
Sample Quiz 12

Problem 1. Piecewise Continuous Inputs

Consider a passenger SUV on a one-day trip from Salt Lake City to Pine Bluffs, Wyoming, on
the Nebraska border. The route is I-80 E, 471 miles through Utah and Wyoming. Google maps
estimates 6 hours and 52 minutes driving time. The table below shows the distances, time, road
segment and average speed with total trip time 7 hours and 42 minutes. Cities enroute reduce
the freeway speed by 10 mph, the trip time effect not shown in the table.

Miles Minutes Speed mph Road Segment Posted limit mph

18.1 20 54.3 Parley’s Walmart to Kimball 65

11.3 12 56.5 Kimball to Wanship 65− 55

9.1 13 42 Wanship to Coalville 70

5.7 7 48.9 Coalville to Echo Dam 70

16.5 18 55 Echo Dam to 75 mph sign 70

39 36 65 75 mph sign to Evanston 75

308 269 68.7 Evanston to Laramie 75

50.6 50 61.2 Laramie to Cheyenne 75

43 37 69.7 Cheyenne to Pine bluffs 75

The velocity function for the SUV is approximated by

Vpc(t) =



Speed mph Time interval minutes Road segment

54.3 0 < t < 20 Parley’s Walmart to Kimball
56.5 20 < t < 32 Kimball to Wanship
42.0 32 < t < 45 Wanship to Coalville
48.9 45 < t < 52 Coalville to Echo Dam
55.0 52 < t < 70 Echo Dam to 75 mph sign
65.0 70 < t < 106 75 mph sign to Evanston
68.7 106 < t < 375 Evanston to Laramie
61.2 375 < t < 425 Laramie to Cheyenne
69.7 425 < t < 462 Cheyenne to Pine bluffs
0.00 462 < t <∞ SUV stopped

The velocity function Vpc(t) is piecewise continuous, because it has the general form

f(t) =


f1(t) t1 < t < t2
f2(t) t2 < t < t3

...
...

fn(t) tn < t < tn+1

where functions f1, f2, . . . , fn are continuous on the whole real line −∞ < t <∞. We don’t
define f(t) at division points, because of many possible ways to make the definition. As long as
these values are not used, then it will make no difference. Both right and left hand limits exist
at a division point. For Laplace theory, we like the definition f(tk) = limh→0+ f(tk + h), which
makes the function right-continuous.

The Problem. The SUV travels from t = 0 to t = 462
60 = 7.7 hours. The odometer trip

meter reading x(t) is in miles (assume x(0) = 0). The function Vpc(t) is an approximation to the
speedometer reading. Laplace’s method can solve the approximation model

dx

dt
= Vpc(60t), x(0) = 0, x in miles, t in hours,

obtaining x(t) =
∫ t
0 Vpc(60w)dw, the same result as the method of quadrature. Show the details.

Then display the piecewise linear continuous trip meter reading x(t).
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Solution.

Method of Quadrature. The meaning of the differential equation is that x′(t) is piecewise
continuous. We want x(t) to be continuous, because it is the odometer trip meter reading. But
x′(t) cannot be continuous, if we require dx

dt = Vpc(60t), because the right side is piecewise defined
and discontinuous at division points.

Theorem (Fundamental Theorem of Calculus)
If f ′(x) is piecewise continuous and f(x) is continuous on a ≤ x ≤ b, then

∫ b
a f
′(x)dx = f(b)− f(a).

The theorem implies that the method of quadrature works for the equation x′(t) = Vpc(60t). The
quadrature method gives the correct answer

x(t) =

∫ t

0
Vpc(60w)dw.

Another plan is to split x′(t) = Vpc(60t) into 10 simple equations, x′ = 54.3, x(0) = 0 on 0 ≤ t < 20
being the first equation. The next equation is x′ = 56.5, x(20) = x0, on 20 < t < 32. To make x(t)
continuous, we must choose x0 = 1086, which is the value at the division point t = 20 assumed by
the first problem (x′ = 54.3, x(0) = 0 on 0 ≤ t < 20). This tedious process has to be continued for
all 10 segments. The result is that x(t) is piecewise linear between division points.

