4.9 Orthogonal Bases and the Gram-Schmidt Algorithm

In Section 4.8 we discussed the problem of finding the orthogonal projection p the vector **b** into the subspace V of \mathbf{R}^m . If the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ form a basis for V, and the $m \times n$ matrix A has these basis vectors as its column vectors, the the orthogonal projection **p** is given by

$$\mathbf{p} = A\mathbf{x} \tag{1}$$

where \mathbf{x} is the (unique) solution of the normal system

$$A^T A \mathbf{x} = A^T \mathbf{b}.$$

The formula for **p** takes an especially simple and attractive form when the basis vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are mutually orthogonal.

DEFINITION Orthogonal Basis

An orthogonal basis for the subspace V of \mathbf{R}^m is a basis consisting of vectors $\mathbf{v}_{\rm II}$ $\mathbf{v}_2, \ldots, \mathbf{v}_n$ that are mutually orthogonal, so that $\mathbf{v}_i \cdot \mathbf{v}_i = 0$ if $i \neq j$. If in addition these basis vectors are unit vectors, so that $\mathbf{v}_i \cdot \mathbf{v}_i = 1$ for i = 1, 2, ..., n, then the orthogonal basis is called an orthonormal basis.

Example 1 The vectors

$$\mathbf{v}_1 = (1, 1, 0), \quad \mathbf{v}_2 = (1, -1, 2), \quad \mathbf{v}_3 = (-1, 1, 1)$$

form an orthogonal basis for \mathbb{R}^3 . We can "normalize" this orthogonal basis by $\frac{1}{2}$ viding each basis vector by its length: If

$$\mathbf{w}_i = \frac{\mathbf{v}_i}{|\mathbf{v}_i|} \quad (i = 1, 2, 3),$$

4.9 Orthogonal Bases and the Gram-Schmidt Algorithm 295

then the vectors

$$\mathbf{w}_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \mathbf{w}_2 = \left(\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right), \mathbf{w}_3 = \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

form an orthonormal basis for \mathbb{R}^3 .

Now suppose that the column vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ of the $m \times n$ matrix A form an *orthogonal* basis for the subspace V of \mathbb{R}^m . Then

$$A^{T}A = [\mathbf{v}_{i} \cdot \mathbf{v}_{j}] = \begin{bmatrix} \mathbf{v}_{1} \cdot \mathbf{v}_{1} & 0 & \dots & 0 \\ 0 & \mathbf{v}_{2} \cdot \mathbf{v}_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mathbf{v}_{n} \cdot \mathbf{v}_{n} \end{bmatrix}.$$
 (3)

Thus the coefficient matrix in the normal system in (2) is a diagonal matrix, so the normal equations simplify to

$$(\mathbf{v}_{1} \cdot \mathbf{v}_{1}) x_{1} = \mathbf{v}_{1} \cdot \mathbf{b}$$

$$(\mathbf{v}_{2} \cdot \mathbf{v}_{2}) x_{2} = \mathbf{v}_{2} \cdot \mathbf{b}$$

$$\vdots$$

$$(\mathbf{v}_{n} \cdot \mathbf{v}_{n}) \mathbf{x}_{n} = \mathbf{v}_{n} \cdot \mathbf{b}$$
(4)

Consequently the solution $\mathbf{x} = (x_1 x_2, \dots, x_n)$ of the normal system $A^T A \mathbf{x} = A^T \mathbf{b}$ is given by

$$x_i = \frac{\mathbf{v}_i \cdot \mathbf{b}}{\mathbf{v}_i \cdot \mathbf{v}_i} \quad (i = 1, 2, \dots, n).$$
(5)

When we substitute this solution in Equation (1),

$$\mathbf{p} = A\mathbf{x} = x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_n\mathbf{v}_n,$$

we get the following result.

THEOREM 1 Projection into an Orthogonal Basis

Suppose that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ form an orthogonal basis for the subspace V of \mathbf{R}^n . Then the orthogonal projection \mathbf{p} of the vector \mathbf{b} into V is given by

$$\mathbf{p} = \frac{\mathbf{v}_1 \cdot \mathbf{b}}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{v}_2 \cdot \mathbf{b}}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 + \dots + \frac{\mathbf{v}_n \cdot \mathbf{b}}{\mathbf{v}_n \cdot \mathbf{v}_n} \mathbf{v}_n.$$
(6)

Note that if the basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is orthonormal rather than merely orthogonal, then the formula for the orthogonal projection **p** simplifies still further:

$$\mathbf{p} = (\mathbf{v}_1 \cdot \mathbf{b})\mathbf{v}_1 + (\mathbf{v}_2 \cdot \mathbf{b})\mathbf{v}_2 + \dots + (\mathbf{v}_n \cdot \mathbf{b})\mathbf{v}_n.$$

If n = 1 and $\mathbf{v} = \mathbf{v}_1$, then the formula in (6) reduces to the formula

$$\mathbf{p} = \frac{\mathbf{v} \cdot \mathbf{b}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} \tag{7}$$

for the component of b parallel to v. The component of b orthogonal to v is then

$$\mathbf{q} = \mathbf{b} - \mathbf{p} = \mathbf{b} - \frac{\mathbf{v} \cdot \mathbf{b}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}.$$
 (8)

Theorem 1 may also be stated without symbolism: The orthogonal projection \mathbf{p} of the vector \mathbf{b} into the subspace V is the sum of the components of \mathbf{b} parallel to the orthogonal basis vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ for V.

