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2.7 Logistic Equation

The 1845 work of Belgian demographer and mathematician Pierre Fran-
cois Verhulst (1804–1849) modified the classical growth-decay equation
y′ = ky, replacing k by a− by, to obtain the logistic equation

y′ = (a− by)y.(1)

The solution of the logistic equation (1) is (details on page 11)

y(t) =
ay(0)

by(0) + (a− by(0))e−at
.(2)

The logistic equation (1) applies not only to human populations but also
to populations of fish, animals and plants, such as yeast, mushrooms
or wildflowers. The y-dependent growth rate k = a − by allows the
model to have a finite limiting population a/b. The constant M = a/b
is called the carrying capacity by demographers. Verhulst introduced
the terminology logistic curves for the solutions of (1).

To use the Verhulst model, a demographer must supply three population
counts at three different times; these values determine the constants a,
b and y(0) in solution (2).

Logistic Models

Below are some variants of the basic logistic model known to researchers
in medicine, biology and ecology.

Limited Environment. A container of y(t) flies has a carrying capac-
ity of N insects. A growth-decay model y′ = Ky with combined
growth-death rate K = k(N − y) gives the model y′ = k(N − y)y.

Spread of a Disease. The initial size of the susceptible population is
N . Then y and N − y are the number of infectives and suscep-
tibles. Chance encounters spread the incurable disease at a rate
proportional to the infectives and the susceptibles. The model is
y′ = ky(N − y). The spread of rumors has an identical model.

Explosion–Extinction. The number y(t) of alligators in a swamp can
satisfy y′ = Ky where the growth-decay constant K is proportional
to y −M and M is a threshold population. The logistic model
y′ = k(y −M)y gives extinction for initial populations smaller
than M and a doomsday population explosion y(t)→∞ for initial
populations greater than M . This model ignores harvesting.
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Constant Harvesting. The number y(t) of fish in a lake can satisfy
a logistic model y′ = (a − by)y − h, provided fish are harvested
at a constant rate h > 0. This model can be written as y′ =
k(N − y)(y − M) for small harvesting rates h, where N is the
carrying capacity and M is the threshold population.

Variable Harvesting. The special logistic model y′ = (a − by)y − hy
results by harvesting at a non-constant rate proportional to the
present population y. The effect is to decrease the natural growth
rate a by the constant amount h in the standard logistic model.

Restocking. The equation y′ = (a− by)y − h sin(ωt) models a logistic
population that is periodically harvested and restocked with max-
imal rate h > 0. The period is T = 2π/ω. The equation might
model extinction for stocks less than some threshold population
y0, and otherwise a stable population that oscillates about an ideal
carrying capacity a/b with period T .

30 Example (Limited Environment) Find the equilibrium solutions and the
carrying capacity for the logistic equation P ′ = 0.04(2− 3P )P . Then solve
the equation.

Solution: The given differential equation can be written as the separable au-
tonomous equation P ′ = G(P ) where G(y) = 0.04(2−3P )P . Equilibria are ob-
tained as P = 0 and P = 2/3, by solving the equation G(P ) = 0.04(2−3P )P =
0. The carrying capacity is the stable equilibrium P = 2/3; here we used the
derivative G′(P ) = 0.04(2 − 6P ) and evaluations G′(0) > 0, G′(2/3) < 0 to
determine that P = 2/3 is a stable sink or funnel.

31 Example (Spread of a Disease) In each model, find the number of infec-
tives and the number of susceptibles at t = 10 for the model y′ = 2(5−3P )y,
y(0) = 1.

Solution: Write the differential equation in the form y′ = 6(5/3 − P )P and
then identify k = 6, N = 5/3. We will determine the number of infectives y(10)
and the number of susceptibles N − y(10).

Using formula (2) with a = 10, b = 6 and y(0) = 1 gives

y(t) =
10

6 + 4e−10t
.

Then the number of infectives is y(10) ≈ 10/6, which is the carrying capacity
N = 5/3, and the number of susceptibles is N − y(10) ≈ 0.

32 Example (Explosion-Extinction) Classify the model as explosion or ex-
tinction: y′ = 2(y − 100)y, y(0) = 200.
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Solution: Let G(y) = 2(y−100)y, then G(y) = 0 exactly for equilibria y = 100
and y = 0, at which G′(y) = 4y − 200 satisfies G′(200) > 0, G′(0) < 0. The
initial value y(0) = 200 is above the equilibrium y = 100. Because y = 100 is a
source, then y →∞, which implies the model is explosion.

A second, direct analysis can be made from the differential equation y′ = 2(y−
100)y: y′(0) = 2(200−100)200 > 0 means y increases from 200, causing y →∞
and explosion.

33 Example (Constant Harvesting) Find the carrying capacity N and the
threshold population M for the harvesting equation P ′ = (3− 2P )P − 1.

Solution: Solve the equation G(P ) = 0 where G(P ) = (3 − 2P )P − 1. The
answers P = 1/2, P = 1 imply that G(P ) = −2(P−1)(P−1/2) = (1−2P )(P−
1). Comparing to P ′ = k(N−P )(P−M), then N = 1/2 is the carrying capacity
and M = 1 is the threshold population.

34 Example (Variable Harvesting) Re-model the variable harvesting equa-
tion P ′ = (3 − 2P )P − P as y′ = (a − by)y and solve the equation by
formula (2), page 131.

Solution: The equation is rewritten as P ′ = 2P − 2P 2 = (2− 2P )P . This has
the form of y′ = (a− by)y where a = b = 2. Then (2) implies

P (t) =
2P0

2P0 + (2− 2P0)e−2t

which simplifies to

P (t) =
P0

P0 + (1− P0)e−2t
.