Laplace’s Method. The piecewise continuous input Vpc(60t) is of exponential order, because it
is zero after t = 462/60. Laplace theory says it has a Laplace transform L(Vpc(60t)). Assuming a
continuous solution x(t), with x′(t) piecewise continuous, then the equation to be satisfied is

sL(x(t))− x(0) = L(x′(t)) = L(Vpc(60t)).

The Laplace integral theorem implies

L(x(t)) =
1

s
L(Vpc(60t)) = L

(∫ t

0
Vpc(60w)dw

)
.

Lerch’s theorem then implies that the symbol L cancel from each side, giving the odometer trip meter
reading in terms of the integral of the piecewise continuous input Vpc(60t):

x(t) =

∫ t

0
Vpc(60w)dw.

We’ll use technology to program and evaluate the integral, even though it can be done by hand. The
plan is to plot the trip meter reading, then comment on the slow and fast segments of the route,
by using a clever plot involving the average speed. The last display is the piecewise linear trip meter
reading x(t).

Maple

Xpc:=t->piecewise(t<0,0,

t < 20 ,54.3, t < 32, 56.5, t < 45, 42, t < 52, 48.9,

t < 70 ,55, t < 106, 65, t < 375, 68.7, t < 425, 61.2,

t < 462, 69.7, 0.0);

X:=t->int(Xpc(60*w),w=0..t);

plot(X(t),t=0..480/60); # Almost a straight line.

Average Speed

Define the average value of a function f(w) on a ≤ w ≤ b by 1
b−a

∫ b
a f(w)dw. Then the average

speed in the example is ∫ 462/60
0 Vpc(60w)dw

462/60
= 65.14956710.
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A Clever Plot

An average driver would try to maintain 65.15 mph. The clever plot will create a graphic of x(t)−65.15t
on interval 0 ≤ t ≤ T1, where T1 is the 471 mile trip time at 65.15 mph.

# Maple code

Xpc:=t->piecewise(t<0,0,

t < 20 ,54.3, t < 32, 56.5, t < 45, 42, t < 52, 48.9,

t < 70 ,55, t < 106, 65, t < 375, 68.7, t < 425, 61.2,

t < 462, 69.7, 0.0);

X:=t->int(Xpc(60*w),w=0..t);

AVEspeed:=X(462/60)/(462/60); # AVEspeed = 65.14956710 mph

T1:=solve(AVEspeed*t=471,t); # T1 = 7.229518491 hours

plot(X(t)-AVEspeed*t,t=0..T1);

We see from the graphic that segments of the road cause a slowdown of up to 15 mph, but for a brief
interval it is possible to exceed the average speed, due to a 75 mph speed limit.

# Maple code for piecewise linear display

X:=t->int(Xpc(60*w),w=0..t);

convert(X(t),piecewise,t):evalf(%,4);

Trip meter at time t =



0.0 t ≤ 0.0
54.30 t t ≤ 0.3333
56.30 t− 0.6667 t ≤ 0.53
42.0 t+ 6.960 t ≤ 0.75
48.90 t+ 1.785 t ≤ 0.8667
55.0 t− 3.502 t ≤ 1.167
65.0 t− 15.17 t ≤ 1.767
68.70 t− 21.70 t ≤ 6.25
61.20 t+ 25.17 t ≤ 7.083
69.70 t− 35.04 t ≤ 7.7
501.7 7.7 < t
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Problem 2. Switches and Impulses

Laplace’s method solves differential equations. It is the preferred
method for solving equations containing switches or impulses.

Unit Step Define u(t− a) =

{
1 t ≥ a,
0 t < a.

. It is a switch, turned on at t = a.

Ramp Define ramp(t − a) = (t − a)u(t − a) =

{
t− a t ≥ a,
0 t < a.

, whose graph shape is

a continuous ramp at 45-degree incline starting at t = a.

Unit Pulse Define pulse(t, a, b) =

{
1 a ≤ t < b,
0 otherwise

= u(t−a)−u(t−b). The switch is ON

at time t = a and then OFF at time t = b.

Impulse of a Force

Define the impulse of an applied force F (t) on time interval a ≤ t ≤ b by the equation

Impulse of F =

∫ b

a
F (t)dt =

(∫ b
a F (t)dt

b− a

)
(b− a) = Average Force × Duration Time.

