
Chapter 7

Higher Dimensional
Partial Differential Equations

7.1 Introduction
In our discussion of partial differential equations, we have solved many problems
by the method of separation of variables, but all involved only two independent
variables:
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In this chapter we show how to extend the method of separation of variables to
problems with more than two independent variables.

In particular, we discuss techniques to analyze the heat equation (with constant
thermal properties) in two and three dimensions,
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for various physical regions with various boundary conditions. Also of interest will
be the steady-state heat equation, Laplace's equation, in three dimensions,

a2u 82u 82u
8z2 + 8y2 + 8z2 = 0.
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276 Chapter 7. Higher Dimensional PDEs

In all these problems, the partial differential equation has at least three indepen-
dent variables. Other physical problems, not related to the flow of thermal energy,
may also involve more than two independent variables. For example, the vertical
displacement u of a vibrating membrane satisfies the two-dimensional wave equation

a2u 2 C72u 02u
ate = C ( ax2 + 49y2 )

It should also be mentioned that in acoustics, the perturbed pressure u satisfies the
three-dimensional wave equation

aZu _ 2 /a2u 4921 a2u)
ate - C t` 4922 + ayz + aZZ

We will discuss and analyze some of these problems.

7.2 Separation of the Time Variable
We will show that similar methods can be applied to a variety of problems. We will
begin by discussing the vibrations of a membrane of any shape, and follow that with
some analysis for the conduction of heat in any two- or three-dimensional region.

7.2.1 Vibrating Membrane: Any Shape
Let us consider the displacement u of a vibrating membrane of any shape. Later
(Sees. 7.3 and 7.7) we will specialize our result to rectangular and circular mem-
branes. The displacement u(x, y, t) satisfies the two-dimensional wave equation:

02u _ 2 02u a2u
49t2 - C ( ax2 + 5y2 )

The initial conditions will be

(7.2.1)

u(x, y, 0) = «(x, y) (7.2.2)

at (x, y, 0) = Q(x, y), (7.2.3)

but as usual they will be ignored at first when separating variables. A homoge-
neous boundary condition will be given along the entire boundary; u = 0 on the
boundary is the most common condition. However, it is possible, for example, for
the displacement to be zero on only part of the boundary and for the rest of the
boundary to bf "free." There are many other possible boundary conditions.

Let us now apply the method of separation of variables. We begin by showing
that the time variable can be separated out from the problem for a membrane of
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any shape by seeking product solutions of the following form:

u(x, y, t) = h(t)4(x, y). (7.2.4)

Here ¢(x, y) is an as yet unknown function of the two variables x and y. We do
not (at this time) specify further O(x, y) since we might expect different results
in different geometries or with different boundary conditions. Later, we will show
that for rectangular membranes O(x, y) = F(x)G(y), while for circular membranes
O(x, y) = F(r)G(B); that is, the form of further separation depends on the geometry.
It is for this reason that we begin by analyzing the general form (7.2.4). In fact,
for most regions that are not geometrically as simple as rectangles and circles,
O(x, y) cannot be separated further. If (7.2.4) is substituted into the equation for a
vibrating membrane, (7.2.1), then the result is

z a
2(x, y)d22

= c h(t) I z + y (7.2.5)

We will attempt to proceed as we did when there were only two independent vari-
ables. Time can be separated from (7.2.5) by dividing by h(t)¢(x, y) (and an addi-
tional division by the constant c2 is convenient):

z

hat -
(aX2+ay2)=-a.

(7.2.6)

The left-hand side of the first equation is only a function of time, while the right-
hand side is only a function of space (x and y). Thus, the two (as before) must equal
a separation constant. Again, we must decide what notation is convenient for the
separation constant, A or -A. A quick glance at the resulting ordinary differential
equation for h(t) shows that -A is more convenient (as will be explained). We thus
obtain two equations, but unlike the case of two independent variables, one of the
equations is itself still a partial differential equation:

d2h = -Ac2h
dt2

20 z

8x2 + ay

(7.2.7)

(7.2.8)

The notation -A for the separation constant was chosen because the time-dependent
differential equation (7.2.7) has oscillatory solutions if \ > 0. If A > 0, then
h is a linear combination of sin cwt and cos cft; it oscillates with frequency
cf. The values of ,1 determine the natural frequencies of oscillation of a vibrating
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membrane. However, we are not guaranteed that A > 0. To show that A > 0,
we must analyze the resulting eigenvalue problem, (7.2.8), where 0 is subject to
a homogeneous boundary condition along the entire boundary (e.g., 0 = 0 on the
boundary). Here the eigenvalue problem itself involves a linear homogeneous partial
differential equation. Shortly, we will show that A > 0 by introducing a Rayleigh
quotient applicable to (7.2.8). Before analyzing (7.2.8), we will show that it arises
in other contexts.

