent as | x | → ∞.

8.3. Green’s Functions and Convolution.

The fact that the Fourier transform converts differentiation in the physical domain
into multiplication in the frequency domain is one of its most compelling features. A
particularly important consequence is that it effectively transforms differential equations
into algebraic equations, and thereby facilitates their solution by elementary algebra. One
begins by applying the Fourier transform to both sides of the differential equation under
consideration. Solving the resulting algebraic equation will produce a formula for the
Fourier transform of the desired solution, which can then be immediately reconstructed
via the inverse Fourier transform. In the following chapter, we will use these techniques to
solve partial differential equations.

Solution of Boundary Value Problems

The Fourier transform is particularly well adapted to boundary value problems on the
entire real line. In place of the boundary conditions used on finite intervals, we look for
solutions that decay to zero sufficiently rapidly as | x | → ∞ — in order that their Fourier
transform be well-defined (in the context of ordinary functions). In quantum mechanics,
[72, 78], these solutions are known as the bound states, and correspond to subatomic
particles that are trapped or localized in a region of space. For example, the electrons in
an atom are bound states localized by the electrostatic attraction of the nucleus.

As a specific example, consider the boundary value problem

− d2u

dx2
+ ω2 u = h(x), −∞ < x < ∞, (8.46)
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where ω > 0 is a positive constant. The boundary conditions require that the solution
decay: u(x) → 0, as | x | → ∞. We will solve this problem by applying the Fourier
transform to both sides of the differential equation. Taking Corollary 8.9 into account, the
result is the linear algebraic equation

k2 û(k) + ω2 û(k) = ĥ(k)

relating the Fourier transforms of u and h. Unlike the differential equation, the transformed
equation can be immediately solved for

û(k) =
ĥ(k)

k2 + ω2
. (8.47)

Therefore, we can reconstruct the solution by applying the inverse Fourier transform for-
mula (8.9):

u(x) =
1√
2π

∫ ∞

−∞

ĥ(k) e ikx

k2 + ω2
dk. (8.48)

For example, if the forcing function is an even exponential pulse,

h(x) = e− |x | with ĥ(k) =

√
2

π

1

k2 + 1
,

then (8.48) writes the solution as a Fourier integral:

u(x) =
1

π

∫ ∞

−∞

e i kx

(k2 + ω2)(k2 + 1)
dk =

1

π

∫ ∞

−∞

cos kx

(k2 + ω2)(k2 + 1)
dk ,

noting that the imaginary part of the complex integral vanishes because the integrand is
an odd function. (Indeed, if the forcing function is real, the solution must also be real.)
The Fourier integral can be explicitly evaluated by using partial fractions to rewrite

û(k) =

√
2

π

1

(k2 + ω2)(k2 + 1)
=

√
2

π

1

ω2 − 1

(
1

k2 + 1
− 1

k2 + ω2

)
, ω2 6= 1.

Thus, according to our Fourier Transform Table, the solution to this boundary value
problem is

u(x) =

e− | x | − 1
ω

e−ω |x |

ω2 − 1
when ω2 6= 1. (8.49)

The reader may wish to verify that this function is indeed a solution, meaning that it is
twice continuously differentiable (which is not so immediately apparent from the formula),
decays to 0 as | x | → ∞, and satisfies the differential equation everywhere. The “resonant”
case ω2 = 1 is left to Exercise .

Remark : The method of partial fractions that you learned in first year calculus is often
an effective tool for evaluating (inverse) Fourier transforms of such rational functions.
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A particularly important case is when the forcing function

h(x) = δξ(x) = δ(x − ξ)

represents a unit impulse concentrated at x = ξ. The resulting solution is the Green’s
function G(x; ξ) for the boundary value problem. According to (8.47), its Fourier transform
with respect to x is

Ĝ(k; ξ) =
1√
2π

e− i kξ

k2 + ω2
,

which is the product of an exponential factor e− i kξ, representing the Fourier transform of
δξ(x), times a multiple of the Fourier transform of the even exponential pulse e−ω |x |. We
apply the Shift Theorem 8.4, and conclude that the Green’s function for this boundary
value problem is an exponential pulse centered at ξ, namely

G(x; ξ) =
1

2 ω
e−ω |x−ξ | = g(x − ξ), where g(x) = G(x; 0) =

1

2 ω
e−ω | x |. (8.50)

