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The subject of the chapter is the first order differential equation y′ =
f(x, y). The study includes closed-form solution formulas for special
equations, numerical solutions and some applications to science and en-
gineering.

2.1 The Method of Quadrature

The method of quadrature refers to the technique of integrating both
sides of an equation, hoping thereby to extract a solution formula. The
name quadrature originates in geometry, where quadrature means find-
ing area, a task overtaken in modern mathematics by integration. The
naming convention is obeyed by maple, which lists it as its first method
for solving differential equations. Below, Theorem 1, proved on page 71,
isolates the requirements which make this method successful.
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Theorem 1 (Quadrature)
Let F (x) be continuous on a < x < b. Assume a < x0 < b and −∞ <
y0 <∞. Then the initial value problem

y′ = F (x), y(x0) = y0(1)

has the unique solution

y(x) = y0 +
∫ x

x0

F (t)dt.(2)

To apply the method of quadrature means: (i) Calculate a candidate
solution formula by the working rule below; (ii) Verify the solution.

To solve y′ = f(x, y) when f is independent of y, integrate
on variable x across the equation.

River Crossing

A boat crosses a river at fixed speed with power applied perpendicular to
the shoreline. Is it possible to estimate the boat’s downstream location?

The answer is yes. The problem’s variables are

x Distance from shore,

y Distance downstream,

t Time in hours,

w Width of the river,

vb Boat velocity (dx/dt),

vr River velocity (dy/dt).

The calculus chain rule dy/dx = (dy/dt)/(dx/dt) is applied, using the
symbols vr and vb instead of dy/dt and dx/dt, to give the model equation

dy

dx
=
vr

vb
.(3)

Stream Velocity. The downstream river velocity will be approximated
by vr = kx(w − x), where k > 0 is a constant. This equation gives
velocity vr = 0 at the two shores x = 0 and x = w, while the maximum
stream velocity at the center x = w/2 is (see page 71)

vc =
kw2

4
.(4)

Special River-Crossing Model. The model equation (3) using vr =
kx(w−x) and the constant k defined by (4) give the initial value problem

dy

dx
=

4vc

vbw2
x(w − x), y(0) = 0.(5)
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The solution of (5) by the method of quadrature is

y =
4vc

vbw2

(
−1

3
x3 +

1
2
wx2

)
,(6)

where w is the river’s width, vc is the river’s midstream velocity and vb

is the boat’s velocity. In particular, the boat’s downstream drift on
the opposite shore is 2

3w(vc/vb). See Technical Details page 71.

Examples

1 Example (Quadrature) Solve y′ = 3ex, y(0) = 0.

Solution:
Candidate solution. The working rule is applied.

y′(t) = 3et Copy the equation, x replaced by t.∫ x
0
y′(t)dt =

∫ x
0

3etdt Integrate across 0 ≤ t ≤ x.

y(x)− y(0) = 3ex − 3 Fundamental theorem of calculus, page 707.

y(x) = 3ex − 3 Candidate solution found. Used y(0) = 0.

Verify solution. Let y = 3ex − 3. The initial condition y(0) = 0 follows from
e0 = 1. To verify the differential equation, the steps are:

LHS = y′ Left side of the differential equation.

= (3ex − 3)′ Substitute the expression for y.

= 3ex − 0 Sum rule, constant rule and (eu)′ = u′eu.

= RHS Solution verified.

2 Example (River Crossing) A boat crosses a mile-wide river at 3 miles per
hour with power applied perpendicular to the shoreline. The river’s mid-
stream velocity is 10 miles per hour. Find the transit time and the down-
stream drift to the opposite shore.

Solution: The answers, justified below, are 20 minutes and 20/9 miles.

Transit time. This is the time it takes to reach the opposite shore. The
layman answer of 20 minutes is correct, because the boat goes 3 miles in one
hour, hence 1 mile in 1/3 of an hour, perpendicular to the shoreline.

Downstream drift. This is the value y(1), where y is the solution of equation
(5), with vc = 10, vb = 3, w = 1, all distances in miles. The special model is

dy

dx
=

40
3
x(1− x), y(0) = 0.

