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5.3 Determinants and Cramer’s Rule

Unique Solution of a 2× 2 System

The 2× 2 system
ax + by = e,
cx + dy = f,

(1)

has a unique solution provided ∆ = ad− bc is nonzero, in which case the
solution is given by

x =
de− bf
ad− bc

, y =
af − ce
ad− bc

.(2)

This result, called Cramer’s Rule for 2× 2 systems, is usually learned
in college algebra as part of determinant theory.

Determinants of Order 2

College algebra introduces matrix notation and determinant notation:

A =

(
a b
c d

)
, det(A) =

∣∣∣∣∣ a b
c d

∣∣∣∣∣ .
Evaluation of a 2× 2 determinant is by Sarrus’ Rule:∣∣∣∣∣ a b

c d

∣∣∣∣∣ = ad− bc.

The boldface product ad is the product of the main diagonal entries and
the other product bc is from the anti-diagonal.

Cramer’s 2× 2 rule in determinant notation is

x =

∣∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣∣
, y =

∣∣∣∣∣ a e
c f

∣∣∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣∣
.(3)

Unique Solution of an n× n System

Cramer’s rule can be generalized to an n×n system of equations A~x = ~b
or

a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,

...
... · · ·

...
...

an1x1 + an2x2 + · · · + annxn = bn.

(4)
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System (4) has a unique solution provided the determinant of coeffi-
cients ∆ = det(A) is nonzero, in which case the solution is given by

x1 =
∆1

∆
, x2 =

∆2

∆
, . . . , xn =

∆n

∆
.(5)

The determinant ∆j equals det(Bj) where matrix Bj is matrix A with

column j replaced by ~b = (b1, . . . , bn), which is the right side of system
(4). The result is called Cramer’s Rule for n×n systems. Determinants
will be defined shortly; intuition from the 2 × 2 case and Sarrus’ rule
should suffice for the moment.

Determinant Notation for Cramer’s Rule. The determinant
of coefficients for system A~x = ~b is denoted by

∆ =

∣∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · ·
...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣
.(6)

The other n determinants in Cramer’s rule (5) are given by

∆1 =

∣∣∣∣∣∣∣∣∣∣
b1 a12 · · · a1n
b2 a22 · · · a2n
...

... · · ·
...

bn an2 · · · ann

∣∣∣∣∣∣∣∣∣∣
, . . . ,∆n =

∣∣∣∣∣∣∣∣∣∣
a11 a12 · · · b1
a21 a22 · · · b2
...

... · · ·
...

an1 an2 · · · bn

∣∣∣∣∣∣∣∣∣∣
.(7)

The literature is filled with conflicting notations for matrices, vectors
and determinants. The reader should take care to use vertical bars only
for determinants and absolute values, e.g., |A| makes sense for a matrix
A or a constant A. For clarity, the notation det(A) is preferred, when A
is a matrix. The notation |A| implies that a determinant is a number,
computed by |A| = ±A when n = 1, and |A| = a11a22−a12a21 when n =
2. For n ≥ 3, |A| is computed by similar but increasingly complicated
formulas; see Sarrus’ rule and the four properties below.

Sarrus’ Rule for 3 × 3 Matrices. College algebra supplies the
following formula for the determinant of a 3× 3 matrix A:

det(A) =

∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣
= a11a22a33 + a21a32a13 + a31a12a23

−a11a32a23 − a21a12a33 − a31a22a13.

(8)
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The number det(A) can be computed by an algorithm similar to the
one for 2 × 2 matrices, as in Figure 10. We remark that no further
generalizations are possible: there is no Sarrus’ rule for 4 × 4 or larger
matrices!

a21 a22 a23

a13a12a11

a31 a32 a33

a23a22a21

a11 a12 a13

d

e

f

a

b

c

Figure 10. Sarrus’ rule for 3× 3
matrices, which gives

det(A) = (a+ b+ c)− (d+ e+ f).

College Algebra Definition of Determinant. The impractical
definition is the formula

det(A) =
∑
σ∈Sn

(−1)parity(σ) a1σ1 · · · anσn .(9)

In the formula, aij denotes the element in row i and column j of the
matrix A. The symbol σ = (σ1, . . . , σn) stands for a rearrangement of
the subscripts 1, 2, . . . , n and Sn is the set of all possible rearrange-
ments. The nonnegative integer parity(σ) is determined by counting the
minimum number of pairwise interchanges required to assemble the list
of integers σ1, . . . , σn into natural order 1, . . . , n.

Formula (9) reproduces the definition for 3×3 matrices given in equation
(8). We will have no computational use for (9). For computing the value
of a determinant, see below four properties and cofactor expansion.

Four Properties. The definition of determinant (9) implies the fol-
lowing four properties:

Triangular The value of det(A) for either an upper triangular
or a lower triangular matrix A is the product of the
diagonal elements: det(A) = a11a22 · · · ann.