Observe that, as with other self-adjoint boundary value problems, the Green’s function
is symmetric under interchange of x and ξ, so G(x; ξ) = G(ξ; x). As a function of x, it
satisfies the homogeneous differential equation −u′′ + ω2 u = 0, except at the point x = ξ
where its derivative has a jump discontinuity of unit magnitude. It also decays as | x | → ∞,
as required by the boundary conditions. The fact that G(x; ξ) = g(x − ξ) only depends
on the difference, x − ξ, is a consequence of the translation invariance of the boundary
value problem. The superposition principle based on the Green’s function tells us that the
solution to the inhomogeneous boundary value problem (8.46) under a general forcing can
be represented in the integral form

u(x) =

∫ ∞

−∞

G(x; ξ) h(ξ)dξ =

∫ ∞

−∞

g(x − ξ) h(ξ)dξ =
1

2ω

∫ ∞

−∞

e−ω|x−ξ | h(ξ) dξ. (8.51)

The reader may enjoy recovering the particular exponential solution (8.49) from this inte-
gral formula.

Convolution

In our solution to the boundary value problem (8.46), we ended up deriving a formula
for its Fourier transform (8.47) as the product of two known Fourier transforms. The final
Green’s function formula (8.51), obtained by applying the inverse Fourier transform, is
indicative of a general property, in that it is given by a convolution product .

Definition 8.12. The convolution of scalar functions f(x) and g(x) is the scalar
function h = f ∗ g defined by the formula

h(x) = f ∗ g(x) =

∫ ∞

−∞

f(x − ξ) g(ξ)dξ. (8.52)

We list the basic properties of the convolution product, leaving their verification as
exercises for the reader. All of these assume that the implied convolution integrals converge.
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(a) Symmetry : f ∗ g = g ∗ f ,

(b) Bilinearity :

{
f ∗ (ag + bh) = a(f ∗ g) + b(f ∗ h),

(af + bg) ∗ h = a(f ∗ h) + b(g ∗ h),
a, b ∈ C,

(c) Associativity : f ∗ (g ∗ h) = (f ∗ g) ∗ h,

(d) Zero function: f ∗ 0 = 0,

(e) Delta function: f ∗ δ = f .

One tricky feature is that the constant function 1 is not a unit for the convolution
product; indeed,

f ∗ 1 = 1 ∗ f =

∫ ∞

−∞

f(ξ)dξ

is a constant function, namely the total integral of f , and not the original function f(x). In
fact, according to the final property, the delta function plays the role of the “convolution
unit”:

f ∗ δ(x) =

∫ ∞

−∞

f(x − ξ) δ(ξ)dξ = f(x).

In particular, our solution (8.50) has the form of a convolution product between an
even exponential pulse g(x) = (2ω)−1 e−ω| x | and the forcing function:

u(x) = g ∗ h(x).

On the other hand, its Fourier transform (8.47) is, up to a factor, the ordinary multiplica-
tive product

û(k) =
√

2π ĝ(k) ĥ(k)

of the Fourier transforms of g and h. In fact, this is a general property of the Fourier trans-
form: convolution in the physical domain corresponds to multiplication in the frequency
domain, and conversely.

Theorem 8.13. The Fourier transform of the convolution h(x) = f ∗ g(x) of two

functions is a multiple of the product of their Fourier transforms:

ĥ(k) =
√

2π f̂(k) ĝ(k). (8.53)

Vice versa, the Fourier transform of their product h(x) = f(x) g(x) is, up to multiple, the

convolution of their Fourier transforms:

ĥ(k) =
1√
2π

f̂ ∗ ĝ(k) =
1√
2π

∫ ∞

−∞

f̂(k − κ) ĝ(κ) dκ. (8.54)

Proof : Combining the definition of the Fourier transform with the convolution for-
mula (8.52), we find

ĥ(k) =
1√
2π

∫ ∞

−∞

h(x) e− i kx dx =
1√
2π

∫ ∞

−∞

∫ ∞

−∞

f(x − ξ) g(ξ) e− i kx dx dξ.
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Applying the change of variables η = x − ξ in the inner integral produces

ĥ(k) =
1√
2π

∫ ∞

−∞

∫ ∞

−∞

f(η) g(ξ) e− i k(ξ+η) dξ dη

=
√

2π

(
1√
2π

∫ ∞

−∞

f(η) e− i kη dη

) (
1√
2π

∫ ∞

−∞

g(ξ) e− i kξ dξ

)
=

√
2π f̂(k) ĝ(k),

proving (8.53). The second formula can be proved in a similar fashion, or by simply noting
that it follows directly from the Symmetry Principle of Theorem 8.3. Q.E.D.

