
1 Heaviside’s Method with Laplace Examples

The method solves an equation like

L(f(t)) =
2s

(s+ 1)(s2 + 1)

for the t-expression f(t) = −e−t+cos t+sin t. The details in Heaviside’s method
involve a sequence of easy-to-learn college algebra steps. This practical method
was popularized by the English electrical engineer Oliver Heaviside (1850–1925).

More precisely, Heaviside’s method systematically converts a polynomial
quotient

a0 + a1s+ · · ·+ ans
n

b0 + b1s+ · · ·+ bmsm
(1)

into the form L(f(t)) for some expression f(t). It is assumed that a0,. . . , an,
b0,. . . , bm are constants and the polynomial quotient (1) has limit zero at s =∞.

1.1 Partial Fraction Theory

In college algebra, it is shown that a rational function (1) can be expressed
as the sum of partial fractions, which are fractions with a constant in the
numerator, and a denominator having just one root. Such terms have the form

A

(s− s0)k
. (2)

The numerator in (2) is a real or complex constant A and the denominator has
exactly one root s = s0. The power (s− s0)k must divide the denominator
in (1).

Assume fraction (1) has real coefficients. If s0 in (2) is real, then A is real.
If s0 = α+ iβ in (2) is complex, then (s− s0)k also appears, where s0 = α− iβ
is the complex conjugate of s0. The corresponding terms in (2) turn out to
be complex conjugates of one another, which can be combined in terms of real
numbers B and C as

A

(s− s0)k
+

A

(s− s0)k
=

B + C s

((s− α)2 + β2)k
. (3)

This real form is preferred over the complex fractions on the left, because
Laplace tables typically contain only real formulae.

Simple Roots. Assume that (1) has real coefficients and the denominator of
the fraction (1) has distinct real roots s1, . . . , sN and distinct complex
roots α1 ± iβ1, . . . , αM ± iβM . The partial fraction expansion of (1) is a sum
given in terms of real constants Ap, Bq, Cq by

a0 + a1s+ · · ·+ ans
n

b0 + b1s+ · · ·+ bmsm
=

N∑
p=1

Ap

s− sp
+

M∑
q=1

Bq + Cq(s− αq)
(s− αq)2 + β2

q

. (4)
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Multiple Roots. Assume (1) has real coefficients and the denominator of
the fraction (1) has possibly multiple roots. Let Np be the multiplicity of
real root sp and let Mq be the multiplicity of complex root αq + iβq (βq > 0),
1 ≤ p ≤ N , 1 ≤ q ≤ M . The partial fraction expansion of (1) is given in terms
of real constants Ap,k, Bq,k, Cq,k by

N∑
p=1

∑
1≤k≤Np

Ap,k

(s− sp)k
+

M∑
q=1

∑
1≤k≤Mq

Bq,k + Cq,k(s− αq)
((s− αq)2 + β2

q )k
. (5)

Summary. The theory for simple roots and multiple roots can be distilled as
follows.

A polynomial quotient p/q with limit zero at infinity has a
unique expansion into partial fractions. A partial fraction is
either a constant divided by a divisor of q having exactly one
root, or else a linear function divided by a real divisor of q,
having exactly one complex conjugate pair of roots.

1.2 A Failsafe Method

Consider the expansion in partial fractions

s− 1
s(s+ 1)2(s2 + 1)

=
A

s
+

B

s+ 1
+

C

(s+ 1)2
+
Ds+ E

s2 + 1
. (6)

The five undetermined real constants A through E are found by clearing the
fractions, that is, multiply (6) by the denominator on the left to obtain the
polynomial equation

s− 1 = A(s+ 1)2(s2 + 1) +Bs(s+ 1)(s2 + 1)
+Cs(s2 + 1) + (Ds+ E)s(s+ 1)2. (7)

Next, five different values of s are substituted into (7) to obtain equations for
the five unknowns A through E. We always use the roots of the denominator
to start: s = 0, s = −1, s = i, s = −i are the roots of s(s + 1)2(s2 + 1) = 0 .
Each complex root results in two equations, by taking real and imaginary parts.
The complex conjugate root s = −i is not used, because it duplicates equations
already obtained from s = i. The three roots s = 0, s = −1, s = i give only
four equations, so we invent another value s = 1 to get the fifth equation:

