
Orthogonal Vectors in fl”

In this section we show that the geometrical concepts of distance and angle in n—
dimensional space can he based on the deli nition of the dot pmduct of tWo vectors in

Recall from elementary calculus that the dot producL u • v of two 3—dimensional
vectors u = (ii , 02, 03) and v = (v1 , v2, m) is (by definition) the sum

U • V 1(V + (12Th + 113V3

of the products of corresponding scalar components of the two vectors.
Similarly, the dot product u • v of two n-dimensional vectors u =

(ui, ,u) and v = (VI, v2, . . , v,,) is defined by

U V UjVj + U2V + (1)

(with one additional scalar product term for each additional dimension). And just as
in R3, it follows readily from the formula in (1) that if u, v, and w are vectors in W
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and c is a scalar. then

u v = v • u (symmetry) (2)

u• (v + w) = u v + u• w (distribulivity) (3)

(cu) • v = c(u • v) (homogeneity) (4

U u 0;

u • u = 0 if and only if (positivity) (5)

u=O,

Therefore, the dot product in R” is an example of an inner product.

DEFINITION Inner Product

An inner product on a vector space V is a function that associates with each
pair of vectors u and v in V a scalar (u, v) such that, if u, v. and w are vectors
and c is a scalar, then

(I) (u,v)=(v,u);

(ii) (u, v + w) = (u, v) + (u, w):
(iii) (cu, v) = c(u, v);

(iv) (u, u) 0; (u, u) = 0 if and only if u 0.

The dot product on R11 is sometimes called the Eudlidean inner product, and
with this inner product R” is sometimes called Euclideaai u-dimensional space.
We can use any of the notations in

u• v (u, v) = uv

for the dot product of the two ii x I column vectors ii and v. (Note in the lasi
expression that u1 = (u , t u ) is the I x ii row vector with the indicated
entries, so the I x I matrix product uv is simply a scalar.) Here we will ordinarily
use the notation u • v.

The length ui of the vector u = (‘i , u2 ii,,) is defined as follows:

ml = (u U) = (u + u + ... + (6

Note that the case n = 2 is a consequence of the familiar Pythagorean formula in
the plane.

Theorem I gives one of the most important inequalities in mathematics. Man)
proofs are known, but none of them seems direct and well motivated.

THEOREM 1 The Cauchy-Schwarz Inequalily

If u and v arc vectors in R”, then

Iuvl uHvi. (7)
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Proof: If u 0, then u = ju) = 0, so the inequality is satisfied trivially.
If u 0, then we let a u . u, b = 2u . v, and c v . v. For any real number x, the
distrihutivity and positivity properties of the dot product then yield

0 (xu + v) (xu + v)

= (ti u)x2 + 2(u. v)x + (V

so that

0 ax2 + bx + c.

Thus the quadratic equation ax2 + bx + ‘ = 0 cither has no real roots or has a
repeated real root. Hence the quadratic Formula

—b ± /i— 4ac’
S =

2a

implies that the discriminant /,2
— 4ac cannot he pOSitiVC that is, b2 4ac, SO

4(u v)2 4(u. u)(v’ v).

We get the Cauchy—Schwarz inequality in (7) when we take square roots, remem
bering that the numbers ui = (u )hI2 and iv! = (v v)”2 are nonnegative.

The Cauchy-Schwarz inequality enables us to define the angle (9 between the/ nonzero vectors u and v. (See Figure 4.6.1 .) Division by the positive number ui lvi/ in (7) yields iu.vi/(IuIlvi) l.so

- _i2_+i. (8)luilviJIURE 4.6.1. The angle (9
ccn the vectors u and v. Hence there is a unique angle 6’ between 0 and jr radians, inclusive (that is, between

0 and I 80 ‘), such that

u..v
cosO = —. (9)luilvi

Thus we obtain the same geometric interpretation

u.v= luhivlcosO (10)

of the dot product in W’ as one sees (for 3-dimensional vectors) in elementary cal
culus tcxtbooks—lor instance, see Section 11 .2 of Edwards and Penney, calculus:
Lath’ Transcendentals, 7th edition (Prentice Hall) 2008.

On the basis ol (10) we call the vectors u and v orthogonal provided that

u•v=0. (11)

If u and v are nonzero vectors this means that cos 6’ = 0, so 6’ = 7r/2 (90°). Note
that u = 0 satisfies (11) for all v, so the zero ve&or is orthogonal to e’erv vector.

Example 1 Find the angle (9,, in R° between the x -axis and the line through the origin and the
point (1,1 1).
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Solution We take u = (1,0,0,..., 0) on thex1-axis and v (1, 1 1). Then u
vi = and u v = 1, so the Formula in (9) gives

u.v I
cos 6,, = = —.

luHvi /H

For instancc. if

a 3, then & = cos () 0.9553 (55°);

a = 4, then 6 cos’ () 1.0472 (60);

a = 5, then 6 = cost 1.1071 (63c):

n 100, then 9 cOs () 1.4706 (840).