Example 8.14. We already know, (8.29), that the Fourier transform of

f(x) =
sin x

x

is the box function

f̂(k) =

√
π

2

[
σ(k + 1) − σ(k − 1)

]
=





√
π

2
, −1 < k < 1,

0, | k | > 1.
We also know that the Fourier transform of

g(x) =
1
x

is ĝ(k) = − i

√
π

2
sign k.

Therefore, the Fourier transform of their product

h(x) = f(x) g(x) =
sin x

x2

can be obtained by convolution:

ĥ(k) =
1√
2π

f̂ ∗ ĝ(k) =
1√
2π

∫ ∞

−∞

f̂(κ) ĝ(k − κ) dκ

= − i

√
π

8

∫ 1

−1

sign(k − κ) dκ =





i

√
π

2
k < −1,

− i

√
π

2
k, −1 < k < 1,

− i

√
π

2
k > 1.

A graph of ĥ(k) appears in Figure 8.3.

8.4. The Fourier Transform on Hilbert Space.

While we do not possess all the analytical tools to embark on a fully rigorous treatment
of the mathematical theory underlying the Fourier transform, it is worth outlining a few
of the more important features. We have already noted that the Fourier transform, when
defined, is a linear map, taking functions f(x) on physical space to functions f̂(k) on
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frequency space. A critical question is to precisely which function space should the theory
be applied. Not every function admits a Fourier transform in the classical sense† — the
Fourier integral (8.6) is required to converge, and this places restrictions on the function
and its asymptotics at large distances.

It turns out the proper setting for the rigorous theory is the Hilbert space of complex-
valued square-integrable functions — the same infinite-dimensional vector space that lies
at the heart of modern quantum mechanics. In Section 3.5, we already introduced the
Hilbert space L2[a, b ] on a finite interval; here we adapt Definition 3.34 to the entire real
line. Thus, the Hilbert space L2 = L2(R) is the infinite-dimensional vector space consisting
of all complex-valued functions f(x) which are defined for all x ∈ R and have finite L2

norm:

‖ f ‖2 =

∫ ∞

−∞

| f(x) |2 dx < ∞. (8.55)

For example, any piecewise continuous function that satisfies the decay criterion

| f(x) | ≤ M

| x |1/2+δ
, for all sufficiently large | x | ≫ 0, (8.56)

for some M > 0 and δ > 0, belongs to L2. However, as in Section 3.5, Hilbert space
contains many more functions, and the precise definitions and identification of its elements
is quite subtle. On the other hand, most non-decaying functions do not belong to L2,
including the constant function f(x) ≡ 1 as well as all oscillatory complex exponentials,
e i kx for k ∈ R.

The Hermitian inner product on the complex Hilbert space L2 is prescribed in the
usual manner,

〈 f ; g 〉 =

∫ ∞

−∞

f(x) g(x)dx, (8.57)

so that ‖ f ‖2 = 〈 f ; f 〉. The Cauchy–Schwarz inequality

| 〈 f ; g 〉 | ≤ ‖ f ‖ ‖ g ‖ (8.58)

† We leave aside the more advanced issues involving generalized functions.
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ensures that the inner product integral is finite whenever f, g ∈ L2. Observe that the
Fourier transform (8.6) can be regarded as a multiple of the inner product of the function
f(x) with the complex exponential functions:

f̂(k) =
1√
2π

∫ ∞

−∞

f(x) e− i kx dx =
1√
2π

〈 f(x) ; e i kx 〉. (8.59)

However, when interpreting this formula, one must bear in mind that the exponentials are
not themselves elements of L2.

Let us state the fundamental result governing the effect of the Fourier transform
on functions in Hilbert space. It can be regarded as a direct analog of the Pointwise
Convergence Theorem 3.8 for Fourier series.

Theorem 8.15. If f(x) ∈ L2 is square-integrable, then its Fourier transform f̂(k) ∈
L2 is a well-defined, square-integrable function of the frequency variable k. If f(x) is

continuously differentiable at a point x, then the inverse Fourier transform integral (8.9)
equals its value f(x). More generally, if the right and left hand limits f(x−), f(x+),
f ′(x−), f ′(x+) exist, then the inverse Fourier transform integral converges to the average

value 1
2

[
f(x−) + f(x+)

]
.

Thus, the Fourier transform f̂ = F [f ] defines a linear transformation from L2 func-
tions of x to L2 functions of k. In fact, the Fourier transform preserves inner products.
This important result is known as Parseval’s formula, whose Fourier series counterpart
appeared in (3.122).