−1 = A (s = 0)
−2 = −2C − 2(−D + E) (s = −1)

i− 1 = (Di+ E)i(i+ 1)2 (s = i)
0 = 8A+ 4B + 2C + 4(D + E) (s = 1)

(8)

Because D and E are real, the complex equation (s = i) becomes two equations,
as follows.
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i− 1 = (Di+ E)i(i2 + 2i+ 1) Expand power.

i− 1 = −2Di− 2E Simplify using i2 = −1.

1 = −2D Equate imaginary parts.

−1 = −2E Equate real parts.

Solving the 5×5 system, the answers are A = −1, B = 2, C = 0, D = −1/2,
E = 1/2.

1.3 Heaviside’s Coverup Method

The method applies only to the case of distinct roots of the denominator in (1).
Extensions to multiple-root cases can be made; see page 4.

To illustrate Oliver Heaviside’s ideas, consider the problem details

2s+ 1
s(s− 1)(s+ 1)

=
A

s
+

B

s− 1
+

C

s+ 1
(9)

= L(A) + L(Bet) + L(Ce−t)

= L(A+Bet + Ce−t)

The first line (9) uses college algebra partial fractions. The second and third
lines use the basic Laplace table and linearity of L.

[. mysterious details]Mysterious Details Oliver Heaviside proposed to find in
(9) the constant C = − 1

2 by a cover–up method:

2s+ 1
s(s− 1)

∣∣∣∣∣
s+1 =0

=
C

.

The instructions are to cover–up the matching factors (s + 1) on the left and
right with box (Heaviside used two fingertips), then evaluate on the left
at the root s which causes the box contents to be zero. The other terms on the
right are replaced by zero.

To justify Heaviside’s cover–up method, clear the fraction C/(s+ 1), that
is, multiply (9) by the denominator s+ 1 of the partial fraction C/(s + 1) to
obtain the partially-cleared fraction relation

(2s+ 1) (s+ 1)

s(s− 1) (s+ 1)
=
A (s+ 1)

s
+
B (s+ 1)

s− 1
+
C (s+ 1)

(s+ 1)
.

Set (s+ 1) = 0 in the display. Cancellations left and right plus annihilation
of two terms on the right gives Heaviside’s prescription

2s+ 1
s(s− 1)

∣∣∣∣
s+1=0

= C.
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The factor (s+ 1) in (9) is by no means special: the same procedure applies to
find A and B. The method works for denominators with simple roots, that is,
no repeated roots are allowed.

Heaviside’s method in words:

To determine A in a given partial fraction A
s−s0

, multiply the

relation by (s− s0), which partially clears the fraction. Sub-
stitute for s via equation s− s0 = 0.

Extension to Multiple Roots. Heaviside’s method can be extended to the
case of repeated roots. The basic idea is to factor–out the repeats. To illustrate,
consider the partial fraction expansion details

R =
1

(s+ 1)2(s+ 2)
A sample rational function having repeated
roots.

=
1

s+ 1

(
1

(s+ 1)(s+ 2)

)
Factor–out the repeats.

=
1

s+ 1

(
1

s+ 1
+
−1
s+ 2

)
Apply the cover–up method to the simple
root fraction.

=
1

(s+ 1)2
+

−1
(s+ 1)(s+ 2)

Multiply.

=
1

(s+ 1)2
+
−1
s+ 1

+
1

s+ 2
Apply the cover–up method to the last
fraction on the right.

Terms with only one root in the denominator are already partial fractions.
Thus the work centers on expansion of quotients in which the denominator has
two or more roots.

Special Methods. Heaviside’s method has a useful extension for the case of
roots of multiplicity two. To illustrate, consider these details:

R =
1

(s+ 1)2(s+ 2)
1 A fraction with multiple roots.

=
A

s+ 1
+

B

(s+ 1)2
+

C

s+ 2
2 See equation (5), page 2.

