m Orthogonal Vectors in R"

In this scction we show that the geometrical concepts of distance and angle in n-
dimensional space can be based on the definition of the dot product of two vectors in
R". Recall [rom elementary calculus that the dot product u « v of two 3-dimensional
vectors u = (i, 12, 113) and v = (v, v, v3) is (by definition) the sum

u-v=u v + uvz + 1303
of the products of corresponding scalar components ol the two veclors.
Similarly, the dot product u - v of two n-dimensional vectors u =
(uy,uz,...,u,)and v = (v, vy,...,v,) is defincd by

u-v=uvy+ vy + -+ t,v, (N

(with one additional scalar product term for each additional dimension). And just as
in RY, it follows readily from the formula in (1) that if u, v, and w are vectors in R"
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and c is a scalar, then

u-v=v-:u (symmetry) (2)

u-(v+w)=u-v+u-w (distributivity) (3)

(cu)»v=c(-v) (homogencity) 4
u-uz=0;

u-u=0 ifandonlyifl (positivity) (%)
u=0.

Thercfore, the dot product in R" is an example of an inner product.

DEFINITION Inner Product

An inner product on a vector space V is a function that associates with each
pair of vectors w and v in V a scalar (u, v) such that, if u, v, and w arc vectors
and ¢ is a scalar, then

(i) (u,v) = (v,u);
@) (u,v+w) = (u,v)+ (u, w);
(iii) (cu,v) = c(u,v):
(

The dot product on R" is sometimes called the Euclidean inner product, and
with this inner product R" is sometimes called Euclidean n-dimensional space.
We can use any of the notations in i

u-v={(nv)=u'v

for the dot product of the two n x | column vectors u and v. (Note in the lasi
expression that u” = (i), us, ..., u,)" is the | x n row vector with the indicated
entries, so the 1 x | matrix product u” v is simply a scalar.) Here we will ordinarily
usc the notation u » v.

The length |u] of the vector u = (uy, us, ..., u,) is defined as follows:

lu|=J(u-u):(u%-{-ug+---+u,2,)l/2. (6)

Notc that the case n = 2 is a consequence ol the familiar Pythagorean formula in
the plane.

Theorem 1 gives one of the most important inequalitics in mathematics. Many
proofs are known, but none of them seems dircct and well molivated.

THEOREM 1 The Cauchy-Schwarz Inequality

|
|
If u and v are vectors in R”, then l

[u-v| < |uflv]. )
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FIGURE 4.6.1. The angle ¢
felween the vectors u and v,
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Proof: Ifu=0,then fu-v| = |u| = 0, 5o the inequality is satisfied trivially.
Ifus#0,thenweleta=u-u,b=2u- v, and ¢ = v - v. For any real number x, the
distributivity and positivity propertics of the dot product then yield

0L (xu4v):(xu+v)
= (u-u)x?+ 2w v)x + (v.v),
so that
0<ax*+bx+ec.

Thus the quadratic equation ax? + bx + ¢ = 0 cither has no real roots or has a
repeated real root. Hence the quadratic formula

o —b + Vb% - 4ac

2ua

implics that the discriminant 52 — 4ac¢ cannot be positive; that is, 52 < dac, so
4(u-v): < 4(u-u)(v.v).

We gel the Cauchy-Schwarz inequality in (7) when we take square roots, remem-
bering that the numbers Ju| = (u - )2 and |v| = (v . v)'/2 are nonnegalive. [

The Cauchy-Schwarz incquality enables us o define the angle 8 between the
nonzero veclors u and v. (Sec Figure 4.6.1.) Division by the positive number [u|v|
in (7) yields Ju - v|/(Ju}]v]) < 1. so

- £ —— < 41. (8)

Hence there is a unique angle # between 0 and 7 radians. inclusive (that is, between
0" and 180"), such that

u-v
cosf = . 9)
luflv|
Thus we obtain the same gcometric interpretation
u-v=|ullvlcosd (10)

of the dot product in R” as one sces (for 3-dimensional vectors) in clementary cal-
culus texthooks—Ior instance, sec Section 11.2 of Edwards and Penney, Calculus:
Early Transcendentals, 7th cdition (Prentice Hall) 2008.

On the basis of (10) we call the vectors u and v orthogonal provided that

u-v=_0. (11)

If u and v are nonzero vectors this means that cosf = 0,508 = 7/2 (90°). Note
that u = 0 satisfics (11) for all v, so the zero vector is orthogonal to every vector.

Find the angle 6, in R” between the x;-axis and the line through the origin and the
point (1, 1,...,1).
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Solufion  We take u = (1,0,0,...,0) on the x;-axis and v = (1, 1,..., 1). Then |u| = !

Example 2

u
o

FIGURE 4.6.2. The *“triangle”
of the triangle incquality.

|v| = 4/n,and u - v = 1, so the formula in (9) gives

u-v |

lulv] /i

cosf, =

For instance, if

n=3, then fh = cos™ (55%);

n =4, then  fy = cos™ (

-1

n=S=5, then 85 = cos = 1.1071 (637},

)’\' 1.0472  (60°);

SI

n =100, then @0 =cos™' (I—6> ~ 1.4706 (84°).