The solution given by equation (6) is y = 40
3

(
− 1

3x
3 + 1

2x
2
)

and the downstream
drift is then y(1) = 20/9 miles. This answer is 2/3 of the layman’s answer of
(1/3)(10) miles; the explanation is that the boat is pushed downstream at a
variable rate from 0 to 10 miles per hour.
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Details and Proofs

Proof of Theorem 1:

Uniqueness. Let y(x) be any solution of (1). It will be shown that y(x) is
given by the solution formula (2).

y(x) = y(0) +
∫ x
x0
y′(t)dt Fundamental theorem of calculus, page 707.

= y0 +
∫ x
x0
F (t)dt Use (1).

Verification of the Solution. Let y(x) be given by solution formula (2). It
will be shown that y(x) solves initial value problem (1).

y′(x) =
(
y0 +

∫ x
x0
F (t)dt

)′
Compute the derivative from (2).

= F (x) Apply the fundamental theorem of calculus.

The initial condition is verified in a similar manner:

y(x0) = y0 +
∫ x0

x0
F (t)dt Apply (2) with x = x0.

= y0 The integral is zero:
∫ a
a
F (x)dx = 0.

The proof is complete.

Technical Details for (4): The maximum of a continuously differentiable
function f(x) on 0 ≤ x ≤ w can be found by locating the critical points (i.e.,
where f ′(x) = 0) and then testing also the endpoints x = 0 and x = w. The
derivative f ′(x) = k(w − 2x) is zero at x = w/2. Then f(w/2) = kw2/4. This
value is the maximum of f , because f = 0 at the endpoints.

Technical Details for (6): Let a =
4vc
vbw2

. Then

y = y(0) +
∫ x
0
y′(t)dt Method of quadrature.

= 0 + a
∫ x
0
t(w − t)dt By (5), y′ = at(w − t).

= a
(
− 1

3x
3 + 1

2wx
2
)
. Integral table.

To compute the downstream drift, evaluate y(w) = a
w3

6
or y(w) =

2w
3
vc
vb

.

Exercises 2.1

Quadrature. Find a candidate solu-
tion for each initial value problem and
verify the solution. See Example 1,
page 70.

1. y′ = 4e2x, y(0) = 0.

2. y′ = 2e4x, y(0) = 0.

3. (1 + x)y′ = x, y(0) = 0.

4. (1− x)y′ = x, y(0) = 0.

5. y′ = sin 2x, y(0) = 1.

6. y′ = cos 2x, y(0) = 1.

7. y′ = xex, y(0) = 0.

8. y′ = xe−x
2
, y(0) = 0.

9. y′ = tanx, y(0) = 0.

10. y′ = 1 + tan2 x, y(0) = 0.
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11. (1 + x2)y′ = 1, y(0) = 0.

12. (1 + 4x2)y′ = 1, y(0) = 0.

13. y′ = sin3 x, y(0) = 0.

14. y′ = cos3 x, y(0) = 0.

15. (1 + x)y′ = 1, y(0) = 0.

16. (2 + x)y′ = 2, y(0) = 0.

17. (2 + x)(1 + x)y′ = 2, y(0) = 0.

18. (2 + x)(3 + x)y′ = 3, y(0) = 0.

19. y′ = sinx cos 2x, y(0) = 0.

20. y′ = (1 + cos 2x) sin 2x, y(0) = 0.

River Crossing. A boat crosses a river
of width w miles at vb miles per hour
with power applied perpendicular to
the shoreline. The river’s midstream
velocity is vc miles per hour. Find the
transit time and the downstream drift
to the opposite shore. See Example 2,
page 70, and the details for (6).

21. w = 1, vb = 4, vc = 12

22. w = 1, vb = 5, vc = 15

23. w = 1.2, vb = 3, vc = 13

24. w = 1.2, vb = 5, vc = 9

25. w = 1.5, vb = 7, vc = 16

26. w = 2, vb = 7, vc = 10

27. w = 1.6, vb = 4.5, vc = 14.7

28. w = 1.6, vb = 5.5, vc = 17

Fundamental Theorem I. Verify the
identity. Use the fundamental theorem
of calculus part (b), page 707.

29.
∫ x
0

(1 + t)3dt = 1
4

(
(1 + x)4 − 1

)
.

30.
∫ x
0

(1 + t)4dt = 1
5

(
(1 + x)5 − 1

)
.

31.
∫ x
0
te−tdt = −xe−x − e−x + 1.

32.
∫ x
0
tetdt = xex − ex + 1.

Fundamental Theorem II. Differen-
tiate. Use the fundamental theorem of
calculus part (b), page 707.