It is interesting to note that 6,, increases as n increases. Indeed, 6,, appu
cos (0) = ,r/2 (90°) as ii increases without hound (so that I /.\/ appo
zero).

In addition to angles, the dot product provides a definition of distance in I[
The distance d(u, VI between the points (vectors) u = (u , u2. ... , u,,) and
(a1, v2 a,,) is defined to he

d(u. v) = ii
— vi

= [(a, —
v,)2 + (112 — V2) + . + (a,, — v,,)2]I.

Example 2 The distance between the points ii (1, —1, —2,3,5) and v = (4,3,4,5.9)
is

uvi=V32+42+62+22+42= /=9

The triangle inequality of Theorem 2 ielatcs the three sides oF the 1rin:
shown in Figure 4.6.2.

THEOREM 2 The Triangle Inequality

IF u and v arc vectors in W’. then

iu+vl iul+ lvi.

Proof: We apply the Cauchy—Schwarz inequality to find that

FIGURE 4.6.2. The “triangle” iii + vJ2 = (a + v) (u + v)
of the triangle inequality.

= u• a + 2u. v + v• v

<ii . a + 2uv -I-- V V

U-f V

= ui2 + 2iuUvl + vi2,
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and therefore
lu + v12 (ml + vj)2.

We now get (13) when we take square roots. I

The vectors ii and v are orthogonal if and only if u v = 0, so line (14) in the
proof of the triangle inequality yields the fact that the Pythagorean formula

, .)
lu + vi- = 1u1 + v1 (15)

holds ifand only if the triangle with “adjacent side vectors” u and visa right triangle
I’ with hypotenuse vector u + v (see Figure 4.6.3).

FIGURE 4,6.3. A right triangle The following theorem states a simple relationship between orthogonality and
in R. linear independence.

THEOREM 3 Orthogonality and Linear independence

If the nonzero vectors v1, v2. VA are mutually orthogonal—that is, each two
of them arc orthogonal—then they are linearly independent.

Proof: Suppose that

CiVi +C2V2 + +CV =0,

where, as usual, c1 , A are scalars. When we Lake the dot product of each
side of this equation with v1, we find that

(ivi’vi = =

Now v1 0 because v1 is a nonzero vector. It fol lows that c = 0. Thus Cl = c’2 =
• = = 0, and there fore the mutually orthogonal nonzero vectors v1,v2,...,

are linearly independent. I

In particular, any set of a mutually orthogonal nonzero vectors in R” consti
tutes a basis for R”. Such a basis is called an orthogonal basis. For instance, the
standard unit vectors e1 ,e2,..., e form an orthogonal basis For RI?.

Orthogonal Complements

Now we want to relate orthogonality to the solution of systems of linear equations.
Consider the homogeneous Ii near system

Ax=0 (16)

of in equations in a unknowns. II’ V1 , v2 v, are the row vectors of the in x a
coefficient matrix A. then the system looks like

vi v1•x 0
v2 v’x 0

V111 = VI??. X =

LI + V
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Consequendy, it is clear that x is a solution vector of Ax = 0 if and only if x is
orthogonal to each row vector of A. But in the latter event x is orthogonal to eveis
linear combination of row vectors of A because

x• (civi + c22 + + cflv,fl)
=zclx.vl+c2x.’2+...+cfl,x.vn,
= (cj)(O) + (c2)(O) + .. + (c111)(O) = 0.

Thus we have shown that the vector x in R’ is a solution vector of Ax = 0 if an
only if x is orthogonal to each. vector in the row space Row(A) of the matrix A. Thin
situation motivates the following definition.

DEFINfl1ON The Orthogonal Complement of a Subspace
The vector u is orthogonal to the suhspace V of W’ provided that u is orthogonal
to every vector in V. The orthogonal complement V-’- (read “V perp”) of V is
the set of all those vectors in R’ that are orthogonal to the suhspace V.

If u1 and u2 are vectors in V1. v is in V. and c1 and c2 are scalars, then

(ciui+c2u2)v=ciui •v+c,u2•v

= (c1)(O) + (c2)(0) = 0.

Thus any linear combination of vectors in V’ is orthogonal to every vector in V ant
hence is a vector in V-’-. Therefore the orthogonal complement V’ of a subspac
V is itself a subspace QfW. The standard picture of two complementary suhspacc
V and V consists of an orthogonal line and plane through the origin in R3 (sc
Fig. 4.6.4). The proofs of the remaining parts of Theorem 4 are left to the problems

i1
V i

I)
L’ ‘

V

FIGURE 4.6.4. Orthogonal complements.

THEOREM 4 Properties of Orthogonal Complements
Let V he a suhspace of R’1. Then

1. Its orthogonal complement V1 is also a suhspace of R’;
2. The only vector that lies in both V and V-1- is the zero vector;
3. The orthogonal complement of V1 is V—that is, (V1)1 = V;
4. If S is a spanning set for V. then the vector u is in V1 if and only if u is

orthogonal to every vector in S.