Dirac Unit Impulse

A Dirac impulse acts like a hammer hit, a brief injection of energy into a system. It is a special
idealization of a real hammer hit, in which only the impulse of the force is deemed important, and
not its magnitude nor duration.

Define the Dirac Unit Impulse by the equation δ(t−a) =
du

dt
(t−a), where u(t−a) is the unit step.

Symbol δ makes sense only under an integral sign, and the integral in question must be a generalized
Riemann integral (definition pending), with new evaluation rules. Symbol δ is an abbreviation like etc
or e.g., because it abbreviates a paragraph of descriptive text.

• Symbol Mδ(t− a) represents an ideal impulse of magnitude M at time t = a. Value M is the
change in momentum, but Mδ(t−a) contains no detail about the applied force or the duraction.
A common force approximation for a hammer hit of very small duration 2h and impulse M is
Dirac’s approximation

Fh(t) =
M

2h
pulse(t, a− h, a+ h).

• The fundamental equation is
∫∞
−∞ F (x)δ(x− a)dx = F (a). Symbol δ(t− a) is not manipulated

as an ordinary function, but regarded as du(t− a)/dt in a Riemann-Stieltjes integral.

THEOREM (Second Shifting Theorem). Let f(t) and g(t) be piecewise continuous and of expo-
nential order. Then for a ≥ 0,

Forward table Backward table

L (f(t− a)u(t− a)) = e−as L(f(t)) e−as L(f(t)) = L (f(t− a)u(t− a))

L(g(t)u(t− a)) = e−as L
(
g(t)|t=t+a

)
e−as L(f(t)) = L

(
f(t)u(t)|t=t−a

)
.
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The Problem. Solve the following by Laplace methods.

(a) Forward table. Compute the Laplace integral for the unit step, ramp and pulse, in these special
cases:

(1) L(10u(t− π)) (2) L(ramp(t− 2π)), (3) L(10 pulse(t, 3, 5)).

(b) Backward table. Find f(t) in the following special cases.

(1) L(f) =
5e−3s

s
(2) L(f) =

e−4s

s2
(3) L(f) =

5

s

(
e−2s − e−3s

)
.

(c) Dirac Impulse and the Second Shifting theorem. Solve the following forward table problems.

(1) L(10δ(t− π)), (2) L(5δ(t− 1) + 10δ(t− 2) + 15δ(t− 3)), (3) L((t− π)δ(t− π)).

The sum of Dirac impulses in (2) is called an impulse train.

Solutions

Solution (a). The forward second shifting theorem applies.

(1) L(10u(t − π)) = L (g(t)u(t− a)) where g(t) = 10 and a = π. Then L(10u(t − π)) =

L (g(t)u(t− a)) = e−as L
(
g(t)|t=t+a

)
= e−πs L

(
10|t=t+π

)
= 10

s e
−πs.

(2) L(ramp(t− 2π)) = L((t− 2π)u(t− 2π)) = L
(
tu(t)|t=t−2π)

)
= e−2πs L(t) = 1

s2
e−2πs.

(3) L(10 pulse(t, 3, 5)) = 10L(u(t− 3)− u(t− 5)) = 10
s (e3s − e−5s).

Solution (b). Presence of an exponential e−as signals unit step u(t − a) in the answer, the main
tool being the backward second shifting theorem.

(1) L(f) = 5e−3s

s = e−3s 5s = e−3s L(5) = L(5u(t)|t=t+3) = L(5u(t − 3)). Lerch implies f =
5u(t− 3).

(2) L(f) = e−4s

s2
= e−as

L (t) where a = 4. Then L(f) = e−as
L (t) = L( tu(t)|t=t−a) = L((t− 4)u(t−

4)) = L(ramp(t− 4)). Lerch implies f = ramp(t− 4).

(3) L(f) = e−2s 5s − e−3s 5s = L(5u(t − 2)) − L(5u(t − 3)) = L(5 pulse(t, 2, 3)). Lerch implies
f = 5 pulse(t, 2, 3).

Solution (c). The main result for Dirac unit impulse δ is the equation∫ ∞
)

g(t)δ(t− a)dt = g(a),

valid for g(t) continuous on 0 ≤ t < ∞. When g(t) = e−st, then the equation implies the Laplace
formula L(δ(t− a)) = e−as.