=
A

s+ 1
+

1
(s+ 1)2

+
1

s+ 2
3 Find B and C by Heaviside’s cover–up

method.

=
−1
s+ 1

+
1

(s+ 1)2
+

1
s+ 2

4 Details below.

We discuss 4 details. Multiply the equation 1 = 2 by s+ 1 to partially
clear fractions, the same step as the cover-up method:

1
(s+ 1)(s+ 2)

= A+
B

s+ 1
+
C(s+ 1)
s+ 2

.

4



We don’t substitute s + 1 = 0, because it gives infinity for the second term.
Instead, set s = ∞ to get the equation 0 = A + C. Because C = 1 from 3 ,
then A = −1.

The illustration works for one root of multiplicity two, because s = ∞ will
resolve the coefficient not found by the cover–up method.

In general, if the denominator in (1) has a root s0 of multiplicity k, then the
partial fraction expansion contains terms

A1

s− s0
+

A2

(s− s0)2
+ · · ·+ Ak

(s− s0)k
.

Heaviside’s cover–up method directly finds Ak, but not A1 to Ak−1.

Cover-up Method and Complex Numbers. Consider the partial fraction
expansion

10
(s+ 1)(s2 + 9)

=
A

s+ 1
+
Bs+ C

s2 + 9
.

The symbols A, B, C are real. The value of A can be found directly by the cover-
up method, giving A = 1. To find B and C, multiply the fraction expansion
by s2 + 9, in order to partially clear fractions, then formally set s2 + 9 = 0 to
obtain the two equations

10
s+ 1

= Bs+ C, s2 + 9 = 0.

The method applies the identical idea used for one real root. By clearing frac-
tions in the first, the equations become

10 = Bs2 + Cs+Bs+ C, s2 + 9 = 0.

Substitute s2 = −9 into the first equation to give the linear equation

10 = (−9B + C) + (B + C)s.

Because this linear equation has two complex roots s = ±3i, then real constants
B, C satisfy the 2× 2 system

−9B + C = 10,
B + C = 0.

Solving gives B = −1, C = 1.
The same method applies especially to fractions with 3-term denominators,

like s2 + s + 1. The only change made in the details is the replacement s2 →
−s−1. By repeated application of s2 = −s−1, the first equation can be distilled
into one linear equation in s with two roots. As before, a 2× 2 system results.
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1.4 Examples

Example 1.1 (Partial Fractions I) Show the details of the partial fraction
expansion

s3 + 2s2 + 2s+ 5
(s− 1)(s2 + 4)(s2 + 2s+ 2)

=
2/5
s− 1

+
1/2
s2 + 4

− 1
10

7 + 4 s
s2 + 2 s+ 2

.

Solution:
Background. The problem originates as equality 5 = 6 in the sequence of Example
1.3, page 8, which solves for x(t) using the method of partial fractions:

5 L(x) =
s3 + 2s2 + 2s + 5

(s− 1)(s2 + 4)(s2 + 2s + 2)

6 =
2/5

s− 1
+

1/2

s2 + 4
− 1

10

7 + 4 s

s2 + 2 s + 2

College algebra detail. College algebra partial fractions theory says that there
exist real constants A, B, C, D, E satisfying the identity

s3 + 2s2 + 2s + 5

(s− 1)(s2 + 4)(s2 + 2s + 2)
=

A

s− 1
+

B + Cs

s2 + 4
+

D + Es

s2 + 2 s + 2
.

As explained on page 1, the complex conjugate roots ±2i and −1±i are not represented
as terms c/(s− s0), but in the combined real form seen in the above display, which is
suited for use with Laplace tables.

The failsafe method applies to find the constants. In this method, the fractions
are cleared to obtain the polynomial relation

s3 + 2s2 + 2s + 5 = A(s2 + 4)(s2 + 2s + 2)

+(B + Cs)(s− 1)(s2 + 2s + 2)
+(D + Es)(s− 1)(s2 + 4).

