Background

 $\left(e^{u(t)}\right)' = u'(t)e^{u(t)}$

 $\ln e^x = x$, $e^{\ln y} = y$ In words, the exponential and the logarithm are inverses. The domains are $-\infty < x < \infty$, $0 < y < \infty$.

$$e^0=1$$
, $\ln(1)=0$ Special values, usually memorized. In words, the exponential of a

In words, the exponential of a

sum of terms is the product of the exponentials of the terms.
$$(e^a)^b = e^{ab}$$
 Negatives are allowed, e.g.,

 $(e^a)^{-1} = e^{-a}$.

The chain rule of calculus implies this formula from the identity $(e^x)' = e^x$.

identity
$$(e^x)' = e^x$$
.
In $AB = \ln A + \ln B$ In words, the logarithm of a product of factors is the sum of the logarithms of the factors.

 $B \ln(A) = \ln(A^B)$ Negatives are allowed, e.g., $-\ln A = \ln -$

 $(\ln|u(t)|)' = \frac{u'(t)}{u(t)}$ The identity $(\ln(x))' = 1/x$ implies this general version by the chain rule.

Find a function y=f(x) which satisfies the airch differ cauation $\frac{dv}{dx} = (x-2)^2$ and initial condition y(2)=1. 1/(x) = (X-2)2 anch initial caustists $Y'(x) dx = (x-2)^2 dx$

Jonnifor Lahti

$$y'(x) dx = (x-2)^{2} dx$$

$$y'(x) dx = \int (x-2)^{2} dx$$

$$y(x) = \frac{(x-2)^{3}}{3} + C$$

$$1 = \frac{(2-2)^{3}}{3} + C$$

$$C=1$$

$$y(x) = \frac{(x-2)^{3}}{3} + 1$$

$$Candidate solution:$$

PROBLEM 2 194 17 #2

100

Check:

= 0+1

= RHS

[HS= 1(x) = (X-2)3+1] = (x-2)2+0 = RHS

LHS = y(2)

 $=\left[\frac{(x-2)^3}{3}+1\right]_{x=2}$

Checks with initial different equation

Y(2)=1.

checks with initial condition

1 Example (Decay Law Derivation) Derive the decay law $\frac{dA}{dt}=kA(t)$ from the sentence

Radioactive material decays at a rate proportional to the amount present.

Solution: The sentence is first dissected into English phrases 1 to 4.

2: decays at a rate

It means A undergoes decay. Then A changes. Calculus conventions imply the rate of change is dA/dt.

3: proportional to

Literally, it means equal to a constant multiple of.

Let k be the proportionality constant.

4: the amount present The amount of radioactive material present is A(t).

Solution: Continued ...

The four phrases are translated into mathematical notation as follows.

Phrases 1 and 2 Symbol dA/dt. Phrase 3 Equal sign '=' and a constant k.

Phrase 4 Symbol A(t).

Let A(t) be the amount present at time t. The translation is $\frac{dA}{dt}=kA(t)$.