K] Orthogonal Bases and the Gram-Schmidt Algorithm

In Section 4.8 we discussed the problem of finding the orthogonal projection p !
the vector b into the subspace V of R™. If the vectors vy, va, ..., v, form a bk
for V, and the m x n matrix A has thesc basis vectors as its column vectors, Hi |
the orthogonal projection p is given by :

p = Ax (N

1

|

where x is the (unique) solution of the normal system “
AT Ax = AT, (;

|

The formula for p takes an especially simple and attractive form when the huui |
vectors vy, v, ... , v, are mutually orthogonal. '

] DEFINITION Orthogonal Basis

| An orthogonal basis for the subspace V of R™ is a basis consisting of vectors v, |
| va,..., v, thatare mutually orthogonal, so that v;- v; = 0il i # j. Ifin addition |
i these basis vectors are unit vectors, so that v; - v; = 1 fori = 1,2,...,n, then |

the orthogonal basis is called an orthonormal basis.

Example T The vectors

e e e e e

vi=(1,1,0), va=(1,-1,2), vi=(=1,1,1)

form an orthogonal basis for R*. We can “normalizc” this orthogonal basis by ¢
viding each basis vector by its length: If

v.
W = — (i=1,23),
" il
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then the vectors

1 1 1 1 2 1 I 1
W) = —9_—10 , Wy = Ty T U=, = sw. =l—"7=—F=,—=
' (ﬁﬁ) ’ (\/6 JEJB) ’ (ﬁ 3ﬁ>
form an orthonormal basis for R3. a

Now suppose that the column vectors Vi, V2, ..., v, of the m x i matrix A
form an orthogonal basis for the subspace V of R, Then

\TRAZ) 0 0

T 0 V2:Vy ... 0
ATA =V ovjl= : - : . ©)

0 0 R A

Thus the coefficient matrix in the normal system in (2) is a diagonal matrix, so the
normal equations simplify to

(Vi-vy)yy=v;-b
(V2:v))xa=vy-b

(4)
(Vo V)X, =V, +b

Conscquently the solution x = (x;x,, ... , x,) of the normal system ATAx = ATb
is given by

(i=12...,n). (%)
VitV

When we substitute this solution in Equation (1),

P=Ax=x1vi+x3vo + - + XV,

we get the following result.

[ THEOREM 1 Projection into an Orthogonal Basis

Supposc that the vectors vy, vy, ... ,v, form an orthogonal basis for the sub-
- space V of R". Then the orthogonal projection p of the vector b into V is
| given by
!
vi-b va+b ’ +v,,-b

p= v+ Vo+ -
ViV V2 V3 Vi ' ¥y

\ (6)

Note that if the basis vy, v4, ... , v, is orthonormal rather than merely orthog-
onal, then the formula for the orthogonal projection p simplifies still further:

P=(i-b)vi+ (va-b)vy + -+ (v, - b)v,.
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If n = | and v = vy, then the formula in (6) reduces to the formula
p=—v (7)

for the component of b parallel to v. The component of b orthegonal to v is then

v-b
q=b—p=b—;—_—vv. (8)

Theorem 1 may also be stated without symbolism: The orthogonal projection p of

the vector b into the subspace V is the sum of the components of b parallel to the
orthogonal basis vectors vy, va, ..., v, for V.

The vectors
V|=(|,|,(),|), v2=(la_2131 I)5 V'_I:(_'4,3,3, l)

arc mutually orthogonal, and hence form an orthogonal basis for a 3-dimensional
subspace V of R*. To find the orthogonal projection p of b = (0,7, 0,7) into V we
use the formula in (6) and get

vy b \o b Vi - b

p= V1+ V;z+ Va
Vv V2:V2 Vi V3

= l4(1 1,0 1)+_7(| 2,3 1)+28( 4.3.3,1):
- % » s 3 I5 1] y ~7 35 9 ofe o7y .

therefore
p=(1,8,1,5).
The component of the vector b orthogonal o the subspace V is
q=b—-p=(0,7,0,7) - (1,8,1,5) = (=1, —1,—-1,2).