I
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In our discussion of the homogeneous linear system Ax = 0 in (16), we
showed that a vector space lies in the null space Null(A) of A—that is, in the
solution space of Ax = 0—if and only if it is orthogonal to each vector in the row
space of A. In the language of orthogonal complements, this proves Theorem 5.

THEOREM 5 The Row Space and the Null Space

Let A he an in xn matrix. Then the row space Row(A) and the null space Null(A)
are orthogonal complements in R’1. That is.

If V = Row(A), then V1 = Null(A). (17)

Now suppose that a subspace V of R” is given, with V1, V2. . . . , v,,, a set of
vectors that span V. For instance, these vectors may form a given basis for V. Then
the implication in (17) provides the following algorithm for linding a basis br the
orthogonal complement V1 of V.

1. Let A he the in x ii matrix with row vectors v1, Vm.

2. Reduce A to echelon form and use the algorithm of Section 4.4 to bind a basis
{u1, u,, . . , u} for the solution space Null(A) of Ax = 0. Because V1
Null(A), this will he a basis for the orthogonal complement of V.

Example 3 Let V he [he I-dimensional suhspace of R3 spanned by the vector v1 = (1, —3, 5).
Then

A={l —3 5]

and our lineat system Ax = 0 consists of the single ccluation

— 3x2 + 5x3 0.

If x2 = s and x3 = t. then x1 = 3s’ — 5t. With s = I and t = 0 we get the
solution vector u1 (3, 1, 0), whereas with s = 0 and t = I we get the solution
vector u2 = (—5, 0, 1). Thus the orthogonal complement V1 is the 2-dimensional
suhspace of R3 having u1 = (3, 1, 0) and u2 = (—5. 0, I ) as basis vectors. S

Example 4 Let V he the 2-dimensional subspace of R5 that has v1 = (1,2, 1, —3, —3) and
= (2,5,6,—ID, —12) as basis vectors. The matrix

A_H 2 1 —3 —3
5 6 —10 —12

with row vectors v1 and v2 has reduced echelon form

E_H 7 5
I 4 —4 —6

Hence the solution space of Ax = 0 is described parametrically by

= r, x4 = s, X =

= —4r+4s +6t

7r — 5s — 9t.



276 Chapter 4 Vector Spaces

Then the choice

r = 1, s = 0, t = 0 yields u1= (7, —4, 1.0,0):

r=0, s=1, t=0 yields u,=(—5,4,0.I.0):

r=0, s=O, r=1 yields u=(—9.6,0,0,1).

Problems

Thus the orthogonal complement VI- is the 3—dimensional subspacc of R5 with ha%f
{n1 ,112. U3).

Observe that dim V + dim V1 = 3 in Example 3, hut dim V + dim V1 = 5 n
Example 4. It is no coincidence that in each case the dimensions of V and V’ aih
up to the dimension a of the Euclidean space containing them. To sec why, suppir
that V is a suhspace of R” and let A he an in x a matrix whose row vectors span I
Then Equation (12) in Section 4.5 implies that

B lit

and

rank(A) + dim Null(A) a.

dim V = dim Row(A) = rank(A)

dim V = dim Null(A)

dim V + dim V1 = a.

Moreover, it should he apparent intuitively that if

and

then

{v1, v-, v,} is a basis for V

{u1, u2, . . . ,Uk} is ahasis for V,

{vj , v2. . . . , ‘i,,1, u1, u2, . . . , u,,) is a basis for W’.

That is. the union of a basis for V and a basis for V is a basis Thr W’. In Problem
34 of this section we ask you to prove that this is so.

in Problems 1—4, determine whether the gn’en vectors are mu—
tuallv orthogonal.

1.v1=(2,1,2,l),v,=(3,—6,l,-—2),
= (3, —I, —5,5)

2. v1 =(3,—2,3,—4).v2=(6,3,4,6),
v= (17,—12,—2l,3)

3. v1 = (5,2, —4,—I), v2 = (3, —5, I, I),
= (3.0,8, —17)

4. v1 = (1,2.3. —2, 1), v = (3,2.3,6, —4),
= (6, 2, —4. 1, 4)

in Problems 5—8, the three i’ei’tic’es A, B, and C of a triangl
are given. Prove that each ti-jangle is a right triangle by slioii
lag that its sides a, b, and c satis/\’ the Pythagorean rekaun
ci- ± h = c.

5. A(6,6,5,8),B(6,8,6.5),C(5,7,4.6)

6. A(3,5, I,3),B(4,2,6,4),C(I,3,4,2)

7. A(4,5,3,5,—l),B(3,4,—l.4.4),C(I,3J,3,I)

8. A(2, 8, —3, —1,2), B(—2, 5,6, 2, 12), C(—5, 3,2, —3, )
9—12. Find the acute angles (in degrees) of each of the righl

triangles of’ Problems 5—8, respectively.

by Theorem 5, so it follows that

1


