Partial Differential Equations 3150 Midterm Exam 1 Exam Date: Wednesday, 27 February

Instructions: This exam is timed for 50 minutes. Up to 60 minutes is possible. No calculators, notes, tables or books. Problems use only chapters 1 and 2 of the textbook. No answer check is expected. Details count 3/4, answers count 1/4.

1. (Vibration of a Finite String)

The **normal modes** for the string equation $u_{tt} = c^2 u_{xx}$ are given by the functions

$$\sin\left(\frac{n\pi x}{L}\right)\cos\left(\frac{n\pi ct}{L}\right), \quad \sin\left(\frac{n\pi x}{L}\right)\sin\left(\frac{n\pi ct}{L}\right).$$

It is known that each normal mode is a solution of the string equation and that the problem below has solution u(x,t) equal to an infinite series of constants times normal modes.

Solve the finite string vibration problem on $0 \le x \le 2, t > 0$,

$$u_{tt} = c^2 u_{xx}, u(0,t) = 0, u(2,t) = 0, u(x,0) = 0, u_t(x,0) = -11\sin(5\pi x).$$

Answer:

Because the wave initial shape is zero, then the only normal modes are sine times sine. The initial wave velocity is already a Fourier series, using orthogonal set $\{\sin(n\pi x/2)\}_{n=1}^{\infty}$. The 1-term Fourier series $-11\sin(5\pi x)$ can be modified into a solution by inserting the missing sine factor present in the corresponding normal mode. Then $u(x,t) = -11\sin(5\pi x)\sin(5\pi ct)/(5\pi)$. We check it is a solution.

2. (Periodic Functions)

(a) [30%] Find the period of $f(x) = \sin(x)\cos(2x) + \sin(2x)\cos(x)$.

(b) [40%] Let p = 5. If f(x) is the odd 2*p*-periodic extension to $(-\infty, \infty)$ of the function $f_0(x) = 100x e^{10x}$ on $0 \le x \le p$, then find f(11.3). The answer is not to be simplified or evaluated to a decimal.

(c) [30%] Mark the expressions which are periodic with letter \mathbf{P} , those odd with \mathbf{O} and those even with \mathbf{E} .

$$\sin(\cos(2x))$$
 $\ln|2 + \sin(x)|$ $\sin(2x)\cos(x)$ $\frac{1 + \sin(x)}{2 + \cos(x)}$

Answer:

(a) $f(x) = \sin(x + 2x)$ by a trig identity. Then period $= 2\pi/3$.

(b) $f(11.3) = f(11.3 - p - p) = f(1.3) = f_0(1.3) = 130e^{13}$.

(c) All are periodic of period 2π , satisfying $f(x + 2\pi) = f(x)$. The first is even and the third is odd.

3. (Fourier Series)

Let $f_0(x) = x$ on the interval 0 < x < 2, $f_0(x) = -x$ on -2 < x < 0, $f_0(x) = 0$ for x = 0, $f_0(x) = 2$ at $x = \pm 2$. Let f(x) be the periodic extension of f_0 to the whole real line, of period 4.

(a) [80%] Compute the Fourier coefficients for the terms $\sin(67\pi x)$ and $\cos(2\pi x)$. Leave tedious integrations in integral form, but evaluate the easy ones like the integral of the square of sine or cosine.

(b) [20%] Which values of x in |x| < 12 might exhibit Gibb's phenomenon?

Answer:

(a) Because $f_0(x)$ is even, then f(x) is even. Then the coefficient of $\sin(67\pi x)$ is zero, without computation, because all sine terms in the Fourier series of f have zero coefficient. The coefficient of $\cos(n\pi x/2)$ for n > 0 is given by the formula

$$a_n = \frac{1}{2} \int_{-2}^{2} f_0(x) \cos(n\pi x/2) dx = \int_{0}^{2} x \cos(n\pi x/2) dx$$

For $\cos(2\pi x)$, we select $n\pi x/2 = 2\pi x$, or index n = 4.

(b) There are no jump discontinuities, f is continous, so no Gibbs overshoot.

4. (Cosine and Sine Series)

Find the first nonzero term in the sine series expansion of f(x), formed as the odd 2π periodic extension of the function $\sin(x)\cos(x)$ on $0 < x < \pi$. Leave the Fourier coefficient
in integral form, unevaluated, unless you can compute the value in a minute or two.

Answer:

Because $\sin(x)\cos(x) = (1/2)\sin(2x)$ is odd and 2π -periodic, this is the Fourier series of f. This term is for coefficient b_2 , so $b_2 = 1/2$ is the first nonzero Fourier coefficient. The first nonzero term is $(1/2)\sin(2x)$.

5. (Convergence of Fourier Series)

(a) [30%] Dirichlet's kernel formula can be used to evaluate the sum $\cos(2x) + \cos(4x) + \cos(6x) + \cos(8x)$. Report its value according to that formula.

(b) [40%] The Fourier Convergence Theorem for piecewise smooth functions applies to continuously differentiable functions of period 2p. State the theorem for this special case, by translating the results when f is smooth and the interval $-\pi \leq x \leq \pi$ is replaced by $-p \leq x \leq p$.

(c) [30%] Give an example of a function f(x) periodic of period 2 that has a Gibb's overshoot at the integers $x = 0, \pm 2, \pm 4, \ldots$, (all $\pm 2n$) and nowhere else.

Answer:

(a) $\frac{1}{2} + \cos(x) + \dots + \cos(nx) = \frac{\sin(nx + x/2)}{2\sin(x/2)}$ is used with x replaced by 2x and n = 4 to obtain the answer $0.5\sin(8x + x)/\sin(x) - 0.5$.

(b) Let f be a p-periodic smooth function on $(-\infty,\infty)$. Then for all values of x,

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(n\pi x/p) + b_n \sin(n\pi x/p))$$

where the Fourier coefficients a_0, a_n, b_n are given by the Euler formulas:

$$a_{0} = \frac{1}{2p} \int_{-p}^{p} f(x) dx, \quad a_{n} = \frac{1}{p} \int_{-p}^{p} f(x) \cos(n\pi x/p) dx,$$
$$b_{n} = \frac{1}{p} \int_{-p}^{p} f(x) \sin(n\pi x/p) dx.$$

(c) Any 2-periodic continuous function f will work, if we alter the values of f at the desired points to produce a jump discontinuity. For example, define $f(x) = \sin(\pi x)$ except at the points $\pm 2n$, where f(x) = 2 (f(2n) = 2 for $n = 0, \pm 1, \pm 2, \pm 3, \ldots$).