Systems of Differential Equations and Laplace's Method

- Solving $\boldsymbol{x}^{\prime}=\boldsymbol{C} \boldsymbol{x}$
- The Resolvent
- An Illustration for $\mathrm{x}^{\prime}=C \mathbf{x}$

Solving $\boldsymbol{x}^{\prime}=\boldsymbol{C x}$
Apply L to each side to obtain $L\left(\mathrm{x}^{\prime}\right)=C L(\mathrm{x})$. Use the parts rule

$$
L\left(\mathrm{x}^{\prime}\right)=s L(x)-\mathrm{x}(0)
$$

to obtain

$$
\begin{array}{ll}
s L(\mathrm{x})-\mathrm{x}(0) & =L(C \mathrm{x}) \\
s L(\mathrm{x})-L(C \mathrm{x}) & =\mathrm{x}(0) \\
s I L(\mathrm{x})-C L(\mathrm{x}) & =\mathrm{x}(0) \\
(s I-C) L(\mathrm{x}) & =\mathrm{x}(0) .
\end{array}
$$

Resolvent

The inverse of $\boldsymbol{s} \boldsymbol{I}-\boldsymbol{C}$ is called the resolvent, a term invented to describe the equation

$$
L(\mathrm{x}(t))=(s I-C)^{-1} \mathrm{x}(0) .
$$

An Illustration for $\mathrm{x}^{\prime}=\boldsymbol{C x}$
Define $C=\left(\begin{array}{ll}2 & 3 \\ 0 & 4\end{array}\right), \mathrm{x}=\binom{x_{1}}{x_{2}}, \mathrm{x}(0)=\binom{1}{2}$, which gives a scalar initial value problem

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=2 x_{1}(t)+3 x_{2}(t), \\
x_{2}^{\prime}(t)=1 \\
x_{1}(0)=1, \\
x_{2}(0)=2
\end{array}\right.
$$

Then the adjugate formula $A^{-1}=\frac{\operatorname{adj}(A)}{\operatorname{det}(\boldsymbol{A})}$ gives the resolvent

$$
(s I-C)^{-1}=\frac{1}{(s-2)(s-4)}\left(\begin{array}{rr}
s-4 & 3 \\
0 & s-2
\end{array}\right) .
$$

The Laplace transform of the solution is then

$$
L(\mathrm{x}(t))=(s I-C)^{-1}\binom{1}{2}=\binom{\frac{s+2}{(s-2)(s-4)}}{\frac{2}{s-4}}
$$

Partial fractions and use of the backward Laplace table imply

$$
\mathrm{x}(t)=\binom{3 e^{4 t}-2 e^{2 t}}{2 e^{4 t}}
$$

