Fundamental Theorem of Calculus

Isaac Newton found these formulas in an effort to extend the gas mileage formula

D = RT, Distance = Rate \times Time,

to instantaneous rates.

Definite Integrals	Indefinite Integrals
$(a) \int_a^b f'(x) dx = f(b) - f(a)$	$\int y'(x)dx = y(x) + C$
(b) $\left(\int_a^x g(t)dt\right)' = g(x)$	$\left(\int g(x)dx ight)'=g(x)$

Part (a) is used in differential equations y' = f(x, y) to discover the solution y(x). Part (b) is used in checking the answer.

Method of Quadrature

Also called the *integration method*, the idea is to multiply the differential equation by dx, then write an integral sign on each side. The logic is that equal integrands imply equal integrals.

• The method applies only to quadrature equations y' = F(x).

Quadrature Classification Test

The equation y' = f(x, y) is a quadrature equation if and only if function f(x, y) is independent of y, or equivalently, $\frac{\partial f}{\partial y} = 0$.

- The Fundamental Theorem of Calculus is applied on the left side to evaluate $\int y'(x)dx = y(x) + C$, where C is a constant.
- The method finds a candidate solution y(x). It does not verify that the expression works.

Example: Method of Quadrature

1 Example (Quadrature) Solve y' = 2x by the method of quadrature.

• Multiply y' = 2x by dx, then write an integral sign on each side.

$$\int y'(x)dx = \int 2xdx$$

• Apply the FTC $\int y'(x) dx = y(x) + C$ on the left:

$$y(x)+c_1=\int 2xdx$$

• Evaluate the integral on the right by tables. Then

$$y(x) + c_1 = x^2 + c_2$$
, or $y(x) = x^2 + C$

2 Example (Quadrature) Solve $y' = 3e^x$, y(0) = 2.

Candidate solution. The method of quadrature is applied.

 $\begin{array}{ll} y'(x) = 3e^x & \text{Copy the equation.} \\ y'(x)dx = 3e^x dx & \text{Multiply both sides by } dx. \\ \int y'(x)dx = \int 3e^x dx & \text{Add an integral on each side.} \\ y(x) + c_1 = 3e^x + c_2 & \text{Fundamental theorem of calculus (FTC) used left.} \\ y(x) = 3e^x + C & \text{Quadrature complete. Next, find } C. \\ 2 = y(0) = 3e^0 + C & \text{Substitute } x = 0. \text{ Use } y(0) = 2. \\ y(x) = 3e^x - 1 & \text{Substitute } C = -1. \text{ Solution candidate found.} \end{array}$

Candidate Solution:

$$y(x) = 3e^x - 1$$

Two-Panel Answer Check

A typical answer check involves two panels, because two equations must be tested: (1) The differential equation, and (2) The initial condition. Abbreviations LHS=*Left-Hand-side* and RHS=*Right-Hand-Side* are used in the displays.

lution $y = 3e^x - 1$ of the differential equation (DE)		Verify IC . Panel 2 of the answer check tests the initial condition (IC) $y(0) = 2$:	
$y' = 3e^x$:		LHS = y(0)	Left side of the initial
LHS=y'	Left side of the differen-	- 3(-)	condition $y(0) = 2$.
	tial equation.	$= (3e^x - 1) _{x=0}$	Substitute $y = 3e^x - $
$=(3e^x-1)'$	Substitute $y = 3e^x - 1$.	(/ <i>w</i> =0	1.
$= 3e^x - 0$	Sum rule, constant rule	$= 3e^0 - 1$	
	and $(e^u)' = u'e^u$.	=2	Simplify using $e^0 = 1$.
= RHS	DE verified.	= RHS	IC verified.