33.
∫ 2x

0
t2 tan(t3)dt.

34.
∫ 3x

0
t3 tan(t2)dt.

35.
∫ sin x

0
tet+t

2
dt.

36.
∫ sin x

0
ln(1 + t3)dt.

Fundamental Theorem III. Integrate∫ 1

0
f(x)dx. Use the fundamental the-

orem of calculus part (a), page 707.
Check answers with computer or cal-
culator assist. Some require a clever
u-substitution or an integral table.

37. f(x) = x(x− 1)

38. f(x) = x2(x+ 1)

39. f(x) = cos(3πx/4)

40. f(x) = sin(5πx/6)

41. f(x) =
1

1 + x2

42. f(x) =
2x

1 + x4
)

43. f(x) = x2ex
3

44. f(x) = x(sin(x2) + ex
2
)

45. f(x) =
1√

−1 + x2

46. f(x) =
1√

1− x2

47. f(x) =
1√

1 + x2

48. f(x) =
1√

1 + 4x2

49. f(x) =
x√

1 + x2

50. f(x) =
4x√

1− 4x2
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51. f(x) =
cosx
sinx

52. f(x) =
cosx
sin3 x

53. f(x) =
ex

1 + ex

54. f(x) =
ln |x|
x

55. f(x) = sec2 x

56. f(x) = sec2 x− tan2 x

57. f(x) = csc2 x

58. f(x) = csc2 x− cot2 x

59. f(x) = cscx cotxx

60. f(x) = secx tanxx

Integration by Parts. Integrate∫ 1

0
f(x)dx by parts,

∫
udv = uv −∫

vdu. Check answers with computer
or calculator assist.

61. f(x) = xex

62. f(x) = xe−x

63. f(x) = ln |x|

64. f(x) = x ln |x|

65. f(x) = x2e2x

66. f(x) = (1 + 2x)e2x

67. f(x) = x coshx

68. f(x) = x sinhx

69. f(x) = x arctan(x)

70. f(x) = x arcsin(x)

Partial Fractions. Integrate f by
partial fractions. Check answers with
computer or calculator assist.

71. f(x) =
x+ 4
x+ 5

72. f(x) =
x− 2
x− 4

73. f(x) =
x2 + 4

(x+ 1)(x+ 2)

74. f(x) =
x(x− 1)

(x+ 1)(x+ 2)

75. f(x) =
x+ 4

(x+ 1)(x+ 2)

76. f(x) =
x− 1

(x+ 1)(x+ 2))

77. f(x) =
x+ 4

(x+ 1)(x+ 2)(x+ 5)

78. f(x) =
x(x− 1)

(x+ 1)(x+ 2)(x+ 3)

79. f(x) =
x+ 4

(x+ 1)(x+ 2)(x− 1)

80. f(x) =
x(x− 1)

(x+ 1)(x+ 2)(x− 1)

Special Methods. Integrate f by
using the suggested u-substitution or
method. Check answers with com-
puter or calculator assist.

81. f(x) =
x2 + 2

(x+ 1)2
, u = x+ 1.

82. f(x) =
x2 + 2

(x− 1)2
, u = x− 1.

83. f(x) =
2x

(x2 + 1)3
, u = x2 + 1.

84. f(x) =
3x2

(x3 + 1)2
, u = x3 + 1.

85. f(x) =
x3 + 1
x2 + 1

, use long division.

86. f(x) =
x4 + 2
x2 + 1

, use long division.
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Introduction

This introductory chapter contains a short list of topics that are ex-
tracted from pre-calculus and calculus courses.
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A.1 Calculus

A small list of topics from differential and integral calculus are used in
differential equations. The special notation of differential equations is
introduced, along with some ideas of Isaac Newton, concerning the ele-
mentary kinetics formula D = RT , which has the physical interpretation
Distance = Rate × Time.

Derivative

The calculus derivative f ′(x0) = lim
h→0

f(x0 + h)− f(x0)
h

makes sense pro-

vided the indicated limit exists. Implicit in the formula is the assumption
that f is defined in an open interval of the form |x−x0| < H. Differential
equations use this standard notation, plus the Leibniz notation

df

dx
= f ′(x).

Variable names used in science and engineering often follow this stan-
dard:

y = dependent variable,
x = independent variable.