Il is interesting to notc that 6, increases as n increases. Indeed, 6, approachcs
0sH(0) = /2 (90°) as n increases without bound (so that 1//n a approug¢he
ICIO) L]

In addition to angles, the dot product provides a definition of distance in #°
The distance d(u, v) between the points (vectors) u = (uy, uz, ..., u,) and y -
(vy, v2,....v,) is defined to be

du,v) = |u—v|

(53
[(ll] - Ul) + (17 — Uz) + e (i~ vy) ]1/2 .

The distance between the points u = (1, —1,-2,3,5)and v = (4,3,4,5.9) inH
is

u—v|=1v324+424+62+22+42 = /8] =9, 4

The triangle inequality of Theorem 2 relates the thrce sides of the triunh
shown in Figure 4.6.2.

THEOREM 2 The Triangle Inequality

If w and v are vectors in R", then

lu+ v < fuf+ |v]. (13

Proof: We apply the Cauchy-Schwarz inequality to find that

u+vPP=@u+v) u+v)
=u-u+2u-v+v.y (1%
Su-u+2ullvj+v.v
= [u]* + 2[uljv| + v},
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FIGURE 4.6.3. A right triangle
inR",
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and therclore
lu+ vl < (uf + V)%
We now get (13) when we take square roots. B
The vectors u and v are orthogonal if and only if u - v = 0, so line (14) in the
prool of the triangle incquality yiclds the lact that the Pythagorean formula

lu+ v =uf® + v (15)

holds il and only if the triangle with “adjacent side vectors” u and v is a right triangle
with hypotenuse vector u + v (see Figure 4.6.3).

The lollowing theorem states a simple relationship between orthogonality and
lincar independence.

| THEOREM 3 Orthogonality and Linear Independence

If the nonzero veclors vy, v, . .., vi are mutually orthogonal—thal is, cach two
of them are orthogonal—then they arc linearly independent.

Proof: Suppose that
avi+evat oy =0,

where. as usual, ¢;, ¢2, ....¢; arc scalars. When we take the dot product ol each
side of this cquation with v;, we find that

R
civi s v = cilvi|- = 0.
Now |v;| # 0 because v; is a nonzero vector. It follows that ¢; = 0. Thus ¢; = ¢ =

«-+ = ¢; = 0, and therefore the mutually orthogonal nonzero veetors vi, va, ..., v,
arc lincarly independent. rl

In particular, any set of n mutually orthogonal nonzero vectors in R” consti-
tutes a basis for R”. Such a basis is called an orthogonal basis. For instance, the
standard unit vectors ey, e, .. ., e, form an orthogonal basis for R”.

Orthogonal Complements

Now we want to relate orthogonality to the solution of systems of linear equations.
Consider the homogencous linear system

Ax=10 (16)

ol m cquations in n unknowns. Il v|, vo, ..., v,, arc the row vectors ol the m x n
coelficient matrix A, then the system looks like

vy V- X 0
\Z) ‘ Vo o X 0

Vin ’ Vi + X 0
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Consequently, it is clear that x is a solution vector of Ax = 0 if and only if x Is
orthogonal to each row vector of A. But in the latter event X is orthogonal to every
linear combination of row vectors of A because

X-(avi+ova+--+ CinVim)
=OX Vi + X Vb Xy,
= (€1)(0) + (2)(0) + -+ - + (¢n)(0) = 0.

Thus we have shown that the vector x in R is a solution vector of Ax = 0 if aml

only if x is orthogonal to each vector in the row space Row(A) of the matrix A. This
situation motivates the following definition.

DEFINITION The Orthogonal Complement of a Subspace

The vector u is orthogonal (o the subspace V of R” provided that u is orthogonal
to every vector in V. The orthogonal complement V+ (read “V perp™) of V is
the set of all those vectors in R” that are orthogonal (o the subspace V.

If w; and u, arc vectors in V4, visin V, and ¢y and ¢, are scalars, then

(cruy +em) s v=ciuy - v+couy - v
= (e1)(0) + (c2)(0) = 0.

Thus any lincar combination of vectors in V4 is orthogonal to every vector in V and
hence is a veclor in VL. Therefore the orthogonal complement V* of a subspace
V is itself a subspace of R". The standard picture of two complementary subspaces
V and V+ consists of an orthogonal line and plane through the origin in R3 (set
Fig. 4.6.4). The proofs of the remaining parts of Theorem 4 are left to the problems,

V-L ‘/ -L ¥ | I

1
#
R
.’.
3
|
k-
:
%‘.