Example 2 illustrates how uscful orthogonal bases can be for computation:l
purposes. There is a standard process that is used to translorm a given linearly inde-
pendent sct of vectors vy, va, ..., v, in R" into a mutually orthogonal sct of vectors
uy, us, ..., u, that span the same subspacc of R”. We begin with

uy = Vvj. (9)
To get the sceond vecetor up, we subtract [rom v; its component parallel to u;. That
is,

ALY (10)

U; =vy; —
Uy - uy
is the component of v, orthogonal (o uy. Al this point it is clcar that uy and u; form
an orthogonal basis for the 2-dimensional subspace V; spanned by vy and v,. To gel
the third vector us, we subtract from vy its components parallel to u; and uy. Thus
u; - V3 uz - V3

uz = V3 — u; — [1 ) (]|)
u; -y us - u

is the component of vy orthogonal Lo the subspace Vs spanned by u; and u,. Hav-
ing defined uy, u;. .. , u; in this manner, we take ug..; to be the component of vy
orthogonal to the subspace V; spanned by uy, u, ... , uy. This process for construct-
ing the mutually orthogonal vectors uy, uy, ... ,u, is summarized in the following
algorithm.,

PR s S = e

- L Frme A

{amtile

= e

:I".
4
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ALGORITHM Gram-Schmidt Orthogonalization
To replace the linearly independent vectors vy, v, ... , v, one by one with mutu-
ally orthogonal vectors uy, uy, .. . , u, that span the same subspace of R™, begin
with

u) =Vvj. (12)

Fork =1,2,... .,n - 1inturn, take

Uy - Vi
Wy = Vg — ———Uy
u) - uy
Up - Vi W Vi
- —uy— - —— . (13)
us - Uy Uy - Uy

The formula in (13) means that we get ugyy from vy by subtracting from
Vi1 its components parallel to the mutually orthogonal vectors uy. uy, ... , u; pre-
viously constructed, and hence w4 is orthogonal to cach of the first k& vectors. If
we assume inductively that the vectors uy, us, . .. , ug span the same subspace as the
original k vectors vy, v, ..., v, then it also follows (rom (13) that the vectors uy,
uy,.... Uy $pan the same subspace as the vectors vy, va, ..., Vipp. If we begin
with a basis v, va, ... . v, for the subspace V of R”. the final result of carrying out
the Gram-Schmidt algorithm is thercfore an orthogonal basis uy, u,, ... , u, for V.

THEOREM 2 Existence of Orthogonal Bases

Every nonzero subspace of R" has an orthogonal basis.

As a final step, one can convert the orthogonal basis to an orthonormal basis
by dividing cach of the orthogonal basis vectors uy, ua, ... . u, by its length.

In numerical applications of the Gram-Schmidt algorithm, the calculations
involved olten can be simplified by multiplying each vector u; (as it is found) by
an appropriate scalar factor to climinate unwanted {ractions. We do this in the two
cxamples that follow.

To apply the Gram-Schmidt algorithm beginning with the basis
vi=@3 L1, va=(1,31), vi=(,1,3)
for RY, we first take

u=v =@G.1,1).

Then
: 7
W=vy— 2y = (1,3, 1) = —@. 1, 1)
u; - uy 11
10 26 4 2
=(——, =, — ) = (=5,13,2).
( 1111 11) Th )
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Solution

We delete the scalar factor 12_1 (or multiply by '—21) and instead use u; = (-5, 13, 2)
Next,

u;-v3 Uz - v3

U3 = V3 — u;

u-u uz - up

7 14
=(1,1,3)——@3,1,1) — —(-5,13,2
( ) ”( ) ]98( 3,2)

55 55 220 5
= <—6§, 59 W) = —5(1, I, —4).

We delete the scalar factor —% and thereby choose uz = (1, 1, —4). Thus our finyl
result is the orthogonal basis

uy=(3,110), u=(=513,2), uy=(1,1,-4)]
for R,
Find an orthogonal basis for the subspace V of R* that has basis vectors
vi=(2,1,2,1), v»=(2,2,1,0), vi=(1,2,1,0).
We begin with
uy=v;=(02,121).

Then

: 8
W=va— 2wy =(2,2,1,0) - (2, 1,2, 1)
uy - Uy 10
26 3 4 1
=\zyZz "%y —Z )= T 2': »_37 —4).
(5 575 5) 520 )

We delete the scalar factor % and instcad take u, = (2, 6, —3, —4). Next,

Uy - vy
Uz = V3 — u; —
u; - uy

Uz -v3

2
Uz - up

6 11
=(1,2,1,0) — —(2,1,2,1) — —(2,6, -3, —4
( 9 * ’0) ]0(2’ 9 ,1) 65( }

70 50 40 10 1
=~y oy = = | = = (=7,5,4, 1.
( 130’130’130’130) TR

We delete the scalar factor ﬁ and instead take u; = (=7, 5, 4, 1). Thus our orthog
onal basis for the subspace V consists of the vectors
u = (2! 1! 29 l)a

uz =(2s 63_31—4)5 Uz = (_7, 5) 4y])'

ey

= -