Within certain disciplines, such as kinetics, the variable names change,
and the following standard exists:

x = displacement, dependent variable,
t = time, independent variable,

dx

dt
= velocity

= x′(t)

= ẋ(t)

= Dx(t),

d2x

dt2
= acceleration

= x′′(t)

= ẍ(t)

= D2x(t).

The functional notation y(x) means y is a dependent variable which
depends on the independent variable x. For example, x(t) means dis-
placement x depends on time t. In a graphic, it is expected that x
is the vertical axis and t is the horizontal axis. The dot-notation ẋ(t)
and ẍ(t), instead of x′(t) and x′′(t), is common in literature on stat-
ics and dynamics. Operator notation Dx, D2x appears in differential
equations literature and in computer algebra systems, e.g., maple and
mathematica.



A.1 Calculus 705

Slope, Rates and Averages

The derivative can be interpreted geometrically as the slope of the line
tangent to a curve at a point; see Figure 1.

slope m = f ′(x0)
y

x

(x0, y0)

Figure 1. Slope of the tangent line.

The tangent line itself can be viewed as the linearization of the curve.
For example, if the curve is the path of an automobile which at speedome-
ter reading v instantly skids off the road, then the car follows the tangent
line with constant speed v. Travel along the tangent line is linear mo-
tion at constant speed.

The line equation tangent to y = f(x) at x = x0 is given by the point-
slope form of a line

y − y0 = m(x− x0),

y0 = f(x0), m = f ′(x0).

The notation y(x), usual in differential equations, conflicts with the no-
tation from geometry. In handwritten and blackboard work it is recom-
mended to change x and y to capital letters X and Y , then replace f by
y, as follows:

Y − y0 = m(X − x0),
y0 = y(x0), m = y′(x0).

Other forms of a straight line in coordinate geometry are the slope-
intercept form y = mx+ b, the standard form Ax+By+C = 0 and
the parametric form{

x = x0 + at,
y = y0 + bt, −∞ < t <∞.

In the parametric form, the vector ai + bj is tangent to the line. For
example, a = 0 and b = 1 gives a vertical line through (x0, y0).

Applied sciences interpret the derivative f ′(x) as the rate of change of
y = f(x) with respect to x. Typical interpretations appear below.

ẋ(t) ≈ change in displacement x for a unit change in t

dQ

dt
≈ change in charge Q for a unit change in t

Q̈(t) ≈ change in current I = Q̇ for a unit change in t

A′(t) ≈ expected decrease in the amount A of radioac-
tive material for time interval [t, t+ 1]
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The average of n samples y1, . . . , yn is defined to be

y1 + y2 + · · ·+ yn

n
.

The term simple average is sometimes used. The average value f of
a continuous function f(x) on [a, b] is defined by

f =
∫ b
a f(x)dx
b− a

.

This abstract notion has connections with the simple average. The the-
ory of the integral

∫ b
a f(x)dx includes the rectangular rule for numeri-

cal integration (see also page ??). For step size h = (b−a)/n and sample
values y1 = f(a), y2 = f(a + h), . . . , yn = f(a + nh − h) it gives the
approximation formula

∫ b

a
f(x)dx ≈ h(y1 + y2 + · · ·+ yn).

Multiply this relation by 1/(b−a) and replace the left side by the average
value f . Then

f ≈ y1 + y2 + · · ·+ yn

n
,

or in words,

The average value f is approximately a simple average of n
samples of f , taken at equi-spaced points in [a, b].

In the language of kinetics, f is velocity and f is the average velocity
or the speed.

The language of kinetics agrees with common public notions of speed.
For example, the average of various speedometer reading samples during
an automobile trip give a good indication of the average speed of the
car on the trip. The average speed R = f is related to the trip time
T = b − a and the trip mileage D by the classical formula D = RT ,
which is taught in elementary school.

The expression for the trip mileage D in terms of the instantaneous
velocity f ,

D =
∫ b

a
f(x)dx,

is due to the creative genius of Isaac Newton. This relation of Newton
today appears in texts as the fundamental theorem of calculus.
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Fundamental Theorem of Calculus

The foundations of the study of differential equations rests with Newton’s
discovery of a way to state the relation D = RT using instantaneous
velocities instead of speed averages.

Theorem 1 (Fundamental theorem of calculus)
Let G be continuous and let F be continuously differentiable on [a, b]. Then

(a) F (b)− F (a) =
∫ b

a
F ′(x)dx,

(b)
d

dx

∫ x

a
G(t)dt = G(x).