Theorem 8.16. If f̂(k) = F [f(x) ] and ĝ(k) = F [g(x) ], then 〈 f ; g 〉 = 〈 f̂ ; ĝ 〉, i.e.,

∫ ∞

−∞

f(x) g(x)dx =

∫ ∞

−∞

f̂(k) ĝ(k) dk. (8.60)

Proof : Let us sketch a formal proof that serves to motivate why this result is valid.
We use the definition (8.6) of the Fourier transform to evaluate

∫ ∞

−∞

f̂(k) ĝ(k) dk =

∫ ∞

−∞

(
1√
2π

∫ ∞

−∞

f(x) e− i kx dx

) (
1√
2π

∫ ∞

−∞

g(y) e+ i ky dy

)
dk

=

∫ ∞

−∞

∫ ∞

−∞

f(x) g(y)

(
1

2π

∫ ∞

−∞

e− i k(x−y) dk

)
dx dy.

Now according to (8.38), the inner k integral can be replaced by the delta function δ(x−y),
and hence

∫ ∞

−∞

f̂(k) ĝ(k) dk =

∫ ∞

−∞

∫ ∞

−∞

f(x) g(y)δ(x − y) dx dy =

∫ ∞

−∞

f(x) g(x)dx.

This completes our “proof”; see [39, 74, 122] for a rigorous version. Q.E.D.
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In particular, orthogonal functions, satisfying 〈 f ; g 〉 = 0, will have orthogonal Fourier

transforms, 〈 f̂ ; ĝ 〉 = 0. Choosing f = g in Parseval’s formula (8.60) results in the
Plancherel formula

‖ f ‖2 = ‖ f̂ ‖2, or, explicitly,

∫ ∞

−∞

| f(x) |2 dx =

∫ ∞

−∞

| f̂(k) |2 dk. (8.61)

Thus, the Fourier transform F : L2 → L2 defines a norm-preserving or unitary linear trans-
formation on Hilbert space, mapping L2 functions of the physical variable x to L2 functions
of the frequency variable k.

Quantum Mechanics and the Uncertainty Principle

In its popularized form, the Heisenberg Uncertainty Principle is a by now familiar
philosophical concept. It was first formulated in the 1920’s by the German physicist
Werner Heisenberg, one of the founders of modern quantum mechanics, and states that,
in a physical system, certain quantities cannot be simultaneously measured with complete
accuracy. For instance, the more precisely one measures the position of a particle, the
less accuracy there will be in the measurement of its momentum; vice versa, the greater
the accuracy in the momentum, the less certainty in its position. A similar uncertainty
couples energy and time. Experimental verification of the uncertainty principle can be
found even in fairly simple situations. Consider a light beam passing through a small hole.
The position of the photons is constrained by the hole; the effect of their momenta is in
the pattern of light diffused on a screen placed beyond the hole. The smaller the hole, the
more constrained the position, and the wider the image on the screen, meaning the less
certainty there is in the observed momentum.

This is not the place to discuss the philosophical and experimental consequences of
Heisenberg’s principle. What we will show is that the Uncertainty Principle is, in fact, a
mathematical property of the Fourier transform! In quantum theory, each of the paired
quantities, e.g., position and momentum, are interrelated by the Fourier transform. Indeed,
Proposition 8.7 says that the Fourier transform of the differentiation operator representing
momentum is a multiplication operator representing position and vice versa. This Fourier
transform-based duality between position and momentum, that is, between multiplication
and differentiation, lies at the heart of the Uncertainty Principle.

In quantum mechanics, the wave functions of a quantum system are characterized as
the elements of unit norm, ‖ϕ ‖ = 1, belonging to the underlying state space, which, in
a one-dimensional model of a single particle, is the Hilbert space L2 = L2(R) consisting
of square integrable, complex valued functions of x. As we already noted in Section 3.5,
the squared modulus of the wave function, |ϕ(x) |2, represents the probability density
of the particle being found at position x. Consequently, the mean or expected value of
any function f(x) of the position variable is given by its integral against the system’s
probability density, and denoted by

〈 f(x) 〉 =

∫ ∞

−∞

f(x) |ϕ(x) |2 dx. (8.62)
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In particular,

〈 x 〉 =

∫ ∞

−∞

x |ϕ(x) |2 dx (8.63)

is the expected measured position of the particle, while ∆x, defined by

(∆x)2 = 〈
(
x − 〈 x 〉

)2 〉 = 〈 x2 〉 − 〈 x 〉2 (8.64)

is the variance, that is, the statistical deviation of the particle’s measured position from
the mean. We note that the next-to-last term equals