Swap If B results from A by swapping two rows, then
det(A) = (−1) det(B).

Combination The value of det(A) is unchanged by adding a mul-
tiple of a row to a different row.

Multiply If one row of A is multiplied by constant c to create
matrix B, then det(B) = c det(A).

It is known that these four rules suffice to compute the value of any n×n
determinant. The proof of the four properties is delayed until page 320.
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Elementary Matrices and the Four Rules. The rules can be
stated in terms of elementary matrices as follows.

Triangular The value of det(A) for either an upper triangular
or a lower triangular matrix A is the product of the
diagonal elements: det(A) = a11a22 · · · ann. This
is a one-arrow Sarrus’ rule valid for dimension n.

Swap If E is an elementary matrix for a swap rule, then
det(EA) = (−1) det(A).

Combination If E is an elementary matrix for a combination rule,
then det(EA) = det(A).

Multiply If E is an elementary matrix for a multiply rule with
multiplier c 6= 0, then det(EA) = cdet(A).

Since det(E) = 1 for a combination rule, det(E) = −1 for a swap rule
and det(E) = c for a multiply rule with multiplier c 6= 0, it follows that
for any elementary matrix E there is the determinant multiplication rule

det(EA) = det(E) det(A).

Additional Determinant Rules. The following rules make for ef-
ficient evaluation of certain special determinants. The results are stated
for rows, but they also hold for columns, because det(A) = det(AT ).

Zero row If one row of A is zero, then det(A) = 0.

Duplicate rows If two rows of A are identical, then det(A) = 0.

RREF 6= I If rref(A) 6= I, then det(A) = 0.

Common factor The relation det(A) = cdet(B) holds, provided A
and B differ only in one row, say row j, for which
row(A, j) = c row(B, j).

Row linearity The relation det(A) = det(B)+det(C) holds, pro-
vided A, B and C differ only in one row, say row
j, for which row(A, j) = row(B, j) + row(C, j).

The proofs of these properties are delayed until page 321.

Transpose Property. A consequence of (9) is the relation det(A) =
det(AT ) where AT means the transpose of A, obtained by swapping rows
and columns.

Theorem 11 (Determinant of the Transpose)
The relation

det(AT ) = det(A)

implies that all determinant theory results for rows also apply to columns.
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Cofactor Expansion

The special subject of cofactor expansions is used to justify Cramer’s rule
and to provide an alternative method for computation of determinants.
There is no claim that cofactor expansion is efficient, only that it is
possible, and different than Sarrus’ rule or the use of the four properties.

Background from College Algebra. The cofactor expansion the-
ory is most easily understood from the college algebra topic, where the
dimension is 3 and row expansion means the following formulas are valid:

|A| =

∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣
= a11(+1)

∣∣∣∣∣ a22 a23a32 a33

∣∣∣∣∣+ a12(−1)

∣∣∣∣∣ a21 a23a31 a33

∣∣∣∣∣+ a13(+1)

∣∣∣∣∣ a21 a22a31 a32

∣∣∣∣∣
= a21(−1)

∣∣∣∣∣ a12 a13a32 a33

∣∣∣∣∣+ a22(+1)

∣∣∣∣∣ a11 a13a31 a33

∣∣∣∣∣+ a23(−1)

∣∣∣∣∣ a11 a12a31 a32

∣∣∣∣∣
= a31(+1)

∣∣∣∣∣ a12 a13a22 a23

∣∣∣∣∣+ a32(−1)

∣∣∣∣∣ a11 a13a21 a23

∣∣∣∣∣+ a33(+1)

∣∣∣∣∣ a11 a12a21 a22

∣∣∣∣∣
The formulas expand a 3×3 determinant in terms of 2×2 determinants,
along a row of A. The attached signs ±1 are called the checkerboard
signs, to be defined shortly. The 2× 2 determinants are called minors
of the 3 × 3 determinant |A|. The checkerboard sign together with a
minor is called a cofactor.

These formulas are generally used when a row has one or two zeros,
making it unnecessary to evaluate one or two of the 2× 2 determinants
in the expansion. To illustrate, row 1 expansion gives∣∣∣∣∣∣∣

3 0 0
2 1 7
5 4 8

∣∣∣∣∣∣∣ = 3(+1)

∣∣∣∣∣ 1 7
4 8

∣∣∣∣∣ = −60.

A clever time–saving choice is always a row which has the most zeros,
although success does not depend upon cleverness. What has been said
for rows also applies to columns, due to the transpose formula |A| = |AT |.