7.2.2 Heat Conduction: Any Region
We will analyze the flow of thermal energy in any two-dimensional region. We begin
by seeking product solutions of the form

u(x, y, t) = h(t)0(x,y) (7.2.9)

for the two-dimensional heat equation, assuming constant thermal properties and
no sources, (7.1.1). By substituting (7.2.9) into (7.1.1) and after dividing by
kh(t)0(x, y), we obtain

2 z

k h dt 4 (Oxz + 8y ) '
(7.2.10)

A separation constant in the form -A is introduced so that the time-dependent
part of the product solution exponentially decays (if A > 0) as expected, rather
than exponentially grows. Then, the two equations are

dh = -Akh
dt

02 0 2
(7.2.11)

The eigenvalue A relates to the decay rate of the time-dependent part. The eigen-
value A is determined by the boundary value problem, again consisting of the partial
differential equation (7.2.11) with a corresponding boundary condition on the entire
boundary of the region.

For heat flow in any three-dimensional region, (7.1.2) is valid. A product solu-
tion,

u(x, y, z, t) = h(t)O(x, y, z), (7.2.12)

may still be sought, and after separating variables, we obtain equations similar to
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(7.2.11),

dt

a246
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ax ay oz
s + 2 + a = -A0.
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(7.2.13)

The eigenvalue A is determined by finding those values of A for which nontrivial
solutions of (7.2.13) exist, subject to a homogeneous boundary condition on the
entire boundary.

7.2.3 Summary
In situations described in this section the spatial part O(x, y) or 4,(x, y, z) of the so-
lution of the partial differential equation satisfies the eigenvalue problem consisting
of the partial differential equation,

V24 =

with 0 satisfying appropriate homogeneous boundary conditions, which may be of
the form [see (1.5.2) and (4.5.5)]

a and Q can depend on x, y, and z. If ,3 = 0, (7.2.15) is the fixed boundary
condition. If a = 0, (7.2.15) is the insulated or free boundary condition. If both
a 0 and /3 54 0, then (7.2.15) is the higher-dimensional version of Newton's law
of cooling or the elastic boundary condition. In Sec. 7.4 we will describe general
results for this two- or three-dimensional eigenvalue problem, similar to our theo-
rems concerning the general one-dimensional Sturm-Liouville eigenvalue problem.
However, first we will describe the solution of a simple two-dimensional eigenvalue
problem in a situation in which O(x, y) may be further separated, producing two
one-dimensional eigenvalue problems.

EXERCISES 7.2

7.2.1. For a vibrating membrane of any shape that satisfies (7.2.1), show that
(7.2.14) results after separating time.

7.2.2. For heat conduction in any two-dimensional region that satisfies (7.1.1),
show that (7.2.14) results after separating time.

7 2.3. (a) Obtain product solutions, ¢ = f (x)g(y), of (7.2.14) that satisfy 0 = 0
on the four sides of a rectangle. (Hint: If necessary, see Sec. 7.3.)
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(b) Using part (a), solve the initial value problem for a vibrating rectan-
gular membrane (fixed on all sides).

(c) Using part (a), solve the initial value problem for the two-dimensional
heat equation with zero temperature on all sides.

7.3 Vibrating Rectangular Membrane
In this section we analyze the vibrations of a rectangular membrane, as sketched
in Fig. 7.3.1. The vertical displacement u(x, y, t) of the membrane satisfies the
two-dimensional wave equation,

a2u _ c2 la2u 02u
at2 a.

+
aye

Figure 7.3.1 Rectangular membrane.