Part (a) of the fundamental theorem is used by calculus students to
evaluate integrals. In differential equations, it is applied to find solutions.

Part (b) of the fundamental theorem computes the instantaneous rate of
an averaging process. Calculus students use it to check answers to inte-
gration problems. In differential equations it is used to verify solutions.

The justification of D = RT for instantaneous rates f(x) = F ′(x) is
contained in part (a): divide both sides by b− a and interpret the right
side as the average velocity or speed to get the formula D/T = R.

1 Example (Leibniz Notation) Change y′′(x) + y(x) into Leibniz notation.

Solution:

y′′(x) =
d

dx
y′(x) Definition of second derivative.

=
d

dx

dy

dx
Leibniz notation for the first derivative.

=
d2y

dx2
Leibniz notation.

Therefore, the converted expression is
d2y

dx2
+ y.

2 Example (Notation Conversion) Convert the equation
du

dt
= u+ et sin t

to dot notation.

Solution: By convention,
du

dt
= u̇(t) and u = u(t). Therefore, the converted

equation is u̇(t) = u(t) + et sin t.

3 Example (Slope of the Tangent Line) Compute the slope m of the line
tangent to y = x sinx at x = π/2.

Solution:
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m = y′ Definition of slope and derivative.

= (x sinx)′ Definition of y.

= sinx+ x cosx Product rule and derivative tables.
Variable x to be replaced by π/2.

= sin(π/2) +
1
2
π cos(π/2) Replacement x = π/2.

= 1 Identities cos(π/2) = 0, sin(π/2) = 1
applied.

4 Example (Tangent Line Equation) Find the tangent line equation at x =
π/2 for y = x sinx in point-slope form and in slope-intercept form.

Solution: The point-slope equation in an XY -system is Y − y0 = m(X − x0).
In this formula, x0 = π/2, y0 = x0 sinx0 = π/2. Example 3 gives m = 1. The
tangent line equation in point-slope form is Y − π/2 = (1)(X − π/2), which
simplifies to the slope-intercept form Y = X.

5 Example (Line Equations) Convert the line equation y− 2 = 5(x− 3) to
slope-intercept and parametric forms.

Solution: The slope-intercept form y = 5x − 13 is found by expansion to an
explicit equation for y. A parametric form can be found by setting x = t and
then y = 5x− 13 = 5t− 13. The vector form is(

x
y

)
=
(

t
5t− 13

)
, −∞ < t <∞.

6 Example (Decay Law Derivation) Derive the decay law
dA

dt
= kA(t)

from the sentence

Radioactive material decays at a rate proportional to the
amount present.

Solution: The sentence is first dissected into English phrases 1 to 4.

1: Radioactive material The phrase causes the invention of a symbol A
for the amount present at time t.

2: decays at a rate It means A undergoes decay. Then A changes.
Calculus conventions imply the rate of change is
dA/dt.

3: proportional to Literally, it means equal to a constant multiple
of. Let k be the proportionality constant.

4: the amount present The amount of radioactive material present is
A(t).

The four phrases are translated into mathematical notation as follows.
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Phrases 1 and 2 Symbol dA/dt.

Phrase 3 Equal sign ‘=’ and a constant k.

Phrase 4 Symbol A(t).

Let A(t) be the amount present at time t. The translation is
dA

dt
= kA(t).

7 Example (Average Value) Given f(x) = xex +sin2(πx), find the average
value on 0 ≤ x ≤ 2.

Solution: The value is 1
2e

2 + 1. The details:

f =
1
2

∫ 2

0

f(x)dx Definition of average value, page
706.

=
1
2

∫ 2

0

[xex + sin2(πx)]dx Substitute for f(x).

=
1
2

(x− 1)ex
∣∣∣∣x=2

x=0

Integral tables.

+
1

4π
(− cosπx sinπx+ πx)

∣∣∣∣x=2

x=0

=
1
2
e2 + 1 Use sin(nπ) = 0.

8 Example (Speed) Find the speed for a car trip of 2 hours, given the velocity
profile

ẋ(t) =

{
1200t 0 ≤ t ≤ 0.05,
60 0.05 ≤ t ≤ 2.

Solution: The speed R is given by

R =
1
2

∫ 2

0

ẋ(t)dt Average value of ẋ, page 706.