Minors and Cofactors. The (n−1)×(n−1) determinant obtained
from det(A) by striking out row i and column j is called the (i, j)–minor
of A and denoted minor(A, i, j) (Mij is common in literature). The
(i, j)–cofactor of A is cof(A, i, j) = (−1)i+j minor(A, i, j). Multiplicative
factor (−1)i+j is called the checkerboard sign, because its value can
be determined by counting plus, minus, plus, etc., from location (1, 1) to
location (i, j) in any checkerboard fashion.
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Expansion of Determinants by Cofactors. The formulas are

det(A) =
n∑
j=1

akj cof(A, k, j), det(A) =
n∑
i=1

ai` cof(A, i, `),(10)

where 1 ≤ k ≤ n, 1 ≤ ` ≤ n. The first expansion in (10) is called
a cofactor row expansion and the second is called a cofactor col-
umn expansion. The value cof(A, i, j) is the cofactor of element aij in
det(A), that is, the checkerboard sign times the minor of aij . The proof
of expansion (10) is delayed until page 321.

The Adjugate Matrix. The adjugate of an n × n matrix A, de-
noted adj(A), is the transpose of the matrix of cofactors:

adj(A) =


cof(A, 1, 1) cof(A, 1, 2) · · · cof(A, 1, n)
cof(A, 2, 1) cof(A, 2, 2) · · · cof(A, 2, n)

...
... · · ·

...
cof(A,n, 1) cof(A,n, 2) · · · cof(A,n, n)


T

.

A cofactor cof(A, i, j) is the checkerboard sign (−1)i+j times the corre-
sponding minor determinant minor(A, i, j). In the 2× 2 case,

adj

(
a11 a12
a21 a22

)
=

(
a22 −a12
−a21 a11

) In words: swap the diagonal
elements and change the sign
of the off–diagonal elements.

The Inverse Matrix. The adjugate appears in the formula for the
inverse matrix A−1:(

a11 a12
a21 a22

)−1
=

1

a11a22 − a12a21

(
a22 −a12
−a21 a11

)
.

This formula is verified by direct matrix multiplication:(
a11 a12
a21 a22

) (
a22 −a12
−a21 a11

)
= (a11a22 − a12a21)

(
1 0
0 1

)
.

For an n× n matrix, A · adj(A) = det(A) I, which gives the formula

A−1 =
1

det(A)


cof(A, 1, 1) cof(A, 1, 2) · · · cof(A, 1, n)
cof(A, 2, 1) cof(A, 2, 2) · · · cof(A, 2, n)

...
... · · ·

...
cof(A,n, 1) cof(A,n, 2) · · · cof(A,n, n)


T

The proof of A · adj(A) = det(A) I is delayed to page 322.
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Elementary Matrices. An elementary matrix E is the result of
applying a combination, multiply or swap rule to the identity matrix.
This definition implies that an elementary matrix is the identity matrix
with a minor change applied, to wit:

Combination Change an off-diagonal zero of I to c.

Multiply Change a diagonal one of I to multiplier m 6= 0.

Swap Swap two rows of I.

Theorem 12 (Determinants and Elementary Matrices)
Let E be an n× n elementary matrix. Then

Combination det(E) = 1

Multiply det(E) = m for multiplier m.

Swap det(E) = −1

Product det(EX) = det(E) det(X) for all n× n matrices X.

Theorem 13 (Determinants and Invertible Matrices)
Let A be a given invertible matrix. Then

det(A) =
(−1)s

m1m2 · · ·mr

where s is the number of swap rules applied and m1, m2, . . . , mr are the
nonzero multipliers used in multiply rules when A is reduced to rref(A).

Determinant Product Rule. The determinant rules of combina-
tion, multiply and swap imply that det(EX) = det(E) det(X) for el-
ementary matrices E and square matrices X. We show that a more
general relationship holds.

Theorem 14 (Determinant Product Rule)
Let A and B be given n× n matrices. Then

det(AB) = det(A) det(B).

Proof:

Used in the proof is the equivalence of invertibility of a square matrix C with
det(C) 6= 0 and rref(C) = I.

Assume one of A or B has zero determinant. Then det(A) det(B) = 0. If
det(B) = 0, then Bx = 0 has infinitely many solutions, in particular a nonzero
solution x. Multiply Bx = 0 by A, then ABx = 0 which implies AB is not
invertible. Then the identity det(AB) = det(A) det(B) holds, because both
sides are zero. If det(B) 6= 0 but det(A) = 0, then there is a nonzero y with
Ay = 0. Define x = AB−1y. Then ABx = Ay = 0, with x 6= 0, which
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implies the identity holds.. This completes the proof when one of A or B is not
invertible.

Assume A, B are invertible and then C = AB is invertible. In particular,
rref(A−1) = rref(B−1) = I. Write I = rref(A−1) = E1E2 · · ·EkA−1 and
I = rref(B−1) = F1F2 · · ·FmB−1 for elementary matrices Ei, Fj . Then

AB = E1E2 · · ·EkF1F2 · · ·Fm.(11)

The theorem follows from repeated application of the basic identity det(EX) =
det(E) det(X) to relation (11), because

det(A) = det(E1) · · · det(Ek), det(B) = det(F1) · · · det(Fm).