(7.3.1)

We suppose that the boundary is given such that all four sides are fixed with zero
displacement:

u(0,y,t) = 0 u(x,0,t) = 0 (7.3.2)

u(L, y, t) = 0 u(x, H, t) = 0. (7.3.3)

We ask what is the displacement of the membrane at time t if the initial position
and velocity are given:

u(x, y, 0) = c (x, y) (7.3.4)

at (x, y, 0) = )3(x, y). (7.3.5)

As we indicated in Sec. 7.2.1, since the partial differential equation and the
boundary conditions are linear and homogeneous, we apply the method of separation
of variables. First, we separate only the time variable by seeking product solutions
in the form

u(x,y,t) = h(t)¢(x,y) (7.3.6)
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According to our earlier calculation, we are able to introduce a separation constant
-A, and the following two equations result:

dzh
= -.\c2h (7.3.7)

dt2
z 2

= -A+ a 8)(7 3.

8xz y ..

We will show that A > 0, in which case h(t) is a linear combination of since t
and cos c f t. The homogeneous boundary conditions imply that the eigenvalue
problem is

z z0ex 3(7 9)+ y2_ ..

0(0,y) = 0 O(x 0) = 0,

(7.3.10)
O(L, y) = 0 q(x, H) = 0;

that is, 0 = 0 along the entire boundary. We call (7.3.9)-(7.3.10) a two-dimensional
eigenvalue problem.

The eigenvalue problem itself is a linear homogeneous PDE in two independent,
variables with homogeneous boundary conditions. As such (since the boundaries
are simple), we can expect that (7.3.9)-(7.3.10) can be solved by separation of
variables in Cartesian coordinates. In other words, we look for product solutions of
(7.3.9)-(7.3.10) in the form

OX, Y) = f(x)g(y) (7.3.11)

Before beginning our calculations, let us note that it follows from (7.3.6) that our
assumption (7.3.11) is equivalent to

u(x, y, t) = f(x)g(y)h(t) (7.3.12)

a product of functions of each independent variable. We claim, as we show in
an appendix to this section, that we could obtain the same result by substituting
(7.3.12) into the wave equation (7.3.1) as we now obtain by substituting (7.3.11)
into the two-dimensional eigenvalue problem (7.3.9):

z2
g(y) dx + f (x) dye = -Af (x)9(y) (7.3.13)

The x and y parts may be separated by dividing (7.3.13) by f (x)g(y) and rearrang-
ing terms:

ld2f 1d2gf dx2 = -A - 9 dy2 = -lt,. (7.3.14)

Since the first expression is only a function of x, while the second is only a function
of y we introduce a second separation constant. We choose it to be -j so that the
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easily solved equation, d1 f /dx2 = -p f has oscillatory solutions (as expected) if
µ > 0. Two ordinary differential equations result from separation of variables of a
partial differential equation with two independent variables:

d2f -
dx2 =-µf

dg
aye = -(A - µ)g

(7.3.15)

(7.3.16)

Equations (7.3.15) and (7.3.16) contain two separation constants A and µ, both of
which must be determined. In addition, h(t) solves an ordinary differential equation:

d2h
= -Ac2h.

dt2
(7.3.17)

When we separate variables for a partial differential equation in three variables,
u(x, y, t) = f (x)g(y)h(t), we obtain three ordinary differential equations, one a
function of each independent coordinate. However, there will be only two separation
constants.

To determine the separation constants, we need to use the homogeneous bound-
ary conditions (7.3.10). The product form (7.3.11) then implies that

f (0) = 0 and f (L) = 0 (7.3.18)
g(0) = 0 and g(H) = 0.

Of our three ordinary differential equations, only two will be eigenvalue problems.
There are homogeneous boundary conditions in x and y. Thus,

2

= -pf with f (O) =0 and f(L)=O (7.3.19)

is a Sturm-Liouville eigenvalue problem in the x-variable, where µ is the eigenvalue
and f (x) is the eigenfunction. Similarly, the y-dependent problem is a regular
Sturm-Liouville eigenvalue problem:

d2g
- (A - µ)g with g(0) = 0 and g(H) = 0. (7.3.20)dye =

Here A is the eigenvalue and g(y) the corresponding eigenfunction.
Not only are both (7.3.19) and (7.3.20) Sturm-Liouville eigenvalue problems,

but they are both ones we should be quite familiar with. Without going through
the well-known details, the eigenvalues are

nor 2µn- (L) , n=1,2,3,..., (7.3.21)
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and the corresponding eigenfunctions are

) = sin
nLxf ( (7 22)3n x . .

