
Quiz 8

Please attempt all parts of the three problems. You will receive full credit for a problem, if it is
60 percent completed.

Quiz 8, Problem 1. RLC-Circuit

The Problem. Suppose E = sin(40t), L = 1 H, R = 50 Ω and C = 0.01 F. The model
for the charge Q(t) is LQ′′ +RQ′ + 1

C
Q = E(t).

(a) Differentiate the charge model and substitute I = dQ
dt

to obtain the current model
I ′′ + 50I ′ + 100I = 40 cos(40t).

(b) Find the reactance S = ωL− 1
ωC

, where ω = 40 is the input frequency, the natural
frequency of E = sin(40t) and E ′ = 40 cos(40t). Then find the impedance Z =√
S2 +R2.

(c) The steady-state current is I(t) = A cos(40t) + B sin(40t) for some constants A,B.
Substitute I = A cos(40t) +B sin(40t) into the current model (a) and solve for A,B.

Answers: A = − 6
625

, B = 8
625

.

(d) Write the answer in (c) in phase-amplitude form I = I0 sin(40t− δ) with I0 > 0 and
δ ≥ 0. Then compute the time lag δ/ω.

Answers: I0 = 0.016, δ = arctan(0.75), δ/ω = 0.0160875.

References

Course slides on Electric Circuits. Edwards-Penney Differential Equations and Boundary Value
Problems, section 3.7, course supplement. EP or EPH sections 5.4, 5.5, 5.6.
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Quiz 8, Problem 2. Picard’s Theorem and Spring-Mass Models

Picard-Lindelöf Theorem. Let ~f(x, ~y) be defined for

|x−x0| ≤ h, ‖~y− ~y0‖ ≤ k, with ~f and ∂ ~f
∂~y continuous. Then

for some constant H, 0 < H < h, the problem{
~y ′(x) = ~f(x, ~y(x)), |x− x0| < H,
~y(x0) = ~y0

has a unique solution ~y(x) defined on the smaller interval
|x− x0| < H. Emile Picard

The Problem. The second order problem
u′′ + 2u′ + 17u = 100,
u(0) = 1,
u′(0) = −1

(1)

is a spring-mass model with damping and constant external force. The variables are time
x in seconds and elongation u(x) in meters, measured from equilibrium. Coefficients in the
equation represent mass m = 1 kg, a viscous damping constant c = 2, Hooke’s constant
k = 17 and external force F (x) = 100.

Convert the scalar initial value problem into a vector problem, to which Picard’s vector
theorem applies, by supplying details for the parts below.

(a) The conversion uses the position-velocity substitution y1 = u(x), y2 = u′(x), where
y1, y2 are the invented components of vector ~y. Then the initial data u(0) = 1, u′(0) = −1
converts to the vector initial data

~y(0) =

(
1
−1

)
.

(b) Differentiate the equations y1 = u(x), y2 = u′(x) in order to find the scalar system of two
differential equations, known as a dynamical system:

y′1 = y2, y′2 = −17y1 − 2y2 + 100.

(c) The derivative of vector function ~y(x) is written ~y ′(x) or d~y
dx(x). It is obtained by compo-

nentwise differentiation: ~y ′(x) =

(
y′1
y′2

)
. The vector differential equation model of scalar

system (1) is 
~y ′(x) =

(
0 1

−17 −2

)
~y(x) +

(
0

100

)
,

~y(0) =

(
1
−1

)
.

(2)

(d) System (2) fits the hypothesis of Picard’s theorem, using symbols

~f(x, ~y) =

(
0 1

−17 −2

)
~y(x) +

(
0

100

)
, ~y0 =

(
1
−1

)
.

The components of vector function ~f are continuously differentiable in variables x, y1, y2,

therefore ~f and ∂ ~f
∂~y are continuous.
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Quiz 8, Problem 3. Solving Higher Order Constant-Coefficient Equations

The Algorithm applies to constant-coefficient homogeneous linear differential equations
of order N , for example equations like

y′′ + 16y = 0, y′′′′ + 4y′′ = 0,
d5y

dx5
+ 2y′′′ + y′′ = 0.

1. Find the N th degree characteristic equation by Euler’s substitution y = erx. For
instance, y′′+16y = 0 has characteristic equation r2+16 = 0, a polynomial equation
of degree N = 2.

2. Find all real roots and all complex conjugate pairs of roots satisfying the characteristic
equation. List the N roots according to multiplicity.

3. Construct N distinct Euler solution atoms from the list of roots. Then the general
solution of the differential equation is a linear combination of the Euler solution atoms
with arbitrary coefficients c1, c2, c3, . . ..

The solution space is then S = span(the N Euler solution atoms).

Examples: Constructing Euler Solution Atoms from roots.

Three roots 0, 0, 0 produce three atoms e0x, xe0x, x2e0x or 1, x, x2.

Three roots 0, 0, 2 produce three atoms e0x, xe0x, e2x.

Two complex conjugate roots 2± 3i produce two atoms e2x cos(3x), e2x sin(3x).

Explained. The Euler substitution y = erx produces a solution of the differential
equation when r is a complex root of the characteristic equation. Complex exponen-
tials are not used directly. Ever. They are replaced by sines and cosines times real
exponentials, which are Euler solution atoms. Euler’s formula eiθ = cos θ + i sin θ

implies e2x cos(3x) = e2x e
3xi+e−3xi

2 = 1
2e

2x+3xi+ 1
2e

2x−3xi, which is a linear combina-
tion of complex exponentials, solutions of the differential equation because of Euler’s
substitution. Superposition implies e2x cos(3x) is a solution. Similar for e2x sin(3x).
The independent pair e2x cos(3x), e2x sin(3x) replaces both e(2+3i)x and e(2−3i)x.

Four complex conjugate roots listed according to multiplicity as 2±3i, 2±3i produce four
atoms e2x cos(3x), e2x sin(3x), xe2x cos(3x), xe2x sin(3x).

Seven roots 1, 1, 3, 3, 3,±3i produce seven atoms ex, xex, e3x, xe3x, x2e3x, cos(3x), sin(3x).

Two conjugate complex roots a±bi (b > 0) arising from roots of (r−a)2+b2 = 0 produce
two atoms eax cos(bx), eax sin(bx).

The Problem

Solve for the general solution or the particular solution satisfying initial conditions.

(a) y′′ + 4y′ = 0

(b) y′′ + 4y = 0

(c) y′′′ + 4y′ = 0

(d) y′′ + 4y = 0, y(0) = 1, y′(0) = 2

(e) y′′′′ + 81y′′ = 0, y(0) = y′(0) = 0, y′′(0) = y′′′(0) = 1

(f) The characteristic equation is (r + 1)2(r2 − 1) = 0.

(g) The characteristic equation is (r − 1)2(r2 − 1)2((r + 1)2 + 9) = 0.

(h) The characteristic equation roots, listed according to multiplicity, are 0, 0,−1, 2, 2, 3+4i, 3−
4i, 3 + 4i, 3− 4i.
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