
Orthogonal Bases and the -So

In Section 4.8 we discussed the problem of finding the orthogonal projection p
the vector b into the suhspace V of R. If the vectors v1, v2, . . . , v,, form a ho
for V, and the in x n matrix A has these basis vectors as its column vectors. ilt
the orthogonal projection p is given by

p = Ax

where x is the (unique) solution of the normal system

ATAx = A7b.

The formula for p takes an especially simple and attractive Form when the ba
vectors v1, . .. , v are mutually orthogonal.

DEFINITION Orthogonal Basis

An orthogonal basis for the suhspacc V of R” is a basis consisting of vectors ,
,v,, that are mutually orthogonal, so that v v = 0 if I j. If in additii

these basis vectors are unit vectors, so that v1 . = I for i = 1. 2 n, thct
the orthogonal basis is called an orthonormal basis.

Example 1 The vectors

= (1, 1,0), v2 = (1, —1,2), v3 = (—1,1,1)

form an orthogonal basis for R3. We can “normalize” this orthogonal basis 1w ‘

viding each basis vector by its length: If

w1=—- (1=1,2,3),
lvii



4.9 Orthogonal Bases and the Gram-Schmidt Algorithm 295

then the vectors

/1 1 ‘\ /1 1 2” / I I 1w1 0) W2 = —— _z) W3

form an orthonormal basis for R3.
Now suppose that the column vectors v , v2. ..., v, of the m x ii matrix A

form an orthogonal basis for the suhspacc V of R’. Then

V}.VI 0 0
o v2.v2 ... 0

A’Az[v1.vi=
: (3)

o 0 ... v11 .

Thus the coelficient matrix in the normal system in (2) is a diagonal matrix, so the
normal equations simplify to

(v1 v )x = . b

(V2 v2)x, = V2 •b

(4)
(v,, v, )x,, = v, b

Consequently the solution x = (x1x2,...,x11)of the normal system ATAx = A7b
is given by

v.b
xi = (I = 1,2 ii). (5)

Vi Vi

When we substitute this solution in Equation (1).

p = Ax x1v1 + x2v2 + + x,,v,,,

we get the following result.

THEOREM 1 Projection into an Orthogonal Basis
Suppose that the vectors v1, v2 v,, form an orthogonal basis for the sub—
space V of R11. Then the orthogonal projection p of the vector b into V is
given by

v1•b v2•b
= V1 + V2 + + v,,. (6)

V1 V2 V2 V,,

Note that if the basis v1, v,, is orthonormal rather than merely orthog
onal, then the formula for the orthogonal projection p simplifies still further;

p= (v1 •b)v1+(v2b)v2+-i-(v,, b)v,,.
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If ii = I and v = v1. then the formula in (6) reduces to the formula

vb
p=—v (7)

v.v

for the component of b parallel to v. The component of b orthogonal to v is then

(=b—p=b————v. (8)

Theorem I may also he stated without symbolism: The orthogonal prjeCtiO17 p qf
the iector b tub the subspace V is the sum oft/ic components of I) parallel to the
orthogonal basis vectors v , V2, .

, V,1 for V.

Example 2 The vectors

Vi = (1, 1,0, I), v2 = (I, —2,3, 1), v3 = (—4,3,3, 1)

are mutually orthogonal, and hence form an orthogonal basis for a 3—dimensional
suhspacc V of R4. To find the orthogonal projection p of b = (0, 7, 0, 7) into V we
use the formula in (6) and get

v1b v,•b
‘11+

____

-

V2’V, V3V3

14 —7 28
= 1(1. 1,0, 1) + ——(1, —2,3, 1) + (—4, 3,3, 1);

thereftwe

p= (1,8,1,5).

The component of the vector b orthogonal to the suhspacc V is

q = b
—

p = (0,7,0.7)— (1,8.1,5) = (—1,—I, —1,2).