This determines the allowable values of the separation constant p,,.
For each value of un, (7.3.20) is still an eigenvalue problem. There is infinite

number of eigenvalues A for each n. Thus, A should be double subscripted, Anm. In
fact, from (7.3.20) the eigenvalues are

f ma 2
Anm -l`n= `H) m=1,2,3,..., (7.3.23)

where we must use a different index to represent the various y-eigenvalues (for each
value of n). The corresponding y-eigenfunction is

9nm(J) =sin
mayH

The separation constant Anm now can be determined from (7.3.23):

(Mlr
H )2,Anm

(Mlr

H )2- l L
nir)2

(7.3.24)

(7.3.25)

where n = 1, 2,3.... and m = 1, 2, 3, .... The two-dimensional eigenvalue problem
(7.3.9) has eigenvalues Ann, given by (7.3.25) and eigenfunctions given by the prod-
uct of the two one-dimensional eigenfunctions. Using the notation Onm (x, y) for the
two-dimensional eigenfunction corresponding to the eigenvalue Awn, we have

On.
nax may(x, y) = sin L sin H n= 1,2,3,...

m=1,2,3,.... (7.3.26)

Note how easily the homogeneous boundary conditions are satisfied.
From (7.3.25) we have explicitly shown that all the eigenvalues are positive (for

this problem). Thus, the time-dependent part of the product solutions are (as pre-
viously guessed) sin ct and cos c An,n t, oscillations with natural frequencies
c = c (na/L)2 + (ma/H)2, n = 1, 2, 3, ... and m = 1, 2, 3, .... In consider-
ing the displacement u, we have obtained two doubly infinite families of product so-
lutions: sin nax/L sin miry/H sin c An,nt and sin nax/L sin may/H cos ct.
As with the vibrating string, each of these special product solutions is known as a
mode of vibration. We sketch in Fig. 7.3.2 a representation of some of these modes.
In each we sketch level contours of displacement in dotted lines at a fixed t. As time
varies the shape stays the same, only the amplitude varies periodically. Each mode
is a standing wave. Curves along which the displacement is always zero in a mode
are called nodal curves and are sketched in solid lines. Cells are apparent with
neighboring cells always being out of phase; that is, when one cell has a positive
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Figure 7.3.2 Nodal curves for modes of a vibrating rectangular membrane.

displacement the neighbor has negative displacement (as represented by the + and
- signs).

The principle of superposition implies that we should consider a linear com-
bination of all possible product solutions. Thus, we must include both families,
summing over both n and m,

00 00

u(x, y, t) _ Ann sin
nirx

sin
miry

ra cos cJt
m=1 n=1

00 00

>B nax -pmwy-
nm sin L sin h sin+ C nm

m=1 n=1

(7.3.27)

The two families of coefficients An, and Bnm hopefully will be determined from



7.3. Vibrating Rectangular Membrane 285

the two initial conditions. For example, u(x, y, 0) = a(x, y) implies that

00 00 nirx miry
a(x, y) = > Anm sin L sin

H
. (7.3.28)

m=1 n=1

The series in (7.3.28) is an example of what is called a double Fourier series.
Instead of discussing the theory, we show one method to calculate Anm from
(7.3.28). (In Sec. 7.4 we will discuss a simpler way.) For fixed x, we note that
En__ 1 Anm sin n7rx/L depends only on m; furthermore, it must be the coefficients
of the Fourier sine series in y of a(x, y) over 0 < y < H. From our theory of Fourier
sine series, we therefore know that we may easily determine the coefficients:

f
_ - dyy) stna(x ,,

L H H
1n=

(7.3.29)

for each in. Equation (7.3.29) is valid for all x; the right-hand side is a function of
x (not y, because y is integrated from 0 to H). For each m, the left-hand side is a
Fourier sine series in x; in fact, it is the Fourier sine series of the right-hand side,
2/H f H a(x, y) sin miry/H dy. The coefficients of this Fourier sine series in x are
easily determined:

n

00 nlrxH miry2
Anm sin

2 fL 2 rH miry 1 n7rx
= L 1Y J

a(x, y) sin
H

dy I sin L dx.
o J

(7.3.30)

This may be simplified to one double integral over the entire rectangular region,
rather than two iterated one-dimensional integrals. In this manner we have deter-
mined one set of coefficients from one of the initial conditions.

