Class Time

Math 2250 Extra Credit Maple Project 7: Laplace Applications S2014

Maple lab 7 has five problems L7-1, L7-2, L7-3, L7-4, L7-5.

References: Code in maple appears in 2250mapleL7-S2014.txt at URL http://www.math.utah.edu/~gustafso/. This document: 2250mapleL7-S2014.pdf. Other related and required documents are available at the web site.

Problem L7-1. (Periodic Wave Plots)

In the table are examples of standard periodic waves used in engineering applications. The last table column has piecewise expressions h defined on the base interval [0, T].

Given an expression h on the base [0,T], then its T-periodic extension H to $(-\infty,\infty)$ is always H(x)=h(g(x)) where g(x)=x-T floor(x/T).

In terms of the triangular wave $\mathbf{twave}(x) = x - \mathbf{floor}(x)$, we may write $g(x) = T \mathbf{twave}(x/T)$. The triangular wave is remembered as a T-periodic train of ramps. The staircase function $\mathbf{floor}(x)$ used in the construction of the ramp train is **not periodic**; it is a standard math library function in major programming languages.

- (a) Plot all the periodic examples f1 to f7. Please choose an appropriate graph window for each.
- (b) Justify every maple expression in the table. Use the example below as a guide.

Example. To justify the first table entry, which contains math definition f1(x) and piecewise definition h1(x) for the square wave, define H1(x) to be the T-periodic extension of h1(x) to the whole real line, then plot H1(x)-f1(x) over three periods. The plot should be the zero function, i.e., the x-axis.

```
# Maple details for the example
opt1:=ytickmarks=3,color=red,labels=[x,'f(x)'],title="square wave";
opt2:=numpoints=100,thickness=2,discont=true;
opts:=opt1,opt2;
f1:=x->(-1)^(floor(x));
T:=2; # T = period = 2
g:=->x-T*floor(x/T);
h1:=x->piecewise(x<1,1,x<2,-1,0);
H1:=x->h1(g(x)); # T-periodic extension
plot(H1(x)-f1(x),x=0..3*T,opts); # Should plot as y=0 (the x-axis)
```

Maple Expression	Name	Τ	Piecewise Definition on $[0,T]$
f1:=x ->(-1)^floor(x);	square wave	2	$h_1(x) = \begin{cases} 1 & 0 \le x < 1, \\ -1 & 1 \le x < 2 \end{cases}$
f2:=x -> x-floor(x);	triangular wave	1	$h_2(x) = \begin{cases} x & 0 \le x < 1, \\ 0 & x = 1 \end{cases}$
f3:=x -> 1/2+(f2(x)-1/2)*f1(x);	sawtooth wave	2	$h_3(x) = \begin{cases} x & 0 \le x < 1, \\ 2 - x & 1 \le x < 2 \end{cases}$
f4:=x->abs(sin(x));	rectified sine	2π	$h_4(x) = \begin{cases} \sin(x) & 0 \le x < \pi, \\ -\sin(x) & \pi \le x < 2\pi \end{cases}$
f5:=x->(sin(x)+abs(sin(x)))/2;	half-wave rectified sine	2π	$h_5(x) = \begin{cases} \sin(x) & 0 \le x < \pi, \\ 0 & \pi \le x < 2\pi \end{cases}$
p:= x -> (2-x)*x: f6:=t->p(2*f2(x/2))*f1(x/2);	parabolic wave	4	$h_6(x) = \begin{cases} p(x) & 0 \le x < 2, \\ -p(x-2) & 2 \le x < 4 \end{cases}$
<pre>q:=x-> piecewise(x<pi,sin(x),x<2*pi,-1): f7:="x-">q(2*Pi*f2(x/2/Pi));</pi,sin(x),x<2*pi,-1):></pre>	piecewise sine pulse	2π	$h_7(x) = \begin{cases} \sin(x) & 0 \le x < \pi, \\ -1 & \pi \le x < 2\pi \end{cases}$

Problem L7-2. (Hammer Hit Oscillation)

An attached mass in an undamped spring-mass system is released from rest 1 meter below the equilibrium position. After 3 seconds of oscillation, the mass is struck by a hammer with force of 5 Newtons in a downward direction.