(1) L(10δ(t− π)) = 10e−πs, by the displayed equation with g(t) = 10e−st, or by using linearity and
the formula L(δ(t− a)) = e−as.

(2) L(5δ(t − 1) + 10δ(t − 2) + 15δ(t − 3)) = 5L(δ(t − 1)) + 10L(δ(t − 2)) + 15L(δ(t − 3)) =
5e−s + 10e−2s + 15e−3s.

(3) L((t − π)δ(t − 2π)) =
∫∞
0 (t − π)estδ(t − 2π)dt = (t− π)e−st

∣∣
t=2π = πe−2πs, using g(t) =

(t− π)e−st and a = 2π in the equation.
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The Riemann-Stieltjes Integral

Definition

The Riemann-Stieltjes integral of a real-valued function f of a real variable with respect to a real
monotone non-decreasing function g is denoted by

∫ b

a
f(x) dg(x)

and defined to be the limit, as the mesh of the partition

P = {a = x0 < x1 < · · · < xn = b}

of the interval [a, b] approaches zero, of the approximating RiemannStieltjes sum

S(P, f, g) =
n−1∑
i=0

f(ci)(g(xi+1)− g(xi))

where ci is in the i-th subinterval [xi, xi+1]. The two functions f and g are respectively called the
integrand and the integrator.

The limit is a number A, the value of the Riemann-Stieltjes integral. The meaning of the limit: Given
ε > 0, then there exists δ > 0 such that for every partition P = {a = x0 < x1 < · · · < xn = b} with
mesh(P ) = max 0≤i<n (xi+1 − xi) < δ, and for every choice of points ci in [xi, xi+1],

|S(P, f, g)−A| < ε.
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Problem 3. Experiment to Find the Transfer Function h(t)

Consider a second order problem

ax′′(t) + bx′(t) + cx(t) = f(t)

which by Laplace theory has a particular solution solution defined as the convolution of the transfer
function h(t) with the input f(t),

xp(t) =

∫ t

0
f(w)h(t− w)dw.

Examined in this problem is another way to find h(t), which is the system response to a Dirac unit
impulse with zero data. Then h(t) is the solution of

ah′′(t) + bh′(t) + ch(t) = δ(t), h(0) = h′(0) = 0.

The Problem. Assume a, b, c are constants and define g(t) =
∫ t
0 h(w)dw.

(a) Show that g(0) = g′(0) = 0, which means g has zero data.

(b) Let u(t) be the unit step. Argue that g is the solution of

ag′′(t) + bg′(t) + cg(t) = u(t), g(0) = g′(0) = 0.

The fundamental theorem of calculus says that h(t) = g′(t). Therefore, to compute the
transfer function h(t), find the response g(t) to the unit step with zero data, followed by
computing the derivative g′(t), which equals h(t).

The experimental impact is important. Turning on a switch creates a unit step, generally
easier than designing a hammer hit.

(c) Illustrate the method for finding the transfer function h(t) in the special case

x′′(t) + 2x′(t) + 5x(t) = f(t).

Solutions

(a) g(0) =
∫ 0
0 h(w)dw = 0, g′(0) = h′(0) = 0.

(b) Let u(t) be the unit step. Initial data was decided in part (a). The Laplace applied to
ag′′(t) + bg′(t) + cg(t) = u(t) gives (as2 + bs+ c)L(g) = L(u(t)). Then L(g) = L(h(t))L(u(t)) =

L(h(t))1s L
(∫ t

0 h(r)du
)

by the integral theorem. Lerch’s theorem then says g(t) =
∫ t
0 h(r)dr.

(c) For equation x′′(t) + 2x′(t) + 5x(t) = f(t) we replace x(t) by g(t) and f(t) by the unit step
u(t), then solve g′′(t) + 2g′(t) + 5g(t) = u(t), obtaining L(g) = 1

s
1

s2+2s+5
= L(15 −

1
10e
−t(2 cos(2t) +

sin(2t))). Then g(t) = 1
5 −

1
10e
−t(2 ∗ cos(2t) + sin(2t)) and h(t) = g′(t) = 1

2e
−t sin(2t).
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