The other coefficients Bnm can be determined in a similar way. In particular,
from (7.3.27), Su/8t(x, y, 0) = /3(x, y), which implies that

00 00

/3(x, y) _ c AnmBnm sin
-Lx

sin may
n_1 m=1

(7.3.31)

Thus, again using a Fourier sine series in y and a Fourier sine series in x, we obtain

4 / L / H/ miry n7rxsin -C nmBnm = LH f J i3(x, y) sin H L0 0
(7.3.32)

The solution of our initial value problem is the doubly infinite series given by
(7.3.27), where the coefficients are determined by (7.3.30) and (7.3.32).

We have shown that when all three independent variables separate for a partial
differential equation, there results three ordinary differential equations, two of which

dy dx.
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are eigenvalue problems. In general, for a partial differential equation in N variables
that completely separates. there will be N ordinary differential equations, N - 1 of
which are one-dimensional eigenvalue problems (to determine the N - 1 separation
constants). We have already shown this for N = 3 (this section) and N = 2.

EXERCISES 7.3

7.3.1. Consider the heat equation in a two-dimensional rectangular region 0 < x <
L,0<y<H,

W2au =
ay28t

kt8x + J
subject to the initial condition

u(x,y,0) = f(x,y)

Solve the initial value problem and analyze the temperature as t oo if
the boundary conditions are

* (a) u(0,y,t) = 0,

(b)
TX_

(0, y, t) = 0,

37 (0, y, t) = 0,
(d) u(0, y, t) = 0,
(e) u(0,y,t) = 0,

u(L, y, t) = 0, u(x, 0, t) = 0, u(x, H, t) = 0
az (L, y, t) = 0, ` (x, 0, t) = 0, 8u (x, H, t) = 0
az (L, y, t) = 0, u(x, 0, t) = 0, u(x, H, t) = 0

(L, y, t) = 0, au (x, 0, t) = 0, Ou (x, H, t) = 0
u(L, y, t) = 0, u(x, 0, t) = 0,

L 9u (x,H,t)+hu(x,H,t)=0. (h>0)

7.3.2. Consider the heat equation in a three-dimensional box-shaped region,
O<x<L, O<y<H, 0<z<W,

8u=k(02u+92u+52ul
C7X2 892 bZ2 J

subject to the initial condition

u(x,y,z,0) = f(x,y,z)

Solve the initial value problem and analyze the temperature as t -+ oo if
the boundary conditions are

(a) u(0,y,z,t) = 0, (x,0,z,t) = 0, "U(x,y,0,t) = 0,

u(L, y, z, t) = 0, (x, H, z, t) = 0, u(x, y, W, t) = 0
YY_

* (b)
TX_

(0, y, z, t) = 0, s-U (x, 0, z, t) = 0, OU (x, y, 0, t) = 0,

(L,y,z,t) =0, (x, H, z, t) =0, (x,y,W,t) =0
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7.3.3 Solve
z z

09U. =at
k,

axe
+ k2

2

on a rectangle (0 < x < L, 0 < y < H) subject to

u(x,y,0) = f(x,y)

u

(O, y,
t) = 0

(L, y, t) = 0
(x, 0, t)

(x, H, t)
ZTY

= 0
0.
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7.3.4. Consider the wave equation for a vibrating rectangular membrane (0 < x <
L, 0<y<H)

C72u 2 (0'2U a2ul
at2 - C 8x2 + ay2 J

subject to the initial conditions

u(x,y,0) = 0 and 5 (x,y,0) = f(x,y).

Solve the initial value problem if

(a) u(0, y, t) = 0, u(L, y, t) = 0, ay (x, 0, t) = 0, au (x, H, t) = 0

* (b) (0, y, t) = 0, (L, y, t) = 0, (x, 0, t) = 0, (x, H, t) = 0

7.3.5. Consider
2

z z
with k > 0.atz = c C + 22 1 - k

On

(a) Give a brief physical interpretation of this equation.
(b) Suppose that u(x, y, t) = f(x)g(y)h(t). What ordinary differential

equations are satisfied by f, g, and h?

7.3.6. Consider Laplace's equation

°2u = axe + ay?2 + az2 = 0

in a right cylinder whose base is arbitrarily shaped (see Fig. 7.3.3). The top
is z = H and the bottom is z = 0. Assume that

a u(x, y, 0) = 0
u(x, y, H) = f (x, y)

and u = 0 on the "lateral" sides.

(a) Separate the z-variable in general.