Example 2 The vectors

$$\mathbf{v}_1 = (1, 1, 0, 1), \quad \mathbf{v}_2 = (1, -2, 3, 1), \quad \mathbf{v}_3 = (-4, 3, 3, 1)$$

are mutually orthogonal, and hence form an orthogonal basis for a 3-dimensional subspace V of \mathbf{R}^4 . To find the orthogonal projection \mathbf{p} of $\mathbf{b} = (0, 7, 0, 7)$ into V we use the formula in (6) and get

$$\mathbf{p} = \frac{\mathbf{v}_1 \cdot \mathbf{b}}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{v}_2 \cdot \mathbf{b}}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 + \frac{\mathbf{v}_3 \cdot \mathbf{b}}{\mathbf{v}_3 \cdot \mathbf{v}_3} \mathbf{v}_3$$

= $\frac{14}{3}(1, 1, 0, 1) + \frac{-7}{15}(1, -2, 3, 1) + \frac{28}{35}(-4, 3, 3, 1);$

therefore

$$\mathbf{p} = (1, 8, 1, 5).$$

The component of the vector **b** orthogonal to the subspace V is

$$\mathbf{q} = \mathbf{b} - \mathbf{p} = (0, 7, 0, 7) - (1, 8, 1, 5) = (-1, -1, -1, 2).$$

Example 2 illustrates how useful orthogonal bases can be for computational purposes. There is a standard process that is used to transform a given *linearly independent* set of vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ in \mathbf{R}^m into a *mutually orthogonal* set of vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ that span the same subspace of \mathbf{R}^m . We begin with

$$\mathbf{u}_1 = \mathbf{v}_1. \tag{9}$$

To get the second vector \mathbf{u}_2 , we subtract from \mathbf{v}_2 its component parallel to \mathbf{u}_1 . That is,

$$\mathbf{u}_2 = \mathbf{v}_2 - \frac{\mathbf{u}_1 \cdot \mathbf{v}_2}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 \tag{1(1)}$$

is the component of \mathbf{v}_2 orthogonal to \mathbf{u}_1 . At this point it is clear that \mathbf{u}_1 and \mathbf{u}_2 form an orthogonal basis for the 2-dimensional subspace V_2 spanned by \mathbf{v}_1 and \mathbf{v}_2 . To get the third vector \mathbf{u}_3 , we subtract from \mathbf{v}_3 its components parallel to \mathbf{u}_1 and \mathbf{u}_2 . Thus

$$\mathbf{u}_3 = \mathbf{v}_3 - \frac{\mathbf{u}_1 \cdot \mathbf{v}_3}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 - \frac{\mathbf{u}_2 \cdot \mathbf{v}_3}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2$$
(11)

is the component of \mathbf{v}_3 orthogonal to the subspace V_2 spanned by \mathbf{u}_1 and \mathbf{u}_2 . Having defined $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$ in this manner, we take \mathbf{u}_{k+1} to be the component of \mathbf{v}_{k+1} orthogonal to the subspace V_k spanned by $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$. This process for constructing the mutually orthogonal vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ is summarized in the following algorithm.

4.9 Orthogonal Bases and the Gram-Schmidt Algorithm 297

ALGORITHM Gram–Schmidt Orthogonalization

To replace the linearly independent vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ one by one with mutually orthogonal vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ that span the same subspace of \mathbf{R}^m , begin with

$$\mathbf{u}_1 = \mathbf{v}_1. \tag{12}$$

For k = 1, 2, ..., n - 1 in turn, take

$$\mathbf{u}_{k+1} = \mathbf{v}_{k+1} - \frac{\mathbf{u}_1 \cdot \mathbf{v}_{k+1}}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 - \frac{\mathbf{u}_2 \cdot \mathbf{v}_{k+1}}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 - \dots - \frac{\mathbf{u}_k \cdot \mathbf{v}_{k+1}}{\mathbf{u}_k \cdot \mathbf{u}_k} \mathbf{u}_k.$$
(13)

The formula in (13) means that we get \mathbf{u}_{k+1} from \mathbf{v}_{k+1} by subtracting from \mathbf{v}_{k+1} its components parallel to the mutually orthogonal vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$ previously constructed, and hence \mathbf{u}_{k+1} is orthogonal to each of the first k vectors. If we assume inductively that the vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$ span the same subspace as the original k vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$, then it also follows from (13) that the vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_{k+1}$. If we begin with a basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ for the subspace V of \mathbf{R}^n , the final result of carrying out the Gram-Schmidt algorithm is therefore an *orthogonal* basis $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ for V.