=
1
2

(∫ 0.05

0

1200tdt+
∫ 2

0.05

60dt
)

Use
∫ b
a
f =

∫ c
a
f +

∫ b
c
f .

=
1
2
(
600(0.05)2 + 60(2− 0.05)

)
Evaluate integrals.

=
237
4
. About 59.25 mph.

The unrealistic 3-minute acceleration to 60 mph can be replaced by a more
realistic 18-second acceleration to give 59.925 mph.

9 Example (Speed Estimation) Estimate the average speed of a car which
accelerates from 0 to 65 miles per hour in 12 seconds.
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Solution: The purpose of this example is to explain the layman’s answer of
65/2 mph. The answer must be justified in the context of calculus.

If the acceleration is constant, then ẍ(t) = a = constant. Therefore, ẋ(t) = at,
since ẋ(0) = 0. Let t0 = 12/3600 hours. The average speed R for time interval
0 ≤ t ≤ t0 is

R =
1
t0

∫ t0

0

ẋ(t)dt Definition of average speed, page 706.

=
a

t0

t20
2

Evaluate integral with ẋ = at.

=
65
2

Because 65 = ẋ(t0) = at0.

It can be argued on physical grounds that no car has constant acceleration, so
the answer 65/2 is merely an estimate. The layman’s answer can be obtained
by averaging the two speeds 0 and 65.

10 Example (Integral Identity) Verify the integral evaluation

∫ 1

0
xexdx = 1.

Solution:

I =
∫ 1

0

xexdx Integral I to be evaluated.

=
∫ 1

0

(xex − ex)′ dx Identity xex = (xex − ex)′ derived below.

= (xex − ex)|x=1
x=0 Apply the fundamental theorem of calcu-

lus, part (a). See page 707.

= 1 Use e0 = 1.

The identity xex = (xex − ex)′ applied in the solution above is obtained by
experiment, as follows.

(xex)′ = (1)ex + xex Product rule (uv)′ = u′v + uv′.

= (ex)′ + xex Term xex isolated on the right.

Solving the last equation for xex gives the identity xex = (xex − ex)′. A more
systematic method for finding such identities is integration by parts.

11 Example (Integral Answer Check) Verify the identity∫ x

0
t ln(1 + t)dt =

1
2

(
x2 − 1

)
ln(1 + x) +

x

2
− x2

4
.

Solution: Both sides evaluate to zero at x = 0, because ln(1) = 0. According
to the fundamental theorem of calculus, part (b), page 707, it is sufficient to
differentiate the answer on the right and verify that the derivative so obtained
matches the integrand on the left. Let RHS denote the right hand side. Then

RHS′ =
(
x2 − 1

2
ln(1 + x) +

x

2
− x2

4

)′
The Right Hand Side of the iden-
tity, to be differentiated.
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= x ln(1 + x) +
x2 − 1
2x+ 2

+
1
2
− x

2
Product rule, power rule and the
identity (ln(u))′ = u′/u.

= x ln(1 + x). Simplified derivative of the RHS.

The derivative of RHS matches the integrand of the left side, which completes
the verification.

12 Example (Distance Estimate) Estimate the distance D traveled by an
automobile in two hours, and its average speed R, given that for t = 20 to
t = 120 the speedometer readings every 20 minutes are 55, 70, 66, 71, 72,
65 miles per hour.

Solution: The answers are 133 miles and 66.5 mph. To estimate the values of
R and D, it will be assumed that the speed was constant during the 20-minute
period before the reading. The actual velocity ẋ(t) of the automobile is related
to the average velocity R by the formula

R =
1

120

∫ 120

0

ẋ(t)dt.

The samples are used to find the average R as follows.

R ≈ 55 + 70 + 66 + 71 + 72 + 65
6

Used f ≈ y1 + · · ·+ yn
n

, page 706.

=
399
6

About 66.5 miles per hour.

Then D = RT implies D ≈ 399
6

120
60 = 133 miles.

Exercises A.1

Derivative notation. Convert from
the given notation, prime, dot, Leibniz
or operator, to the other three forms.

1.
du

dt

2. u̇(t0)

3. ü(1 + t)

4.
dx

dt
= 1 + x(t)

5. D2w(x) = 1 + w(x) + x

6. Dy(x) = y−2(x)

7. ln(w(r)) =
dw

dr

8. e−y(x) = y′(x)

9. ẏ(t) = 1 + t

10. ẋ(t) = e−2x(t)

Slope. Compute the slope of the line
tangent to the curve at the given point.