*(b) Solve for u(x, y, z) if the region is a rectangular box, 0 < x < L, 0 <
y<W,0<z<H.
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V Figure 7.3.3

7.3.7. If possible, solve Laplace's equation

2 2

°2u _ 8x2 + 8y2 + az22 = 0,

in a rectangular-shaped region, 0 < x < L, 0 < y < W, 0 < z < H, subject
to the boundary conditions

(a) Tx- (0, y, z) = 0,

(L, y, z) = 0,

(b) u(0,y,z) = 0,

u(L, y, z) = 0,

* (c) (0, y, z) = 0,

(L,y,z) = f(y,z),

u(L, y, z) = g(y, z),

u(x,0,z) = 0,

u(x, W, z) = 0,

u(x, 0, z) = 0,

u(x, W, z) = f(x,z),

ey(x,0,z) = 0,

ou(x, W, z) = 0,

P(x,0,z) = 0,

(x, W, z) = 0,

u(x,y,0) = f(x,y)

u(x, y, H) = 0

u(x,y,0) = 0,

u(x, y, H) = 0

8U(x,y,0) = 0

(x, y, H) = 0

(x, y, 0) = 0rz-

R- (x,y,H) = 0

Appendix to 7.3: Outline of Alternative Method to Separate
Variables
An alternative (and equivalent) method to separate variables for

82u u
,9t2 - c2 (&2U

8x2 + 9y2
oy2

)
is to assume product solutions of the form

u(x, y, t) = f (x)g(y)h(t)

(7.3.33)

(7.3.34)

By substituting (7.3.34) into (7.3.33) and dividing by c2 f (x)g(y)h(t), we obtain

1 1d2h 1d2f 1d2g
c2 h dt2 - f dx2 + g dye (7.3.35)
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after introducing a separation constant -A. This shows that

dh = -Ac2h. (7.3.36)

dt2

Equation (7.3.35) can be separated further,

(7.3.37)yf d22 =-Ag d

enabling a second separation constant - 2 to be introduced:

d2f
p= - f (7.3.38)

dx2

d29dye = (A - µ)9 (7.3.39)

In this way we have derived the same three ordinary differential equations (with
two separation constants).

7.4 Statements and Illustrations of Theorems
for the Eigenvalue Problem V20 + Aq = 0

In solving the heat equation and the wave equation in any two- or three-dimensional
region R (with constant physical properties, such as density), we have shown that
the spatial part m(x, y, z) of product form solutions u(x, y, z, t) = ¢(x, y, z)h(t)
satisfies the following multidimensional eigenvalue problem:

V20+AO=0,

with

(7.4.1)

(7.4.2)

on the entire boundary. Here a and b can depend on x, y, and z. Equation (7.4.1)
is known as the

Equation (7.4.1) can be generalized to

V (pV¢) + qi + AaO = 0, (7.4.3)
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where p, q and a are functions of x, y, and z. This eigenvalue problem (with
boundary condition (7.4.2)] is directly analogous to the one-dimensional regular
Sturm-Liouville eigenvalue problem. We prefer to deal with a somewhat simpler
case, (7.4.1), corresponding top = a = 1 and q = 0. We will state and prove results
for (7.4.1). We leave the discussion of (7.4.3) to some exercises (in Sec. 7.5).

Only for very simple geometries (for example, rectangles, see Sec. 7.3, or circles,
see Sec. 7.7) can (7.4.1) be solved explicitly. In other situations, we may have to
rely on numerical treatments. However, certain general properties of (7.4.1) are
quite useful, all analogous to results we understand for the one-dimensional Sturm-
Liouville problem. The reasons for the analogy will be discussed in the next section.
We begin by simply stating the theorems for the two-dimensional case of (7.4.1) and
(7.4.2):

1. All the eigenvalues are real.
2. There exists an infinite number of eigenvalues. There is a smallest eigen-

value, but no largest one.
3. Corresponding to an eigenvalue, there may be many eigenfunctions (unlike

regular Sturm-Liouville eigenvalue problems).
4. The eigenfunctions (k(x, y) form a "complete" set, meaning that any piece-

wise smooth function f (x, y) can be represented by a generalized Fourier
series of the eigenfunctions:

f(x,y)- aa0a(x,y). (7.4.4)

Here F_,\ a,,qa means a linear combination of all the eigenfunctions. The
series converges in the mean if the coefficients ax are chosen correctly.