35 Example (Restocking) Make a direction field graphic by computer for the
restocking equation P ′ = (1− P )P − 2 sin(2πt). Using the graphic, report
(a) an estimate for the carrying capacity C and (b) approximations for the
amplitude A and period T of a periodic solution which oscillates about
P = C.

Solution: The computer algebra system maple is used with the code below to
make Figure 5. An essential feature of the maple code is plotting of multiple
solution curves. For instance, [P(0)=1.3] in the list ics of initial conditions
causes the solution to the problem P ′ = (1 − P )P − 2 sin(2πt), P (0) = 1.3 to
be added to the graphic.

The resulting graphic, which contains 13 solution curves, shows that all solution
curves limit as t→∞ to what appears to be a unique periodic solution.

Using features of the maple interface, it is possible to click the mouse and
determine estimates for the maxima M = 1.26 and minima m = 0.64 of the
apparent periodic solution, obtained by experiment. Then (a) C = (M+m)/2 =
0.95, (b) A = (M−m)/2 = 0.31 and T = 1. The experimentally obtained period
T = 1 matches the period of the term −2 sin(2πt).
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with(DEtools):
de:=diff(P(t),t)=(1-P(t))*P(t)-2*sin(2*Pi* t);
ics:=[[P(0)=1.4],[P(0)=1.3],[P(0)=1.2],[P(0)=1.1],[P(0)=0.1],
[P(0)=0.2],[P(0)=0.3],[P(0)=0.4],[P(0)=0.5],[P(0)=0.6],
[P(0)=0.7],[P(0)=0.8],[P(0)=0.9]];
opts:=stepsize=0.05,arrows=none:
DEplot(de,P(t),t=-3..12,P=-0.1..1.5,ics,opts);

P
1.4

1.26

0.64

−0.1
0

t

12

0.95 Figure 5. Solutions of
P ′ = (1− P )P − 2 sin(2πt).

The maximum is 1.26.
The minimum is 0.64.
Oscillation is about the line
P = 0.95 with period 1.

Exercises 2.7

Limited Environment. Find the
equilibrium solutions and the carrying
capacity for each logistic equation.

1. P ′ = 0.01(2− 3P )P

2. P ′ = 0.2P − 3.5P 2

3. y′ = 0.01(−3− 2y)y

4. y′ = −0.3y − 4y2

5. u′ = 30u+ 4u2

6. u′ = 10u+ 3u2

7. w′ = 2(2− 5w)w

8. w′ = −2(3− 7w)w

9. Q′ = Q2 − 3(Q− 2)Q

10. Q′ = −Q2 − 2(Q− 3)Q

Spread of a Disease. In each model,
find the number of susceptibles and
then the number of infectives at t =
0.557. Follow Example 31, page 132.
A calculator is required for approxima-
tions.

11. y′ =′ (5− 3P )y, y(0) = 1.

12. y′ = (13− 3y)y, y(0) = 2.

13. y′ = (5− 12y)y, y(0) = 2.

14. y′ = (15− 4y)y, y(0) = 10.

15. P ′ = (2− 3P )P , P (0) = 500.

16. P ′ = (5− 3P )P , P (0) = 200.

17. P ′ = 2P − 5P 2, P (0) = 100.

18. P ′ = 3P − 8P 2, P (0) = 10.

Explosion–Extinction. Classify the
model as explosion or extinction.

19. y′ = 2(y − 100)y, y(0) = 200

20. y′ = 2(y − 200)y, y(0) = 300

21. y′ = −100y + 250y2, y(0) = 200

22. y′ = −50y + 3y2, y(0) = 25

23. y′ = −60y + 70y2, y(0) = 30

24. y′ = −540y + 70y2, y(0) = 30

25. y′ = −16y + 12y2, y(0) = 1

26. y′ = −8y + 12y2, y(0) = 1/2
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Constant Harvesting. Find the car-
rying capacity N and the threshold
population M .

27. P ′ = (3− 2P )P − 1

28. P ′ = (4− 3P )P − 1

29. P ′ = (5− 4P )P − 1

30. P ′ = (6− 5P )P − 1

31. P ′ = (6− 3P )P − 1

32. P ′ = (6− 4P )P − 1

33. P ′ = (8− 5P )P − 2

34. P ′ = (8− 3P )P − 2

35. P ′ = (9− 4P )P − 2

36. P ′ = (10− P )P − 2

Variable Harvesting. Re-model the
variable harvesting equation as y′ =
(a − by)y and solve the equation by
recipe (2), page 131.

37. P ′ = (3− 2P )P − P

38. P ′ = (4− 3P )P − P

39. P ′ = (5− 4P )P − P

40. P ′ = (6− 5P )P − P

41. P ′ = (6− 3P )P − P

42. P ′ = (6− 4P )P − P

43. P ′ = (8− 5P )P − 2P

44. P ′ = (8− 3P )P − 2P

45. P ′ = (9− 4P )P − 2P

46. P ′ = (10− P )P − 2P

Restocking. Make a direction field
graphic by computer, following Exam-
ple 35. Using the graphic, report (a)
an estimate for the carrying capacity
C and (b) approximations for the am-
plitude A and period T of a periodic
solution which oscillates about y = C.

47. P ′ = (1− P )P − sin(5πt)

48. P ′ = (1− P )P − 1.5 sin(5πt)

49. P ′ = (2− P )P − 3 sin(7πt)

50. P ′ = (2− P )P − sin(7πt)

51. P ′ = (4− 3P )P − 2 sin(3πt)

52. P ′ = (4− 2P )P − 3 sin(3πt)

53. P ′ = (10− 9P )P − 3 sin(4πt)

54. P ′ = (10− 9P )P − sin(4πt)

55. P ′ = (5− 4P )P − 2 sin(8πt)

56. P ′ = (5− 4P )P − 3 sin(8πt)