Cramer’s Rule and the Determinant Product Formula. The
equation Ax = b in the 3× 3 case is used routinely to produce the three
matrix multiply equations a11 a12 a13

a21 a22 a23
a31 a32 a33


 x1 0 0
x2 1 0
x3 0 1

 =

 b1 a12 a13
b2 a22 a23
b3 a32 a33

 ,
 a11 a12 a13
a21 a22 a23
a31 a32 a33


 1 x1 0

0 x2 0
0 x3 1

 =

 a11 b1 a13
a21 b2 a23
a31 b3 a33

 ,
 a11 a12 a13
a21 a22 a23
a31 a32 a33


 1 0 x1

0 1 x2
0 0 x3

 =

 a11 a12 b1
a21 a22 b2
a31 a32 b3

 .
The determinant of the second matrix on the left in the first equation
evaluates to x1. Similarly, the determinant of the second matrix in the
2nd and 3rd equations evaluate to x2, x3, respectively. Therefore, the
determinant product theorem applied to these three equations, fol-
lowed by dividing by det(A), derives Cramer’s Rule:

x1 =

det

 b1 a12 a13
b2 a22 a23
b3 a32 a33


det(A)

,

x2 =

det

 a11 b1 a13
a21 b2 a23
a31 b3 a33


det(A)

,

x3 =

det

 a11 a12 b1
a21 a22 b2
a31 a32 b3


det(A)

.

.
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The Cayley-Hamilton Theorem

Presented here is an adjoint formula F−1 = adj(F )/ det(F ) derivation
for the celebrated Cayley-Hamilton formula

(−A)n + pn−1(−A)n−1 + · · ·+ p0I = 0.(12)

The n×n matrix A is given and I is the identity matrix. The coefficients
pk in (12) are determined by the characteristic polynomial of matrix
A, which is defined by the determinant expansion formula

det(A− λI) = (−λ)n + pn−1(−λ)n−1 + · · ·+ p0.(13)

The Cayley-Hamilton Theorem is summarized as follows:

A square matrix A satisfies its own characteristic equation.

Proof of (12): Define x = −λ, F = A + xI and G = adj(F ). A cofactor of
det(F ) is a polynomial in x of degree at most n− 1. Therefore, there are n×n
constant matrices C0, . . . , Cn−1 such that

adj(F ) = xn−1Cn−1 + · · ·+ xC1 + C0.

The adjugate identity det(F )I = adj(F )F is valid for any square matrix (det(F )
can be zero). Relation (13) implies det(F ) = xn+pn−1x

n−1 + · · ·+p0. Expand
the matrix product adj(F )F in powers of x as follows:

adj(F )F =

n−1∑
j=0

xjCj

 (A+ xI)

= C0A+

n−1∑
i=1

xi(CiA+ Ci−1) + xnCn−1.

Match coefficients of powers of x on each side of det(F )I = adj(F )F to give
the relations 

p0I = C0A,
p1I = C1A+ C0,
p2I = C2A+ C1,

...
I = Cn−1.

(14)

To complete the proof of the Cayley-Hamilton identity (12), multiply the equa-
tions in (14) by I, (−A), (−A)2, (−A)3, . . . , (−A)n, respectively. Then add all
the equations. The left side matches the left side of (12). The right side is a
telescoping sum which adds to the zero matrix. The proof is complete.

2 Example (Four Properties) Apply the four properties of a determinant to
justify the formula

det

 12 6 0
11 5 1
10 2 2

 = 24.
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Solution: Let D denote the value of the determinant. Then

D = det

 12 6 0
11 5 1
10 2 2

 Given.

= det

 12 6 0
−1 −1 1
−2 −4 2

 Combination rule: row 1 subtracted from the
others.

= 6 det

 2 1 0
−1 −1 1
−2 −4 2

 Multiply rule.

= 6 det

 0 −1 2
−1 −1 1

0 −3 2

 Combination rule: add row 1 to row 3, then
add twice row 2 to row 1.

= −6 det

 −1 −1 1
0 −1 2
0 −3 2

 Swap rule.

= 6 det

 1 1 −1
0 −1 2
0 −3 2

 Multiply rule.

= 6 det

 1 1 −1
0 −1 2
0 0 −4

 Combination rule.

= 6(1)(−1)(−4) Triangular rule.

= 24 Formula verified.

3 Example (Hybrid Method) Justify by cofactor expansion and the four
properties the identity

det

 10 5 0
11 5 a
10 2 b

 = 5(6a− b).

Solution: Let D denote the value of the determinant. Then

D = det

 10 5 0
11 5 a
10 2 b

 Given.