Example 2 illustrates how useful orthogonal bases can he for computational
purposes. There is a standard process that is used to transform a given linear/v mdc

pendent set of vectors Vj , V,, in W” into a mutually orthogonal set of vectors
u1, u,, that span the same subspace of R”. We begin with

U1V1. (9)

To get the second vector 112, we subtract from V2 its component parallel to ui. Thai
is,

UI.’12
U2 = V2 — U1 (lOi

Ui’UI

is the component of’ ‘12 orthogonal to u1. At this point it is clear that u1 and u2 form
an orthogonal basis for the 2-dimensional suhspace V2 spanned by Vj and ‘12. To gel
the third vector u3, we subtract from ‘13 its components parallel to ii and 112. Thus

UI ‘ V• U2 . V1
V3 — U1 —

U2 (II)
U1 U U2 U,

is the component of ‘13 orthogonal to the suhspace V2 spanned by Ui and u2. Hay
ing defined ui, . . . , U in this manner, we take Uk+l to be the component of Vk1 I

orthogonal to the suhspace V, spanned by u1 , . . . , ti,. This process I’or construe>
ing the mutually orthogonal vectors u1,u2,..., u,, is summarized in the followinf2
algorithm.
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ALGORITHM Gram—Schmidt Orthogonalization
To replace the linearly independent vectors VI, V2,..., v one by one with mutu
ally orthogonal vectors u1,u2,..., u that span the same subspace of R, begin
with

III = v1. (12)

Fork = 1, 2,.... n — I in turn, take

Uj Vk+I
Uk+I Vj+I — U1

Ui •Ui

U2 Vk+l Uk .

— U2—’— (13)
U2U2

The formula in (13) means that we get Uk+ I from Vk. by subtracting from
Vk.II its components parallel to the mutually orthogonal vectors u1, u pre
viously constructed, and hence Uk+I is orthogonal to each of ihe first k vectors. If
we assume inductively that the vectors u1, U2 Uk span the same subspace as thc
original k vectors v1, Vk, then it also lollows from (13) that the vectors u1,
u2 Uk,I span the same suhspace as the vectors v1, v2 Vk If we begin
with a basis v , V for the suhspacc V of R”. the final result of carrying out
the Gram—Schmidt algorithm is therefore an orthogonal basis u1, u,, for V.

THEOREM 2 Existence of Orthogonal Bases

Every nonzero subspacc of R” has an orthogonal basis.

As a linal step, one can convert the orthogonal basis to an orthonormal basis
by dividing each of the orthogonal basis vectors u1 112 u,1 by its length.

In numerical applications of the Gram—Schmidt algorithm, the calculations
involved often can be simplified by multiplying each vector k (as it is found) by
an appropriate scalar kictor to eliminate unwanted fractions. We do this in the two
examples that follow.

Example 3 To apply the Gram-Schmidt algorithm beginning with the basis

Vj = (3,1,1), v2 (1,3,1), V = (1, 1,3)

for R3, we first take

= v1 = (3. 1, 1).

Then

U1 . V 7
112 = — u1 = (1,3, 1)— —(3, 1, 1)

UI.uI 11

10264 2

= (_, , = (—5, 13, 2).
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We delete the scalar factor . (or multiply by ) and instead use u2 = (—5, 13. 2
Next,

UjV3 U2’.’3
= — Uj U2

Uj Lii U2 U2

7 14
(1, 1,3)

—
1,1) — i-——

13,2)

/ 55 55 220’\ 5

= \99 --) = —(1, 1, —4).

We delete the scalar factor — and thereby choose U3 = (I , 1, —4). Thus our lifl3i
result is the orthogonal basis

U1 = (3,1,1), u2 = (—5,13,2), u = (1,1, —4)]

for R3.

Example 4 Find an orthogonal basis for the suhspace V of R4 that has basis vectors

v1 = (2,1.2,1), v2 = (2,2, 1,0), v3 = (1.2,1,0).

Solution We begin with

u1 =v1 =(2, 1,2, 1).

Then

ii’.’, 8
U2 =v2 — = (2,2,1,0) ——(2,1,2,1)

I_u.n1 10

/2 6 3 4’\ I
=1 I=—(26 —3—4).

‘\5 5 5 5) 5

We delete the scalar factor and instead take u2 = (2, 6, —3, —4). Next,

UIV3 U2V3
U3=v3— LIj — U2

U1UI U2L12

= (1,2,1,0)— (2, 1,2,1)— (2,6.—3.—4)

/ 70 50 40 10\ I
= I ——. . I = —(—7.5.4 1).

\ 130 130 130 130) 13

We delete the scalar factor and instead take u3 = (—7, 5, 4, 1). Thus our orthor
onal basis for the subspacc V consists of the vectors

u1 = (2,1,2,1), 112 = (2,6, —3, —4), u3 = (—7,5,4,1).

I