(a) Assume the model

$$\frac{d^2x}{dt^2} + 9x = 5\delta(t-3); x(0) = 1, \frac{dx}{dt}(0) = 0,$$

where x(t) denotes the displacement from equilibrium at time t and $\delta(t-3)$ denotes the Dirac delta function. Determine, using the dsolve example below, a piecewise-defined formula for x(t). Plot x(t) for $0 \le t \le 7$.

- (b) Solve the following hammer-hit models DE1 to DE4, given as maple expressions, using the dsolve example for DE, IC as a template for the solution.
- (c) Express the symbolic answer for each of DE1 to DE4 as a piecewise-defined function. Interpret each answer physically.

```
 \begin{aligned} &\text{DE:=diff}(\mathbf{x}(t),t,t) + 9*\mathbf{x}(t) = 3*\text{Dirac}(t-3); & \text{IC:=x}(0) = 1, D(\mathbf{x})(0) = 0; \\ &\text{dsolve}(\{\text{DE,IC}\},\mathbf{x}(t),\text{method=laplace}); \\ &\text{\# x}(t) = \cos(3*t) + \text{Heaviside}(t-3)*\sin(-9+3*t) \\ &\text{convert}(\%,\text{piecewise}); &\text{combine}(\%,\text{trig}); \\ &\text{\# x}(t) = \cos(3*t) &\text{for } t < 3,\cos(3*t) + \sin(-9+3*t) &\text{for } t > 3, &\text{undef } t = 3. \end{aligned} \\ &\text{DE1:=diff}(\mathbf{x}(t),t,t) + 9*\mathbf{x}(t) = 5*\text{Dirac}(t-3); & \text{IC1:=x}(0) = -1, D(\mathbf{x})(0) = 1; \\ &\text{DE2:=diff}(\mathbf{x}(t),t,t) + 9*\mathbf{x}(t) = 6*\text{Dirac}(t-3); & \text{IC2:=x}(0) = 1, D(\mathbf{x})(0) = -1; \\ &\text{DE3:=diff}(\mathbf{x}(t),t,t) + 9*\mathbf{x}(t) = 8*\text{Dirac}(t-3); & \text{IC3:=x}(0) = 0, D(\mathbf{x})(0) = -1; \\ &\text{DE4:=diff}(\mathbf{x}(t),t,t) + 9*\mathbf{x}(t) = 9*\text{Dirac}(t-3); & \text{IC4:=x}(0) = 1, D(\mathbf{x})(0) = 0; \end{aligned}
```

Problem L7-3. (Maple Solution of Initial Value Problems)

- (a) Solve the IVP $y'' y' 2y = 5\sin x$, y(0) = 1, y'(0) = -1. Please use the inttrans package. Show the steps in Laplace's method, entirely in maple, with explicit use of maple functions laplace(f,t,s) and invlaplace(F,s,t).
- (b) Solve the pulse-input IVP

$$3y'' + 3y' + 2y = \begin{cases} 0 & \text{for} \quad t < 0, \\ 3 & \text{for} \quad 0 \le t < 4, \\ 0 & \text{for} \quad t \ge 4, \end{cases}$$

with initial data y(0) = 0, y'(0) = 0. Use any maple method. Express your answer as a piecewise-defined function.

(c) Solve the IVP $y'' + y = 1 + \delta(t - 2\pi)$, y(0) = 1, y'(0) = 0. Use maple dsolve. Express the answer as a piecewise-defined function.

Problem L7-4. (Expressions for Periodic Waves)

Let h be the T-periodic extension to $-\infty < x < \infty$ of f(x), which is only defined on $0 \le x \le T$. Define T = 2 and $f(x) = 2/10 + (7/10) \sin x + (1/10) \cos 5x$ on [0, T].