= det

 10 5 0
1 0 a
0 −3 b

 Combination: subtract row 1 from the
other rows.

= det

 0 5 −10a
1 0 a
0 −3 b

 Combination: add −10 times row 2 to
row 1.

= (1)(−1) det

(
5 −10a
−3 b

)
Cofactor expansion on column 1.

= (1)(−1)(5b− 30a) Sarrus’ rule for n = 2.
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= 5(6a− b). Formula verified.

4 Example (Cramer’s Rule) Solve by Cramer’s rule the system of equations

2x1 + 3x2 + x3 − x4 = 1,
x1 + x2 − x4 = −1,

3x2 + x3 + x4 = 3,
x1 + x3 − x4 = 0,

verifying x1 = 1, x2 = 0, x3 = 1, x4 = 2.

Solution: Form the four determinants ∆1, . . . , ∆4 from the base determinant
∆ as follows:

∆ = det


2 3 1 −1
1 1 0 −1
0 3 1 1
1 0 1 −1

 ,

∆1 = det


1 3 1 −1
−1 1 0 −1

3 3 1 1
0 0 1 −1

 , ∆2 = det


2 1 1 −1
1 −1 0 −1
0 3 1 1
1 0 1 −1

 ,

∆3 = det


2 3 1 −1
1 1 −1 −1
0 3 3 1
1 0 0 −1

 , ∆4 = det


2 3 1 1
1 1 0 −1
0 3 1 3
1 0 1 0

 .

Five repetitions of the methods used in the previous examples give the answers
∆ = −2, ∆1 = −2, ∆2 = 0, ∆3 = −2, ∆4 = −4, therefore Cramer’s rule implies
the solution xi = ∆i/∆, 1 ≤ i ≤ 4. Then x1 = 1, x2 = 0, x3 = 1, x4 = 2.

Maple code. The details of the computation above can be checked in computer
algebra system maple as follows.

with(linalg):

A:=matrix([

[2, 3, 1, -1], [1, 1, 0, -1],

[0, 3, 1, 1], [1, 0, 1, -1]]);

Delta:= det(A);

B1:=matrix([

[ 1, 3, 1, -1], [-1, 1, 0, -1],

[ 3, 3, 1, 1], [ 0, 0, 1, -1]]);

Delta1:=det(B1);

x[1]:=Delta1/Delta;

An Applied Definition of Determinant

To be developed here is another way to look at formula (9), which em-
phasizes the column and row structure of a determinant. The definition,
which agrees with (9), leads to a short proof of the four properties, which
are used to find the value of any determinant.
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Permutation Matrices. A matrix P obtained from the identity
matrix I by swapping rows is called a permutation matrix. There are
n! permutation matrices. To illustrate, the 3 × 3 permutation matrices
are 1 0 0

0 1 0
0 0 1

 ,
 1 0 0

0 0 1
0 1 0

 ,
 0 1 0

1 0 0
0 0 1

 ,
 0 1 0

0 0 1
1 0 0

 ,
 0 0 1

1 0 0
0 1 0

 ,
 0 0 1

0 1 0
1 0 0

 .
Define for a permutation matrix P the determinant by

det(P ) = (−1)k

where k is the least number of row swaps required to convert P to the
identity. The number k satisfies r = k+ 2m, where r is any count of row
swaps that changes P to the identity, and m is some integer. Therefore,
det(P ) = (−1)k = (−1)r. In the illustration, the corresponding determi-
nants are 1, −1, −1, 1, 1, −1, as computed from det(P ) = (−1)r, where
r row swaps change P into I.

It can be verified that det(P ) agrees with the value reported by formula
(9). Each σ in (9) corresponds to a permutation matrix P with rows
arranged in the order specified by σ. The summation in (9) for A = P
has exactly one nonzero term.

Sampled–product. Let be given an n × n matrix A and an n × n
permutation matrix P . The matrix P has ones (1) in exactly n locations.
The sampled–product A.P uses these locations to select entries from the
matrix A, whereupon A.P is the product of those entries. More precisely,
let ~A1, . . . , ~An be the rows of A and let ~P1, . . . , ~Pn be the rows of P .
Define via the normal dot product (·) the sampled–product

A.P = (A1 · P1)(A2 · P2) · · · (An · Pn)
= a1σ1 · · · anσn ,

(15)

where the rows of P are rows σ1,. . . ,σn of I. The formula implies that
A.P is a linear function of the rows of A. A similar construction shows
A.P is a linear function of the columns of A.

Applied determinant formula. The determinant is defined by

det(A) =
∑
P det(P )A.P ,(16)

where the summation extends over all possible permutation matrices P .
The definition emphasizes the explicit linear dependence of the determi-
nant upon the rows of A (or the columns of A). A tedious but otherwise
routine justification shows that (9) and (16) give the same result.