5. Eigenfunctions belonging to different eigenvalues (al and A2) are orthog-
onal relative to the weight a(a = 1) over the entire region R. Mathemat-
ically,

dx dy = 0 if Al # A2, (7.4.5)
Rff

where ffR dx dy represents an integral over the entire region R. Fur-
thermore, different eigenfunctions belonging to the same eigenvalue can
be made orthogonal by the Gram-Schmidt process (see Sec. 7.5). Thus,
we may assume that (7.4.5) is valid even if Al = A2 as long as ¢a, is
independent of

6. An eigenvalue A can be related to the eigenfunction by the Rayleigh quo-
tient:

46O# . n dx + ffR I V4 I2 dx dy
7.4.6

ffR 02 dx dy ( )

The boundary conditions often simplify the boundary integral.
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Here n is a unit outward normal and f ds is a closed line integral over the entire
boundary of the plane two-dimensional region, where ds is the differential arc length.
The three-dimensional result is nearly identical; if f must be replaced by f f f and the
boundary line integral f ds must be replaced by the boundary surface integral j dS,
where dS is the differential surface area.

Example. We will prove some of these statements in Sec. 7.5. To understand
their meaning, we will show how the example of Sec. 7.3 illustrates most of these
theorems. For the vibrations of a rectangular (0 < x < L, 0 < y < H) membrane
with fixed zero boundary conditions, we have shown that the relevant eigenvalue
problem is

V20+a0=0
¢(0,y) = 0 0(x,0) = 0

b(L, y) = 0 cb(x, H) = 0.

We have determined that the eigenvalues and corresponding eigenfunctions are

nm = (L) 2 + (H
)2 n = 1, 2, 3, . . . withm = 1,2,3,...

nirx m7rynm(x, y) =sin L sin H

(7.4.8)

1. Real eigenvalues. In our calculation of the eigenvalues for (7.4.7) we as-
sumed that the eigenfunctions existed in a product form. Under that assump-
tion, (7.4.8) showed the eigenvalues to be real. Our theorem guarantees that
the eigenvalues will always be real.

2. Ordering of eigenvalues. There is a doubly infinite set of eigenvalues for
(7.4.7), namely An,n = (n7r/L)2 + (m7r/H)2 for n = 1,2,3,... and m =
1, 2, 3, .... There is a smallest eigenvalue, all = (7r/L)2 + (ir/H)2, but no
largest eigenvalue.

3. Multiple eigenvalues. For V24 + A0 = 0, our theorem states that, in gen-
eral, it is possible for there to be more than one eigenfunction corresponding
to the same eigenvalue. To illustrate this, consider (7.4.7) in the case in which
L = 2H. Then

with

2

nm = :j (n2 + 4m2)

(7.4.7)

(7.4.9)

nax miry
nm =Sin 2H

sin H (7.4.10)

We note that it is possible to have different eigenfunctions corresponding to
the same eigenvalue. For example, n = 4, m = 1 and n = 2, m = 2, yield the
same eigenvalue:

2

1\41 = 1\22 = 4H2 20.
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H

n=2
m=2

L=2H

H

n=4
m=1

L=2H

Figure 7.4.1 Nodal curves for eigenfunctions with the same
eigenvalue (symmetric).

For n = 4, m = 1, the eigenfunction is 041 = sin 4irx/2H sin iry/H, while
for n = 2, m = 2, ¢22 = sin 27rx/2H sin 2iry/H. The nodal curves for these
eigenfunctions are sketched in Fig. 7.4.1. They are different eigenfunctions
with the same eigenvalue, A = (1r2/4H2)20. It is not surprising that the
eigenvalue is the same, since a membrane vibrating in these modes has cells
of the same dimensions: one H x H/2 and the other H/2 x H. By symmetry
they will have the same natural frequency (and hence the same eigenvalue
since the natural frequency is cf ). In fact, in general by symmetry [as well
as by formula (7.4.9)] A(2n)m = A(2m)n

H

n=1
m=4

H

n=7
m=2

L = 2H L = 2H

Figure 7.4.2 Nodal curves for eigenfunction with the same
eigenvalue (asymmetric).

