Systems of Differential Equations Elementary Methods

- Translating a Scalar System to a Vector-Matrix System
- Solving a Triangular System $\mathbf{u}' = A\mathbf{u}$
- ullet Solving a System $\mathbf{u}' = A\mathbf{u}$ with Non-Triangular A
- How to Solve a Non-Triangular System $\mathbf{u}' = A\mathbf{u}$
- A Non-Triangular Illustration

Translating a Scalar System to a Vector-Matrix System

Consider the scalar system

$$egin{array}{rll} u_1'(t) &=& 2u_1(t) \ + \ 3u_2(t), \ u_2'(t) &=& 4u_1(t) \ + \ 5u_2(t). \end{array}$$

Define

$$\mathrm{u}=\left(egin{array}{c} u_1(t)\ u_2(t) \end{array}
ight), \ \ A=\left(egin{array}{c} 2&3\ 4&5 \end{array}
ight).$$

Then matrix multiply rules imply that the scalar system is equivalent to the vector-matrix equation

$$u' = Au$$

Solving a Triangular System

An illustration. Let us solve $\mathbf{u}' = A\mathbf{u}$ for a triangular matrix

$$oldsymbol{A} = \left(egin{array}{cc} 1 & 0 \ 2 & 1 \end{array}
ight).$$

The matrix equation $\mathbf{u}' = A\mathbf{u}$ represents two differential equations:

$$egin{array}{rcl} u_1' &=& u_1, \ u_2' &=& 2u_1 \ + \ u_2, \end{array}$$

The first equation $u_1' = u_1$ has solution $u_1 = c_1 e^t$. The second equation becomes

$$u_{2}^{\prime}=2c_{1}e^{t}+u_{2},$$

which is a first order linear differential equation with solution $u_2 = (2c_1t + c_2)e^t$. The general solution of $\mathbf{u}' = A\mathbf{u}$ is

$$u_1=c_1e^t, \ \ u_2=2c_1te^{-t}+c_2e^t.$$

Solving a System u' = Au with Non-Triangular A

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be non-triangular. Then both $b \neq 0$ and $c \neq 0$ must be satisfied. The scalar form of the system $\mathbf{u}' = A\mathbf{u}$ is

$$egin{array}{rcl} u_1' &=& a u_1 + b u_2, \ u_2' &=& c u_1 + d u_2. \end{array}$$

Theorem 1 (Solving Non-Triangular u' = Au)

Solutions u_1 , u_2 of u' = Au are linear combinations of the list of atoms obtained from the roots r of the quadratic equation

$$\det(A - rI) = 0.$$

Proof of the Non-Triangular Theorem

The method is to differentiate the first equation, then use the equations to eliminate u_2, u'_2 . This results in a second order differential equation for u_1 . The same differential equation is satisfied also for u_2 . The details:

$$egin{aligned} u_1''&=au_1'+bu_2'\ &=au_1'+bcu_1+bdu_2\ &=au_1'+bcu_1+d(u_1'-au_1)\ &=(a+d)u_1'+(bc-ad)u_1 \end{aligned}$$

Differentiate the first equation. Use equation $u'_2 = cu_1 + du_2$. Use equation $u'_1 = au_1 + bu_2$. Second order equation for u_1 found

The characteristic equation is $r^2 - (a + d)r + (bc - ad) = 0$, which is exactly the expansion of det(A - rI) = 0. The proof is complete.

How to Solve a Non-Triangular System u' = Au

• Finding u_1 . The two roots r_1 , r_2 of the characteristic equation produce two solution atoms,

In case the roots are distinct, the solution atoms are $e^{r_1 t}$, $e^{r_2 t}$. Then u_1 is a linear combination of atoms: $u_1 = c_1 e^{r_1 t} + c_2 e^{r_2 t}$.

• Finding u_2 . Isolate u_2 in the first differential equation by division:

$$u_2 = rac{1}{b}(u_1' - a u_1).$$

The two formulas for u_1 , u_2 represent the general solution of the system $\mathbf{u}' = A\mathbf{u}$, when A is 2×2 .

A Non-Triangular Illustration

Let us solve $\mathbf{u}' = A\mathbf{u}$ when A is the non-triangular matrix

$$A=\left(egin{array}{cc} 1 & 2 \ 2 & 1 \end{array}
ight).$$

The characteristic polynomial is $\det(A - rI) = (1 - r)^2 - 4 = (r + 1)(r - 3)$. Euler's theorem implies solution atoms e^{-t} , e^{3t} . Then u_1 is a linear combination of the solution atoms, $u_1 = c_1 e^{-t} + c_2 e^{3t}$. The first equation $u'_1 = u_1 + 2u_2$ implies

$$egin{array}{rcl} u_2 &=& rac{1}{2}(u_1'-u_1) \ &=& -c_1e^{-t}+c_2e^{3t} \end{array}$$

The general solution of $\mathbf{u}' = A\mathbf{u}$ is then

$$u_1=c_1e^{-t}+c_2e^{3t}, \ \ u_2=-c_1e^{-t}+c_2e^{3t}.$$