Verification of the Four Properties:

Triangular. If A is n × n triangular, then in (16) appears only one nonzero
term, due to zero factors in the product A.P . The term that appears corre-
sponds to P=identity, therefore A.P is the product of the diagonal elements
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of A. Since det(P ) = det(I) = 1, the result follows. A similar proof can be
constructed from determinant definition (9).

Swap. Let Q be obtained from I by swapping rows i and j. Let B = QA, so
that B is A with rows i and j swapped. We must show det(A) = −det(B).
Observe that B.P = A.QP and det(QP ) = −det(P ). The matrices QP over all
possible P simply relist all permutation matrices, hence definition (16) implies
the result.

Combination. Let matrix B be obtained from matrix A by adding to row j
the vector k times row i (i 6= j). Then row(B, j) = row(A, j)+k row(A, i) and
B.P = (B1 ·P ) · · · (Bn ·P ) = A.P +k C.P , where C is the matrix obtained from
A by replacing row(A, j) with row(A, i). Then C has equal rows row(C, i) =
row(C, j) = row(A, i). By the swap rule applied to rows i and j, det(C) =
−det(C), or det(C) = 0. Add on P across B.P = A.P + k C.P to obtain
det(B) = det(A) + k det(C). This implies det(B) = det(A).

Multiply. Let matrices A and B have the same rows, except for some index
i, row(B, i) = c row(A, i). Then B.P = cA.P . Add on P across this equation
to obtain det(B) = cdet(A).

Verification of the Additional Rules:

Duplicate rows. The swap rule applies to the two duplicate rows to give
det(A) = −det(A), hence det(A) = 0.

Zero row. Apply the common factor rule with c = 2, possible since the row
has all zero entries. Then det(A) = 2 det(A), giving det(A) = 0.

Common factor and row linearity. The sampled–product A.P is a linear
function of each row, therefore the same is true of det(A).

Derivations: Cofactors and Cramer’s Rule

Derivation of cofactor expansion (10): The column expansion formula is
derived from the row expansion formula applied to the transpose. We consider
only the derivation of the row expansion formula (10) for k = 1, because the
case for general k is the same except for notation. The plan is to establish
equality of the two sides of (10) for k = 1, which in terms of minor(A, 1, j) =
(−1)1+j cof(A, 1, j) is the equality

det(A) =

n∑
j=1

a1j(−1)1+j minor(A, 1, j).(17)

The details require expansion of minor(A, 1, j) in (17) via the definition of

determinant det(A) =
∑
σ(−1)parity(σ)a1σ1 · · · anσn . A typical term on the

right in (17) after expansion looks like

a1j (−1)1+j(−1)parity(α)a2α2
· · · anαn

.

Here, α is a rearrangement of the set of n−1 elements consisting of 1, . . . , j−1,
j + 1, . . . , n. Define σ = (j, α2, . . . , αn), which is a rearrangement of symbols
1, . . . , n. After parity(α) interchanges, α is changed into (1, . . . , j − 1, j +
1, . . . , n) and therefore these same interchanges transform σ into (j, 1, . . . , j −
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1, j + 1, . . . , n). An additional j − 1 interchanges will transform σ into natural
order (1, . . . , n). This establishes, because of (−1)j−1 = (−1)j+1, the identity

(−1)parity(σ) = (−1)j−1+parity(α)

= (−1)j+1+parity(α).

Collecting formulas gives

(−1)parity(σ)a1σ1
· · · anσn

= a1j (−1)1+j(−1)parity(α)a2α2
· · · anαn

.

Adding across this formula over all α and j gives a sum on the right which
matches the right side of (17). Some additional thought reveals that the terms
on the left add exactly to det(A), hence (17) is proved.

Derivation of Cramer’s Rule: The cofactor column expansion theory implies
that the Cramer’s rule solution of A~x = ~b is given by

xj =
∆j

∆
=

1

∆

n∑
k=1

bk cof(A, k, j).(18)

We will verify that A~x = ~b. Let E1, . . . , En be the rows of the identity matrix.
The question reduces to showing that EpA~x = bp. The details will use the fact

n∑
j=1

apj cof(A, k, j) =

{
det(A) for k = p,
0 for k 6= p,

(19)

Equation (19) follows by cofactor row expansion, because the sum on the left is
det(B) where B is matrix A with row k replaced by row p. If B has two equal
rows, then det(B) = 0; otherwise, B = A and det(B) = det(A).

EpA~x =

n∑
j=1

apjxj

=
1

∆

n∑
j=1

apj

n∑
k=1

bk cof(A, k, j) Apply formula (18).

=
1

∆

n∑
k=1

bk

 n∑
j=1

apj cof(A, k, j)

 Switch order of summation.

= bp Apply (19).

