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Forced Damped Motion
Real systems do not exhibit idealized harmonic motion, because damping occurs. A watch
balance wheel submerged in oil is a key example: frictional forces due to the viscosity of
the oil will cause the wheel to stop after a short time. The same wheel submerged in air
will appear to display harmonic motion, but indeed there is friction present, however small,
which slows the motion.

Consider a spring–mass system consisting of a massm and a spring with Hooke’s constant
k, with an added dashpot or dampener, depicted in Figure 1 as a piston inside a cylinder
attached to the mass. A useful physical model, for purposes of intuition, is a screen door
with door–closer: the closer has a spring and an adjustable piston–cylinder style dampener.
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Figure 1. A spring-mass system with dampener



Model Derivation
The dampener is assumed to operate in the viscous domain, which means that the force due
to the dampener device is proportional to the speed that the mass is moving: F = cx′(t).
The number c ≥ 0 is called the damping constant. Three forces act: (1) Newton’s second
law F1 = mx′′(t), (2) viscous damping F2 = cx′(t) and (3) the spring restoring force
F3 = kx(t). The sum of the forces F1 + F2 + F3 acting on the system must equal the
external force f(t), which gives the equation for a damped spring–mass system

mx′′(t) + cx′(t) + kx(t) = f(t).(1)

Definitions
The motion is called damped if c > 0 and undamped if c = 0. If there is no external
force, f(t) = 0, then the motion is called free or unforced and otherwise it is called
forced.



Visualization
A useful visualization for a forced system is a vertical laboratory spring–mass system with
dampener placed inside a box, which is transported down a washboard road inside an auto
trunk. The function f(t) is the vertical oscillation of the auto trunk. The function x(t) is
the motion of the mass in response to the washboard road. See Figure 2.
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Figure 2. A spring-mass system with dampener in a box transported in an auto trunk
along a washboard road.



Cafe door
Restaurant waiters and waitresses are familiar with the cafe door, which partially blocks the
view of onlookers, but allows rapid, collision-free trips to the kitchen – see Figure 3. The
door is equipped with a spring which tries to restore the door to the equilibrium position
x = 0, which is the plane of the door frame. There is a dampener attached, to keep the
number of oscillations low.

Figure 3. A cafe door on three hinges with dampener in the lower hinge. The equilibrium
position is the plane of the door frame.



Model Derivation
The top view of the door, Figure 4, shows how the angle x(t) from equilibrium x = 0 is
measured from different door positions.
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Figure 4. Top view of a cafe door, showing the three possible door positions.

The figure implies that, for modeling purposes, the cafe door can be reduced to a torsional
pendulum with viscous damping. This results in the cafe door equation

Ix′′(t) + cx′(t) + κx(t) = 0.(2)

The removal of the spring (κ = 0) causes the solution x(t) to be monotonic, which is a
reasonable fit to a springless cafe door.



Pet door
Designed for dogs and cats, the small door in Figure 5 allows animals to enter and exit the
house freely. A pet door might have a weather seal and a security lock.

Figure 5. A pet door.
The equilibrium position is the plane of the door frame.

The pet door swings freely from hinges along the top edge. One hinge is spring–loaded with
dampener. Like the cafe door, the spring restores the door to the equilibrium position while
the dampener acts to eventually stop the oscillations. However, there is one fundamental
difference: if the spring–dampener system is removed, then the door continues to oscillate!

The cafe door model will not describe the pet door.



Model Derivation
For modeling purposes, the door can be compressed to a linearized swinging rod of length
L (the door height). The torque I = mL2/3 of the door assembly becomes important,
as well as the linear restoring force kx of the spring and the viscous damping force cx′ of
the dampener. All considered, a suitable model is the pet door equation

I x′′(t) + cx′(t) +

(
k +

mgL

2

)
x(t) = 0.(3)

Derivation of (3) is by equating to zero the algebraic sum of the forces. Removing the dampener and spring
(c = k = 0) gives a harmonic oscillator x′′(t) + ω2x(t) = 0 with ω2 = 0.5mgL/I, which establishes sanity
for the modeling effort.

Equation (3) is formally the cafe door equation with an added linearization term
0.5mgLx(t) obtained from 0.5mgL sinx(t).



Damped Free Oscillation Model
All equations can be reduced, for suitable definitions of constants p and q, to the simplified
second order differential equation

x′′(t) + p x′(t) + q x(t) = 0.(4)



Tuning a Dampener

• The pet door and the cafe door have dampeners with an adjustment screw. The screw
changes the damping coefficient c which in turn changes the size of coefficient p in
(4). More damping c means p is larger.

• There is a critical damping effect for a certain screw setting: if the damping is decreased
more, then the door oscillates, whereas if the damping is increased, then the door has
a monotone non-oscillatory behavior. The monotonic behavior can result in the door
opening in one direction followed by slowly settling to exactly the door jamb position.
If p is too large, then it could take 10 minutes for the door to close!

• The critical case corresponds to the least p > 0 (the smallest damping constant c >
0) required to close the door with this kind of monotonic behavior. The same can
be said about decreasing the damping: the more p is decreased, the more the door
oscillations approach those of no dampener at all, which is a pure harmonic oscillation.



As viewed from the characteristic equation r2 + pr + q = 0, the change is due to a
change in character of the roots from real to complex. The physical response and the three
cases in Euler’s constant–coefficient recipe lead to the following terminology.

Classification Defining properties
Overdamped Distinct real roots r1 6= r2

Positive discriminant
x = c1e

r1t + c2e
r2t

= exponential× monotonic function
Critically damped Double real root r1 = r2

Zero discriminant
x = c1e

r1t + c2 t e
r1t

= exponential× monotonic function
Underdamped Complex conjugate roots α± i β

Negative discriminant
x = eαt(c1 cosβt+ c2 sinβt)
= exponential× harmonic oscillation



Bicycle trailer
An auto tows a one–wheel trailer over a washboard road. Shown in Figure 6 is the trailer
strut, which has a single coil spring and two dampeners. The mass m includes the trailer
and the bicycles.
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Figure 6. A trailer strut with dampeners on a washboard road



Road Surface Model
Suppose a washboard dirt road has about 2 full oscillations (2 bumps and 2 valleys) every
3 meters and a full oscillation has amplitude 6 centimeters. Let s denote the horizontal
distance along the road and let ω be the number of full oscillations of the roadway per unit
length. The oscillation period is 2π/ω, therefore 2π/ω = 3/2 or ω = 4π/3.

A model for the road surface is

y =
5

100
cosωs.



Model Derivation
Let x(t) denote the vertical elongation of the spring, measured from equilibrium. Newton’s second law gives a
force F1 = mx′′(t) and the viscous damping force is F2 = 2cx′(t). The trailer elongates the spring by x− y,
therefore the Hooke’s force is F3 = k(x−y). The sum of the forces F1+F2+F3 must be zero, which implies

mx′′(t) + 2cx′(t) + k(x(t)− y(t)) = 0.

Write s = vt where v is the speedometer reading of the car in meters per second. The expanded differential
equation is the forced damped spring-mass system equation

mx′′(t) + 2cx′(t) + kx(t) =
k

20
cos(4πvt/3).

The solution x(t) of this model, with x(0) and x′(0) given, describes the vertical excursion of the trailer bed
from the roadway.

The observed oscillations of the trailer are modeled by the steady-state solution

xss(t) = A cos(4πvt/3) +B sin(4πvt/3),

where A, B are constants determined by the method of undetermined coefficients. From the physical data, the
amplitude

√
A2 +B2 of this oscillation might be 6cm or larger.