〈 x2 〉 =

∫ ∞

−∞

x2 |ϕ(x) |2 dx = ‖ x ϕ(x) ‖2. (8.65)

On the other hand, the momentum variable p is related to the Fourier transform
frequency via the de Broglie relation p = ~ k, where

~ =
h

2π
≈ 1.055 × 10−34 Joule seconds (8.66)

is Planck’s constant , whose value governs the quantization of physical quantities. There-
fore, the mean or expected value of any function of momentum g(p) is given by its integral
against the squared modulus of the Fourier transformed wave function:

〈 g(p) 〉 =

∫ ∞

−∞

g(~ k) | ϕ̂(k) |2 dk. (8.67)

In particular, the mean of the momentum measurements of the particle is

〈 p 〉 = ~

∫ ∞

−∞

k | ϕ̂(k) |2 dk = − i ~

∫ ∞

−∞

ϕ′(x) ϕ(x) dx = − i ~ 〈ϕ′ ; ϕ 〉, (8.68)

where we used Parseval’s formula (8.60) to convert to an integral over position, and (8.41)
to infer that k ϕ̂(k) is the Fourier transform of − i ϕ′(x). Similarly,

(∆p)2 = 〈
(
p − 〈 p 〉

)2 〉 = 〈 p2 〉 − 〈 p 〉2 (8.69)

is the squared variance of the momentum, where, by Plancherel’s formula (8.61) and (8.41),

〈 p2 〉 = ~
2

∫ ∞

−∞

k2 | ϕ̂(k) |2 dk = ~
2

∫ ∞

−∞

| i k ϕ̂(k) |2 dk

= ~
2

∫ ∞

−∞

|ϕ′(x) |2 dx = ~
2 ‖ϕ′(x) ‖2.

(8.70)

With this interpretation, the Uncertainty Principle for position and momentum mea-
surements can be stated.
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Theorem 8.17. If ϕ(x) is a wave function, so ‖ϕ ‖ = 1, then the observed variances

in position and momentum satisfy the inequality

∆x ∆p ≥ 1
2

~. (8.71)

Now, the smaller the variance of a quantity such as position or momentum, the more
accurate will be its measurement. Thus, the Heisenberg inequality (8.71) effectively quan-
tifies the statement that the more accurately we are able to measure the momentum p, the
less accurate will be any measurement of its position x, and vice versa. For more details,
along with physical and experimental consequences, you should consult an introductory
text on mathematical quantum mechanics, e.g., [72, 78].

Proof : For any value of the real parameter t,

0 ≤ ‖ t x ϕ(x) + ϕ′(x) ‖2

= t2 ‖ x ϕ(x) ‖2 + t
[
〈ϕ′(x) ; x ϕ(x) 〉 + 〈 x ϕ(x) ; ϕ′(x) 〉

]
+ ‖ϕ′(x) ‖2.

(8.72)

The middle term in the final expression can be evaluated as follows:

〈ϕ′(x) ; x ϕ(x) 〉 + 〈 x ϕ(x) ; ϕ′(x) 〉 =

∫ ∞

−∞

[
x ϕ′(x) ϕ(x) + x ϕ(x) ϕ′(x)

]
dx

=

∫ ∞

−∞

x
d

dx
|ϕ(x) |2 dx = −

∫ ∞

−∞

|ϕ(x) |2 dx = −1,

via an integration by parts, noting that the boundary terms vanish provided ϕ(x) satisfies
the L2 decay criterion (8.56). Thus, in view of (8.65) and (8.70), the inequality in (8.72)
reads

〈 x2 〉 t2 − t +
〈 p2 〉
~2

≥ 0 for all t ∈ R.

The minimum value of the left hand side occurs at t⋆ = 1/(2 〈 x2 〉), where its value is

〈 p2 〉
~2

− 1

4 〈 x2 〉 ≥ 0 which implies 〈 x2 〉 〈 p2 〉 ≥ 1
4

~
2.

To obtain the Uncertainty Relation (8.71), one performs the selfsame calculation, but with
x − 〈 x 〉 replacing x and p − 〈 p 〉 replacing p. The result is

〈
(x − 〈 x 〉)2

〉
t2 − t +

〈
(p − 〈 p 〉)2

〉

~2
= (∆x)2 t2 − t +

(∆p)2

~2
≥ 0. (8.73)

Substituting t = 1/(2(∆x)2) produces the Heisenberg inequality (8.71). Q.E.D.
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