Derivation of A · adj(A) = det(A)I: The proof uses formula (19). Consider

column k of adj(A), denoted ~X, multiplied against matrix A, which gives

A ~X =


∑n
j=1 a1j cof(A, k, j)∑n
j=1 a2j cof(A, k, j)

...∑n
j=1 anj cof(A, k, j)

 .

By formula (19),

n∑
j=1

aij cof(A, k, j) =

{
det(A) i = k,
0 i 6= k.
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Therefore, A ~X is det(A) times column k of the identity I. This completes the
proof.

Three Properties that Define a Determinant

Write the determinant det(A) in terms of the rows A1, . . . , An of the
matrix A as follows:

D1(A1, . . . , An) =
∑
P

det(P )A.P.

Already known is that D1(A1, . . . , An) is a function D that satisfies the
following three properties:

Linearity D is linear in each argument A1, . . . , An.

Swap D changes sign if two arguments are swapped. Equiva-
lently, D = 0 if two arguments are equal.

Identity D = 1 when A = I.

The equivalence reported in swap is obtained by expansion, e.g., for
n = 2, A1 = A2 implies D(A1, A2) = −D(A1, A2) and hence D = 0.
Similarly, D(A1+A2, A1+A2) = 0 implies by linearity that D(A1, A2) =
−D(A2, A1), which is the swap property for n = 2.

It is less obvious that the three properties uniquely define the determinant,
that is:

Theorem 15 (Uniqueness)
If D(A1, . . . , An) satisfies the properties of linearity, swap and identity,
then D(A1, . . . , An) = det(A).

Proof: The rows of the identity matrix I are denoted E1, . . . , En, so that for
1 ≤ j ≤ n we may write the expansion

Aj = aj1E1 + aj2E2 + · · ·+ ajnEn.(20)

We illustrate the proof for the case n = 2:

D(A1, A2) = D(a11E1 + a12E2, A2) By (20).

= a11D(E1, A2) + a12D(E2, A2) By linearity.

= a11a22D(E1, E2) + a11a21D(E1, E1) Repeat for A2.

+ a12a21D(E2, E1) + a12a22D(E2, E2)

The swap and identity properties give D(E1, E1) = D(E2, E2) = 0 and 1 =
D(E1, E2) = −D(E2, E1). Therefore, D(A1, A2) = a11a22 − a12a21 and this
implies that D(A1, A2) = det(A).

The proof for general n depends upon the identity

D(Eσ1
, . . . , Eσn

) = (−1)parity(σ)D(E1, . . . , En)

= (−1)parity(σ)
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where σ = (σ1, . . . , σn) is a rearrangement of the integers 1, . . . , n. This identity
is implied by the swap and identity properties. Then, as in the case n = 2,
linearity implies that

D(A1, . . . , An) =
∑
σ a1σ1 · · · anσnD(Eσ1 , . . . , Eσn)

=
∑
σ(−1)parity(σ) a1σ1

· · · anσn

= det(A).

Exercises 5.3

Determinant Notation. Write for-
mulae for x and y as quotients of 2× 2
determinants. Do not evaluate the de-
terminants!

1.

(
1 −1
2 6

)(
x
y

)
=

(
−10

3

)

2.

(
1 2
3 6

)(
x
y

)
=

(
10
−6

)

3.

(
0 −1
2 5

)(
x
y

)
=

(
−1
10

)

4.

(
0 −3
3 10

)(
x
y

)
=

(
−1

2

)
Inverse of a 2 × 2 Matrix. Define
matrix A and its adjugate C:

A =

(
a b
c d

)
, C =

(
d −b
−c a

)
.

5. Verify AC = ∆

(
1 0
0 1

)
where

∆ = det(A).

6. Display the details of the argu-
ment that det(A) 6= 0 implies A−1

exists and A−1 =
C

det(A)
.

7. Show that A−1 exists implies
det(A) 6= 0. Suggestion: Assume
AB = BA = I for some ma-
trix B and also det(A) = 0. Use
AC = det(A)I to obtain a proof
by contradiction.

8. Calculate the inverse of(
1 2
−2 3

)
using the formula

developed in these exercises.

Unique Solution of a 2×2 System.
Solve AX = b for X using Cramer’s
rule for 2× 2 systems.

9. A =

(
0 1
1 2

)
, b =

(
−1

1

)

10. A =

(
0 1
1 2

)
, b =

(
5
−5

)

11. A =

(
2 0
1 2

)
, b =

(
−4

4

)

12. A =

(
2 1
0 2

)
, b =

(
−10

10

)
Sarrus’ 2×2 rule. Evaluate det(A).

13. A =

(
2 1
1 2

)

14. A =

(
−2 1
1 −2

)

15. A =

(
2 −1
3 2

)

16. A =

(
5a 1
−1 2a

)
Sarrus’ rule 3× 3. Evaluate det(A).