However, it is also possible for more than one eigenfunction to occur for rea-
sons having nothing to do with symmetry. For example, n = 1, m = 4
and n = 7, m = 2 yield the same eigenvalue: A14 = A72 = (ir2/4H2)65.
The corresponding eigenfunctions are 014 = sin irx/2H sin 47ry/H and 072 =
sin 71rx/2H sin 21ry/H, which are sketched in Fig. 7.4.2. It is only coincidental
that both of these shapes vibrate with the same frequency. In these situations,
it is possible for two eigenfunctions to correspond to the same eigenvalue. We
can find situations with even more multiplicities (or degeneracies). Since
A14 = A72 = (7r2/4H2)65, it is also true that A28 = A(14)4 = (7r2/4H2)260.
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However, by symmetry 1\28 = A(16)1 and \(14)4 = X87. Thus,

12 \
1\28 = A(1s)1 = \(14)4 = \87

C4HZ
J 260.

Here there are four eigenfunctions corresponding to the same eigenvalue.

4a. Series of eigenfunctions. According to this theorem, (7.4.4), the eigenfunc-
tions of V20 + AO = 0 can always be used to represent any piecewise smooth
function f (x, y). In our illustrative example, (7.4.7), Ea becomes a double
sum,

00 00

f (x, y) an,,, sin
n1rx

sin
miry.T N (7.4.11)

n=1 m=1

5. Orthogonality of eigenfunctions. We will show that the multidimensional
orthogonality of the eigenfunctions, as expressed by (7.4.5) for any two dif-
ferent eigenfunctions, can be used to determine the generalized Fourier coeffi-
cients in (7.4.4).1 We will do this in exactly the way we did for one-dimensional
Sturm-Liouville eigenfunction expansions. We simply multiply (7.4.4) by Ox;
and integrate over the entire region R:

JjfcbA. dx dy = as JIR 0a0a; dx dy. (7.4.12)

Since the eigenfunctions are all orthogonal to each other (with weight 1 be-
cause V20 + a0 = 0), it follows that

fIR'dx dy = a,; dx dy, (7.4.13)
R

aa. = ffR f la, dx dy
ffR .0a; dx dy

(7.4.14)

There is no difficulty in forming (7.4.14) from (7.4.13) since the denominator
of (7.4.14) is necessarily positive.

For the special case that occurs for a rectangle with fixed zero bound-
ary conditions, (7.4.7), the generalized Fourier coefficients anm are given by
(7.4.14):

fH f0 t
0 f(x, y) sin nLz sin N dx dy (anm Zn+rx Zma 7.4.15)j0 sin L sin dx dy

The integral in the denominator may be easily shown to equal (L/2)(H/2) by
calculating two one-dimensional integrals; in this way we rederive (7.3.30). In

1If there is more than one eigenfunction corresponding to the same eigenvalue, then we assume
that the eigenfunctions have been made orthogonal (if necessary by the Gram-Schmidt process).
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this case, (7.4.11), the generalized Fourier coefficient a,,,,, can be evaluated in
two equivalent ways:

(a) Using one two-dimensional orthogonality formula for the eigenfunctions
of V2¢+)4=0

(b) Using two one-dimensional orthogonality formulas

4b. Convergence. As with any Sturm-Liouville eigenvalue problem (see Sec.
5.10), a finite series of the eigenfunctions of V20 + ai = 0 may be used
to approximate a function f (x, y). In particular, we could show that if we
measure error in the mean-square sense,

2rr
(.i'E // - dx dy, (7.4.16)/

with weight function 1, then this mean-square error is minimized by the co-
efficients a., being chosen by (7.4.14), the generalized Fourier coefficients. It
is known that the approximation improves as the number of terms increases.
Furthermore, E -' 0 as all the eigenfunctions are included. We say that the
series Eaaa¢,, converges in the mean to f.

EXERCISES 7.4

7.4.1. Consider the eigenvalue problem

020+AO=0

(0, y) = 0 Ox, 0) = 0
(L, y) = 0 O(x, H) = 0.

*(a) Show that there is a doubly infinite set of eigenvalues.
(b) If L = H, show that most eigenvalues have more than one eigenfunc-

tion.

(c) Derive that the eigenfunctions are orthogonal in a two-dimensional
sense using two one-dimensional orthogonality relations.

7.4.2. Without using the explicit solution of (7.4.7), show that A > 0 from the
Rayleigh quotient, (7.4.6).

7.4.3. If necessary, see Sec. 7.5:

(a) Derive that ff (uV2v - vV2u) dx dy = f(uVv - vVu) . fn ds.
(b) From part (a), derive (7.4.5).

7.4.4. Derive (7.4.6). If necessary, see Sec. 7.6. [Hint: Multiply (7.4.1) by 0 and
integrate.]