The roots of the denominator (s− 1)(s2 + 4)(s2 + 2s + 2) to be inserted into the pre-
vious equation are s = 1, s = 2i, s = −1 + i. The conjugate roots s = −2i and
s = −1− i are not used. Each complex root generates two equations, by equating real
and imaginary parts, therefore there will be 5 equations in 5 unknowns. Substitution
of s = 1, s = 2i, s = −1 + i gives three equations

s = 1 10 = 25A,
s = 2i −4i− 3 = (B + 2iC)(2i− 1)(−4 + 4i + 2),
s = −1 + i 5 = (D − E + Ei)(−2 + i)(2− 2(−1 + i)).

Writing each expanded complex equation in terms of its real and imaginary parts,
explained in detail below, gives 5 equations

s = 1 2 = 5A,
s = 2i −3 = −6B + 16C,
s = 2i −4 = −8B − 12C,
s = −1 + i 5 = −6D − 2E,
s = −1 + i 0 = 8D − 14E.

The equations are solved to give A = 2/5, B = 1/2, C = 0, D = −7/10, E = −2/5
(details for B, C below).
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Complex equation to two real equations. It is an algebraic mystery how
exactly the complex equation

−4i− 3 = (B + 2iC)(2i− 1)(−4 + 4i + 2)

gets converted into two real equations. The process is explained here.
First, the complex equation is expanded, as though it is a polynomial in variable

i, to give the steps

−4i− 3 = (B + 2iC)(2i− 1)(−2 + 4i)
= (B + 2iC)(−4i + 2 + 8i2 − 4i) Expand.
= (B + 2iC)(−6− 8i) Use i2 = −1.
= −6B − 12iC − 8Bi + 16C Expand, use i2 = −1.
= (−6B + 16C) + (−8B − 12C)i Convert to form x + yi.

Next, the two sides are compared. Because B and C are real, then the real part of the
right side is (−6B + 16C) and the imaginary part of the right side is (−8B − 12C).
Equating matching parts on each side gives the equations

−6B + 16C = −3,
−8B − 12C = −4,

which is a 2× 2 linear system for the unknowns B, C.
Solving the 2× 2 system. Such a system with a unique solution can be solved

by Cramer’s rule, matrix inversion or elimination. The answer: B = 1/2, C = 0.
The easiest method turns out to be elimination. Multiply the first equation by 4

and the second equation by 3, then subtract to obtain C = 0. Then the first equation
is −6B + 0 = −3, implying B = 1/2.

Example 1.2 (Partial Fractions II) Verify the partial fraction expansion

s5 + 8 s4 + 23 s3 + 37 s2 + 29 s+ 10
(s+ 1)2 (s2 + s+ 1)2

=
1

s+ 1
+

2
(s+ 1)2

+
3

s2 + s+ 1

+
4 + 5 s

(s2 + s+ 1)2

Solution:
Basic partial fraction theory implies that there are real constants a, b, c, d, e, f
satisfying the equation

s5 + 8 s4 + 23 s3 + 37 s2 + 29 s + 10

(s + 1)2 (s2 + s + 1)2
=

a

s + 1
+

b

(s + 1)2

+
c + ds

s2 + s + 1
+

e + f s

(s2 + s + 1)2

(10)

The failsafe method applies to clear fractions and replace the fractional equation by
the polynomial relation

s5 + 8 s4 + 23 s3 + 37 s2 + 29 s + 10 = a(s + 1)(s2 + s + 1)2

+b(s2 + s + 1)2

+(c + ds)(s2 + s + 1)(s + 1)2

+(e + f s)(s + 1)2
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However, the prognosis for the resultant algebra is grime: only three of the six required
equations can be obtained by substitution of the roots (s = −1, s = −1/2 + i

√
3/2) of

the denominator. We abandon the idea, because of the complexity of the 6×6 system
of linear equations required to solve for a through f .

Instead, the fraction on the left of (10) is written with repeated roots factored out,
as follows:

1

(s + 1)(s2 + s + 1)

(
p(x)

(s + 1)(s2 + s + 1)

)
,

p(x) = s5 + 8 s4 + 23 s3 + 37 s2 + 29 s + 10.