17. A =

 0 0 1
0 1 0
1 1 0



18. A =

 0 0 1
0 1 0
1 0 0



19. A =

 0 0 1
1 2 1
1 1 1


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20. A =

 0 0 −1
1 2 −1
1 1 −1


Definition of Determinant.

21. Let A be 3×3 with first row all ze-
ros. Use the college algebra defini-
tion of determinant to show that
det(A) = 0.

22. Let A be 3 × 3 with equal first
and second row. Use the college
algebra definition of determinant
to show that det(A) = 0.

Four Properties. Evaluate det(A)
using the four properties for determi-
nants, page 311.

23. A =

 0 0 1
1 2 1
1 1 1


24. A =

 0 0 1
3 2 1
1 1 1


25. A =

 1 0 0
1 2 1
1 1 1


26. A =

 2 4 2
1 2 1
1 1 1



27. A =


0 0 1 0
1 2 1 0
1 1 1 1
2 1 1 2



28. A =


1 2 1 0
0 1 2 1
0 0 1 2
0 0 0 1



29. A =


2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2



30. A =


4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 4



Elementary Matrices and the Four
Rules. Find det(A).

31. A is 3 × 3 and obtained from the
identity matrix I by three row
swaps.

32. A is 7 × 7, obtained from I by
swapping rows 1 and 2, then rows
4 and 1, then rows 1 and 3.

33. A is obtained from B = 1 0 0
1 2 1
1 1 1

 by swapping rows

1 and 3, then two row combina-
tions.

More Determinant Rules. Cite
the determinant rule that verifies
det(A) = 0. Never expand det(A)!

34. A =

 −1 5 1
2 −4 −4
1 1 −3


Cofactor Expansion and College
Algebra. Evaluate det(A) using the
most efficient cofactor expansion.

35. A =

 2 5 1
2 0 −4
1 0 0


Minors and Cofactors. Write out
and then evaluate the minor and cofac-
tor of each element cited for the matrix

A =

 2 5 y
x −1 −4
1 2 z


36. Row 1 and column 3.

Cofactor Expansion. Use cofactors
to evaluate det(A).

37. A =

 2 7 1
−1 0 −4

1 0 3


Adjugate and Inverse Matrix. Find
the adjugate of A and the inverse of
A. Check the answers via the formula
A adj(A) = det(A)I.
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38. A =

(
2 7
−1 0

)

39. A =

 5 1 1
0 0 2
1 0 3


Transpose and Inverse.

40. Verify that A = 1
sqrt2

(
1 1
−1 1

)
satisfies AT = A−1.

41. Find all 2 × 2 matrices A =(
a b
c d

)
such that det(A) = 1

and AT = A−1.

42. Find all 3×3 diagonal matrices A
such that AT = A−1.

43. Find all 3×3 upper triangular ma-
trices A such that AT = A−1.

44. Find all n × n diagonal matrices
A such that AT = A−1.

45. Determine the n × n triangular
matrices A such that det(A) = 1
and AT = adj(A).

Elementary Matrices. Find the de-
terminant of the product A of elemen-
tary matrices.

46. Let A = E1E2 be 9× 9, where E1

multiplies row 3 of the identity by
−7 and E2 swaps rows 3 and 5 of
the identity.

Determinants and Invertible Ma-
trices. Test for invertibility of A. If
invertible, then find A−1 by the best
method: rref method or the adjugate
formula.

47. A =

 2 3 1
0 0 2
1 0 4


Determinant Product Rule. Ap-
ply the product rule det(AB) =
det(A) det(B).

48. Let det(A) = 5 and det(B) = −2.
Find det(A2B3).

49. Let det(A) = 4 and A(B − 2A) =
0. Find det(B).

50. Let A = E1E2E3 where E1, E2

are elementary swap matrices and
E3 is an elementary combination
matrix. Find det(A).

51. Assume det(AB + A) = 0 and
det(A) 6= 0. Show that det(B +
I) = 0.

Cayley-Hamilton Theorem.

52. Let λ2 − 2λ + 1 = 0 be the char-
acteristic equation of a matrix A.
Find a formula for A2 in terms of
A and I.

53. Let A be an n× n triangular ma-
trix with all diagonal entries zero.
Prove that An = 0.

Applied Definition of Determinant.

54. Given A, find the sampled prod-
uct for the permutation matrix P .

A =

 5 3 1
0 5 7
1 9 4

 ,

P =

 1 0 0
0 0 1
0 1 0

 .

55. Determine the permutation ma-
trices P required to evaluate
det(A) when A is 4× 4.

Three Properties.

56. Assume n = 3. Prove that the
three properties imply D = 0
when two rows are identical.

57. Assume n = 3. Prove that the
three properties imply D = 0
when a row is zero.