11. y = x2 − 3x+ 1, x = 0.

12. y = x5 − x+ 2, x = 2.

13. y = sinx+ x, x = π/4.

14. y = cosx− x, x = π/4.

15. y = tan−1 x+e−x ln(1+x), x =
1.

16. y = sin−1 x+ex ln(2+x), x = 1.
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Tangent line equation. Find the
tangent line equation in the three
possible forms, point-slope, slope-
intercept and parametric.

17. y = x3 − x, x = 1.

18. y = x3 + x+ 1, x = 0.

19. y = sin−1(x), x = 1/2.

20. y = tan−1(x), x = 1.

21. y = e−x, x = ln(2).

22. y = ln(1 + x), x = 0.

23. y =
1 + x

1− x
, x = 0.

24. y =
1− x2

1 + x2
, x = 0.

Rates. Model as a rate of change
equation.

25. The expected change in charge Q
is equal to the electromotive force
sin(ωt).

26. The damping force F is propor-
tional to the instantaneous change
in x(t).

27. The angular rate of change is
proportional to the external force
cos(ωt).

28. The amount in a bank account
changes at a rate proportional to
the current balance.

29. The expected population change
is proportional to the present pop-
ulation P .

30. The temperature flux and the
temperature difference from the
surrounding medium are propor-
tional.

Average value. Find the average
value of f on [a, b],

f =
1

b− a

∫ b

a

f(x)dx.

31. xe−x, 0 ≤ x ≤ 1.

32.
1
2
ex − 1

2
e−x, 0 ≤ x ≤ 2.

33. lnx, 1 ≤ x ≤ 3.

34. secx, 0 ≤ x ≤ π/4.

35. x3 − x, 0 ≤ x ≤ 2.

36.
x− 1
x+ 1

, 0 ≤ x ≤ 1.

37.
sinx

1 + cosx
, 0 ≤ x ≤ π/4.

38. sin3 x cosx, 0 ≤ x ≤ π.

39.
1

1 + x2
on 0 ≤ x ≤ 1/2, 4/5 on

1/2 ≤ x ≤ 1.

40.
1
x

on 1 ≤ x ≤ 2,
5
8

x2

1 + x2
on

2 ≤ x ≤ 3.

41. tanx on 0 ≤ x ≤ π/4, and 1 +
(x− π/4) on π/4 ≤ π/3.

42. cotx on π/4 ≤ x ≤ π/2, and
x− π/2 on π/2 ≤ x ≤ π.

Integral identities. Verify the given
integration identity by applying the
fundamental theorem of calculus.

43.
∫ 1

0

1 + t

2 + t
dt = 1 + ln

2
3

.

44.
∫ 1

0

1 + t2

2 + t
dt = 5 ln

3
2
− 3

2
.

45.
∫ π

0

t sin(2t)dt =
π − 2

4
.

46.
∫ π/2

0

t cos(2t)dt = −1
2

.

47.
∫ 1

0

te−tdt = 1− 2
e

.

48.
∫ 1

0

t2e−tdt = 2− 5
e

.
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49.
∫ x

0

sin4(t) cos(t)dt =
sin5(x)

5
.

50.
∫ x

0

tan(t)dt = − ln(cosx).

Car trip. Estimate the average speed
R and the distance traveled D on a car
trip, given the velocity samples.

51. Every 10 minutes from t = 10 to
t = 120 minutes, 51, 62, 55, 53,
60, 67, 61, 67, 55, 70, 71, 66 miles
per hour.

52. Every 15 minutes from t = 15 to

t = 225 minutes, 90, 92, 110, 112,
120, 113, 109, 90, 95, 97, 60, 90,
100, 105, 103 kilometers per hour.

53. Every 5 minutes from t = 5 to
t = 75 minutes, 45, 60, 61, 63,
60, 58, 61, 65, 25, 40, 45, 60, 65,
59, 60 miles per hour.

54. Every 5 minutes from t = 5 to
t = 100 minutes, 50, 90, 100, 120,
110, 112, 130, 120, 110, 40, 60,
100, 90, 80, 20, 55, 130, 130, 120,
125 kilometers per hour.