Long division gives the formula

p(x)

(s + 1)(s2 + s + 1)
= s2 + 6s + 9.

Therefore, the fraction on the left of (10) can be written as

p(x)

(s + 1)2(s2 + s + 1)2
=

(s + 3)2

(s + 1)(s2 + s + 1)
.

Example 1.3 (Third Order Initial Value Problem) Solve the third order
initial value problem

x′′′ − x′′ + 4x′ − 4x = 5e−t sin t,
x(0) = 0, x′(0) = x′′(0) = 1.

Solution:
The answer is

x(t) =
2

5
et +

1

4
sin 2t− 3

10
e−t sin t− 2

5
e−t cos t.

Method. Apply L to the differential equation. In steps 1 to 3 the Laplace integral
of x(t) is isolated, by applying linearity of L, integration by parts L(f ′) = sL(f)−f(0)
and the basic Laplace table.

L(x′′′)− L(x′′) + 4L(x′)− 4L(x) = 5L(e−t sin t) 1

(s3L(x)− s− 1)− (s2L(x)− 1)

+4(sL(x))− 4L(x) =
5

(s + 1)2 + 1
2

(s3 − s2 + 4s− 4)L(x) = 5
1

(s + 1)2 + 1
+ s 3

Steps 5 and 6 use the college algebra theory of partial fractions, the details of

which appear in Example 1.1, page 6. Steps 7 and 8 write the partial fraction

expansion in terms of Laplace table entries. Step 9 converts the s-expressions, which
are basic Laplace table entries, into Laplace integral expressions. Algebraically, we
replace s-expressions by expressions in symbols L and t.

L(x) =

5
(s+1)2+1

+ s

s3 − s2 + 4s− 4
4

=
s3 + 2s2 + 2s + 5

(s− 1)(s2 + 4)(s2 + 2s + 2)
5
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=
2/5

s− 1
+

1/2

s2 + 4
− 1/10

7 + 4 s

s2 + 2 s + 2
6

=
2/5

s− 1
+

1/2

s2 + 4
− 1/10

3 + 4(s + 1)

(s + 1)2 + 1
7

=
2/5

s− 1
+

1/2

s2 + 4
− 3/10

(s + 1)2 + 1
− (2/5)(s + 1)

(s + 1)2 + 1
8

= L
(

2

5
et +

1

4
sin 2t− 3

10
e−t sin t− 2

5
e−t cos t

)
9

The last step 10 applies Lerch’s cancellation theorem to the equation 4 = 9 .

x(t) =
2

5
et +

1

4
sin 2t− 3

10
e−t sin t− 2

5
e−t cos t 10

Example 1.4 (Second Order System) Solve for x(t) and y(t) in the 2nd
order system of linear differential equations

2x′′ − x′ + 9x− y′′ − y′ − 3y = 0, x(0) = x′(0) = 1,
2′′ + x′ + 7x− y′′ + y′ − 5y = 0, y(0) = y′(0) = 0.

Solution: The answer is

x(t) =
1

3
et +

2

3
cos(2 t) +

1

3
sin(2 t),

y(t) =
2

3
et − 2

3
cos(2 t)− 1

3
sin(2 t).

Transform. The intent of steps 1 and 2 is to transform the initial value problem

into two equations in two unknowns. Used repeatedly in 1 is integration by parts

L(f ′) = sL(f)−f(0). No Laplace tables were used. In 2 the substitutions x1 = L(x),
x2 = L(y) are made to produce two equations in the two unknowns x1, x2.

(2s2 − s + 9)L(x) + (−s2 − s− 3)L(y) = 1 + 2s,
(2s2 + s + 7)L(x) + (−s2 + s− 5)L(y) = 3 + 2s,

1

(2s2 − s + 9)x1 + (−s2 − s− 3)x2 = 1 + 2s,
(2s2 + s + 7)x1 + (−s2 + s− 5)x2 = 3 + 2s.