FIGURE 4.6.4. Orthogonal complements.

ogonal Complements
Let V be a subspace of R". Then

1. Tts orthogonal complement V+ is also a subspace of R”;
2. The only vector that lies in both V and V4 is the zero vector:
3. The orthogonal complement of V4 is V—that is, (V1)t = V:

4. If S is a spanning set for V, then the vector u is in V< if and only if u is
orthogonal to every vector in S.

[ R L R
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In our discussion of the homogeneous linear system Ax = 0 in (16), we
showed that a vector space lies in the null space Null(A) of A—that is, in the
solution space of Ax = 0—if and only if it is orthogonal to each vector in the row
space of A. In the language of orthogonal complements, this proves Theorem 5.

he Null

Let A be an m xn matrix. Then the row space Row(A) and the null space Null(A)
are orthogonal complements in R". That is,

If V =Row(A), then V! =Null(A). (17

Now suppose that a subspace V of R" is given, with vi, va,..., v, a set of
vectors that span V. For instance, these vectors may form a given basis for V. Then
the implication in (17) provides the following algorithm for finding a basis for the
orthogonal complement V+ of V.

1. Let A be the m x n matrix with row vectors vy, va, ..., V.

2. Reduce A to cchelon form and usc the algorithm of Scction 4.4 to find a basis
{uy, ua, ..., u;} for the solution space Null(A) of Ax = 0. Because vi =
Null(A), this will be a basis for the orthogonal complement of V.

Example 3 Let V be the |-dimensional subspace of R* spanned by the vector vy = (1, =3, 5).
Then
A= [ 1 -3 5]

and our lincar system Ax = 0 consists of the single equation

Xy — 3xa2 + 5x3 =0.
Ifxy =sandxy =r,thenx; = 3s — 54 Withs = | and + = 0 we get the
solution vector u; = (3, 1, 0), whereas with s = 0 and r = 1 we get the solution
vector u; = (=35, 0, I). Thus the orthogonal complement V4 is the 2-dimensional

subspace of R? havingu; = (3, 1,0) and u; = (=5, 0, 1) as basis vectors. I3

Example 4 Let V be the 2-dimensional subspace of R¥ that has v; = (1,2, 1, -3, -3) and
vy = (2,5, 6, —10, —12) as basis vectors. The matrix

1 2 1 -3 -3
A= [2 5 6 —10 —l2:|
with row vectors vy and v, has reduced echelon form
1 0o -7 5 9
k= [o | 4 —4 —6] :
Hence the solution space of Ax = 0 is described parametrically by

X3=r, X4=3¢§, X5s=1I,
Xy = —4r 4+ 4s + 6t
xy=Tr —5s—09r.
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m Problems

In Problems 1-4, determine whether the given vectors are nu-

tually orthogonal.
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Then the choice

r=1, s=0, t=0 yields u=(7,-4,1,0,0)
r=0, s=1, t=0 yields u;=(-5,4.0,1,0);
r=0, s=0, r=1 yields ui=(-9,6,0,0,1).

Thus the orthogonal complement V4 is the 3-dimensional subspace of R? with basls
{u, up, us}. [

Observe that dim V +dim V*+ = 3 in Example 3, but dim V +dim VL =5y
Example 4. It is no coincidence that in each casc the dimensions of V and V- add
up to the dimension n of the Euclidean space containing them. To sce why, suppose
that V is a subspace ol R" and let A be an m x n matrix whose row vectors span V
Then Equation (12) in Section 4.5 implies that

rank(A) + dim Null(A) = n.
But
dim V = dim Row(A) = rank(A)

and
dim V* = dim Null(A)

by Theorem 5, so it lollows that

dimV +dimV+t=n (18)

Morcover, it should be apparent intuitively that if

{vi,va,...,v,}is abasis for V

and
{uj, g, ..., u} is a basis for V*+,

then

{vi,va, ..., vy, Uy, Uy, ..., 0} is a basis for R".

That is. the union of a basis for V and a basis for V* is a basis for R". In Problen
34 of this section we ask you to prove that this is so.

In Problemns 5-8, the three vertices A, B, and C of a triangl
are given. Prove that each triangle is a right triangle by show
ing that its sides a, b, and c satisfv the Pyvthagorean relation

Lovi=@ 1,2, 1),va= (3, —6, 1. -2), g farits § ;
vi=(3,~1,-5,5) cAb=c |
2. v = (3. =23, —4), v2 = (6, 3, 4. 6), 5. A(6,6,5,8), B(6,8.6.5),C(5,7,4.6) |
=(l7 -12,-21,3) 6. A(3,5.1.3),B(4.2,6,4),C(1.3.4,2)
3 =(5 —4,—=1),va=3.=5.1. 1), 7. A4.5.3.5,-1), B3.4,—1.4.4),C(1,3. 1.3, 1)
= (3. 0 8. —17) 8. A(2,8.-3,-1,2),B(-2,5,6.2,12),C(-5.3,2,-3,5)
4. =(1.,2.3.-2,1),va=(3,2.3,6, —4), 9-12. Find the acute angles (in degrees) of each of the right
= (6.2 4 1,4 triangles of Problems 5-8, respectively.