THEOREM 2 Existence of Orthogonal Bases

Every nonzero subspace of \mathbf{R}^m has an orthogonal basis.

As a final step, one can convert the orthogonal basis to an *orthonormal* basis by dividing each of the orthogonal basis vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ by its length.

In numerical applications of the Gram-Schmidt algorithm, the calculations involved often can be simplified by multiplying each vector \mathbf{u}_k (as it is found) by an appropriate scalar factor to eliminate unwanted fractions. We do this in the two examples that follow.

Example 3 To apply the Gram-Schmidt algorithm beginning with the basis

$$\mathbf{v}_1 = (3, 1, 1), \quad \mathbf{v}_2 = (1, 3, 1), \quad \mathbf{v}_3 = (1, 1, 3)$$

for \mathbb{R}^3 , we first take

$$\mathbf{u}_1 = \mathbf{v}_1 = (3, 1, 1).$$

Then

$$\mathbf{u}_{2} = \mathbf{v}_{2} - \frac{\mathbf{u}_{1} \cdot \mathbf{v}_{2}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1} = (1, 3, 1) - \frac{7}{11}(3, 1, 1)$$
$$= \left(-\frac{10}{11}, \frac{26}{11}, \frac{4}{11}\right) = \frac{2}{11}(-5, 13, 2).$$

298 Chapter 4 Vector Spaces

We delete the scalar factor $\frac{2}{11}$ (or multiply by $\frac{11}{2}$) and instead use $\mathbf{u}_2 = (-5, 13, 2)$. Next,

$$\mathbf{u}_{3} = \mathbf{v}_{3} - \frac{\mathbf{u}_{1} \cdot \mathbf{v}_{3}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1} - \frac{\mathbf{u}_{2} \cdot \mathbf{v}_{3}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}$$

= (1, 1, 3) - $\frac{7}{11}$ (3, 1, 1) - $\frac{14}{198}$ (-5, 13, 2)
= $\left(-\frac{55}{99}, -\frac{55}{99}, \frac{220}{99}\right) = -\frac{5}{9}$ (1, 1, -4).

We delete the scalar factor $-\frac{5}{9}$ and thereby choose $\mathbf{u}_3 = (1, 1, -4)$. Thus our final result is the orthogonal basis

$$\mathbf{u}_1 = (3, 1, 1), \quad \mathbf{u}_2 = (-5, 13, 2), \quad \mathbf{u}_3 = (1, 1, -4)$$

for \mathbf{R}^3 .

Example 4 Find an orthogonal basis for the subspace V of \mathbf{R}^4 that has basis vectors

 $\mathbf{v}_1 = (2, 1, 2, 1), \quad \mathbf{v}_2 = (2, 2, 1, 0), \quad \mathbf{v}_3 = (1, 2, 1, 0).$

Solution We begin with

 $\mathbf{u}_1 = \mathbf{v}_1 = (2, 1, 2, 1).$

Then

$$\mathbf{u}_{2} = \mathbf{v}_{2} - \frac{\mathbf{u}_{1} \cdot \mathbf{v}_{2}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1} = (2, 2, 1, 0) - \frac{8}{10}(2, 1, 2, 1)$$
$$= \left(\frac{2}{5}, \frac{6}{5}, -\frac{3}{5}, -\frac{4}{5}\right) = \frac{1}{5}(2, 6, -3, -4).$$

We delete the scalar factor $\frac{1}{5}$ and instead take $\mathbf{u}_2 = (2, 6, -3, -4)$. Next,

$$\mathbf{u}_{3} = \mathbf{v}_{3} - \frac{\mathbf{u}_{1} \cdot \mathbf{v}_{3}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1} - \frac{\mathbf{u}_{2} \cdot \mathbf{v}_{3}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}$$

= (1, 2, 1, 0) - $\frac{6}{10}$ (2, 1, 2, 1) - $\frac{11}{65}$ (2, 6, -3, -4)
= $\left(-\frac{70}{130}, \frac{50}{130}, \frac{40}{130}, \frac{10}{130}\right) = \frac{1}{13}$ (-7, 5, 4, 1).

We delete the scalar factor $\frac{1}{13}$ and instead take $\mathbf{u}_3 = (-7, 5, 4, 1)$. Thus our orthogonal basis for the subspace V consists of the vectors

$$\mathbf{u}_1 = (2, 1, 2, 1), \quad \mathbf{u}_2 = (2, 6, -3, -4), \quad \mathbf{u}_3 = (-7, 5, 4, 1).$$