2

Step 3 uses Cramer’s rule to compute the answers x1, x2 to the equations ax1 +
bx2 = e, cx1 + dx2 = f as the determinant fractions

x1 =

∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ , x2 =

∣∣∣∣ a e
c f

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ .
The variable names x1, x2 stand for the Laplace integrals of the unknowns x(t), y(t),
respectively. The answers, following a calculation:

x1 =
s2 + 2/3

s3 − s2 + 4 s− 4
,

x2 =
10/3

s3 − s2 + 4 s− 4
.

3
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Step 4 writes each fraction resulting from Cramer’s rule as a partial fraction expan-

sion suited for reverse Laplace table look-up. Step 5 does the table look-up and

prepares for step 6 to apply Lerch’s cancellation law, in order to display the answers
x(t), y(t).

x1 =
1/3

s− 1
+

2

3

s

s2 + 4
+

1

3

2

s2 + 4
,

x2 =
2/3

s− 1
− 2

3

s

s2 + 4
− 1

3

2

s2 + 4
.

4


L(x(t)) = L

(
1

3
et +

2

3
cos(2 t) +

1

3
sin(2 t)

)
,

L(y(t)) = L
(

2

3
et − 2

3
cos(2 t)− 1

3
sin(2 t)

)
.

5


x(t) =

1

3
et +

2

3
cos(2 t) +

1

3
sin(2 t),

y(t) =
2

3
et − 2

3
cos(2 t)− 1

3
sin(2 t).

6

Partial fraction details. We will show how to obtain the expansion

s2 + 2/3

s3 − s2 + 4 s− 4
=

1/3

s− 1
+

2

3

s

s2 + 4
+

1

3

2

s2 + 4
.

The denominator s3 − s2 + 4 s− 4 factors into s − 1 times s2 + 4. Partial fraction
theory implies that there is an expansion with real coefficients A, B, C of the form

s2 + 2/3

(s− 1)(s2 + 4)
=

A

s− 1
+

Bs + C

s2 + 4
.

We will verify A = 1/3, B = 2/3, C = 2/3. Clear the fractions to obtain the
polynomial equation

s2 + 2/3 = A(s2 + 4) + (Bs + C)(s− 1).

Instead of using s = 1 and s = 2i, which are roots of the denominator, we shall use
s = 1, s = 0, s = −1 to get a real 3× 3 system for variables A, B, C:

s = 1 : 1 + 2/3 = A(1 + 4) + 0,
s = 0 : 0 + 2/3 = A(4) + C(−1),
s = −1 : 1 + 2/3 = A(1 + 4) + (−B + C)(−2).

Write this system as an augmented matrix G with variables A, B, C assigned to the
first three columns of G:

G =

(
5 0 0 5/3
4 0 −1 2/3
5 2 −2 5/3

)

Using computer assist, calculate

rref(G) =

(
1 0 0 1/3
0 1 0 2/3
0 0 1 2/3

)
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Then A, B, C are the last column entries of rref(G), which verifies the partial fraction
expansion.

Heaviside cover-up detail. It is possible to rapidly check that A = 1/3 using
the cover-up method. Less obvious is that the cover-up method also applies to the
fraction with complex roots.

The idea is to multiply the fraction decomposition by s2 + 4 to partially clear the
fractions and then set s2 + 4 = 0. This process formally sets s equal to one of the two
roots s = ±2i. We avoid complex numbers entirely by solving for B, C in the pair of
equations

s2 + 2/3

s− 1
= A(0) + (Bs + C), s2 + 4 = 0.

Because s2 = −4, the first equality is simplified to
−4 + 2/3

s− 1
= Bs + C. Swap sides of

the equation, then cross-multiply to obtain Bs2 + Cs−Bs−C = −10/3 and then use
s2 = −4 again to simplify to (−B + C)s + (−4B − C) = −10/3. Because this linear
equation in variable s has two solutions, then −B + C = 0 and −4B − C = −10/3.
Solve this 2× 2 system by elimination to obtain B = C = 2/3.

We review the algebraic method. First, we found two equations in symbols s, B,
C. Next, symbol s is eliminated to give two equations in symbols B, C. Finally, the
2× 2 system for B, C is solved.
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