- (a) Plot h(t) on the interval [-10, 10]. Use the composition formula h(t) = f(g(t)), where g(t) = t T floor (t/T).
- (b) Compute the Laplace of h(t) directly from the periodic function theorem, using the sample maple code

$$int(f(g(t))*exp(-s*t),t=0..T)/(1-exp(-s*T));$$

Replacing f(x) by $(1/10)\cos(5x)$ should give the answer below. The answer for $2/10 + (7/10)\sin x + (1/10)\cos 5x$ has many more terms.

$$\frac{1}{10} \frac{se^{2s} - s\cos(10) + 5\sin(10)}{(s^2 + 25)(-1 + e^{2s})}$$

(c) Maple directly finds the laplace of $g(t) = t - T \operatorname{floor}(t/T)$, but not the laplace of h(t) = f(g(t)). Truncating $f(x) = \frac{2}{10} + \frac{7}{10}\sin(x) + \frac{1}{10}\cos(5x)$ to the constant term 2/10 allows maple to compute the Laplace of f(g(t)). But the sine and cosine terms do not evaluate.

To get help from maple, the function h(t) is expressed as a series of pulses. The laplace of the series h(t) can be computed, provided $\frac{1}{10}\cos(5x)$ is removed from f(x). This example shows that the periodic function theorem is a basic tool in Laplace theory. Here's the success story for this example:

```
pulse:=(t,a,b)->Heaviside(t-a)-Heaviside(t-b);
f := x -> 2/10+7/10*sin(x): h:= t->sum(f(t-n*T)*pulse(t,n*T,n*T+T),n=0..infinity);
inttrans[laplace](h(t),t,s);
eval(%) assuming n::positive;
```

Type this code into maple and report the answer. Check the answer by comparing terms in the solution to part (b) above.

REMARK. Here's what does not work. Beware of testing the code below: it uses about 800mb memory and may finish with no answer. If you find a way to resolve the difficulty for all versions of maple, then please send email, detailing how to do it.

```
pulse:=(t,a,b)->Heaviside(t-a)-Heaviside(t-b);
f := x -> (1/10)*cos(5*x):
h:= t->sum(f(t-n*T)*pulse(t,n*T,n*T+T),n=0..infinity);
inttrans[laplace](h(t),t,s);
eval(%) assuming n::positive;
```

Problem L7-5. (Resolvent Method)

The Laplace resolvent formula for the problem $\mathbf{u}' = A\mathbf{u}$, $\mathbf{u}(0) = \mathbf{u}_0$ is

$$\mathcal{L}(\mathbf{u}(t)) = (sI - A)^{-1}\mathbf{u}_0.$$

For example, $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ gives

$$\mathcal{L}(\mathbf{u}(t))) = \begin{pmatrix} s-1 & 0 \\ 0 & s-2 \end{pmatrix}^{-1} \mathbf{u}_0 = \begin{pmatrix} \frac{1}{s-1} & 0 \\ 0 & \frac{1}{s-2} \end{pmatrix} \mathbf{u}_0 = \begin{pmatrix} \mathcal{L}(e^t) & 0 \\ 0 & \mathcal{L}(e^{2t}) \end{pmatrix} \mathbf{u}_0,$$

which implies $\mathbf{u}(t) = \begin{pmatrix} e^t & 0 \\ 0 & e^{2t} \end{pmatrix} \mathbf{u}_0$.

The answers for the components of **u** are αe^t , βe^{2t} , according to the following maple code:

```
with(LinearAlgebra):with(inttrans):
A:=Matrix([[1,0],[0,2]]);
u0:=Vector([alpha,beta]);
B:=(s*IdentityMatrix(2)-A)^(-1).u0;
u:=Map(invlaplace,B,s,t);
```

Compute the solution $\mathbf{u}(t)$ using the resolvent formula for the following cases.

(a)
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
, $\mathbf{u}(0) = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$

(b)
$$A = \begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix}$$
, $\mathbf{u}(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

(c)
$$A = \begin{pmatrix} 2 & -5 \\ 4 & -2 \end{pmatrix}$$
, $\mathbf{u}(0) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$