Fundamental Theorem of Calculus

\qquad
Isaac Newton found these formulas in an effort to extend the gas mileage formula

$$
D=R T, \quad \text { Distance }=\text { Rate } \times \text { Time },
$$

to instantaneous rates.

Definite Integrals	Indefinite Integrals
$(a) \quad \int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$	$\int y^{\prime}(x) d x=y(x)+C$
$(b) \quad\left(\int_{a}^{x} g(t) d t\right)^{\prime}=g(x)$	$\left(\int g(x) d x\right)^{\prime}=g(x)$

Part (a) is used in differential equations $\boldsymbol{y}^{\prime}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ to discover the solution $\boldsymbol{y}(\boldsymbol{x})$. Part (b) is used in checking the answer.

Method of Quadrature

Also called the integration method, the idea is to multiply the differential equation by $\boldsymbol{d} \boldsymbol{x}$, then write an integral sign on each side. The logic is that equal integrands imply equal integrals.

- The method applies only to quadrature equations $\boldsymbol{y}^{\prime}=\boldsymbol{F}(\boldsymbol{x})$.

Quadrature Classification Test

The equation $\boldsymbol{y}^{\prime}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is a quadrature equation if and only if function $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is independent of \boldsymbol{y}, or equivalently, $\frac{\partial f}{\partial y}=\mathbf{0}$.

- The Fundamental Theorem of Calculus is applied on the left side to evaluate $\int \boldsymbol{y}^{\prime}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}=\boldsymbol{y}(\boldsymbol{x})+\boldsymbol{C}$, where \boldsymbol{C} is a constant.
- The method finds a candidate solution $\boldsymbol{y}(\boldsymbol{x})$. It does not verify that the expression works.

Example: Method of Quadrature

1 Example (Quadrature) Solve $y^{\prime}=2 x$ by the method of quadrature.

- Multiply $y^{\prime}=2 x$ by $d x$, then write an integral sign on each side.

$$
\int y^{\prime}(x) d x=\int 2 x d x
$$

- Apply the FTC $\int y^{\prime}(x) d x=y(x)+C$ on the left:

$$
y(x)+c_{1}=\int 2 x d x
$$

- Evaluate the integral on the right by tables. Then

$$
y(x)+c_{1}=x^{2}+c_{2}, \quad \text { or } \quad y(x)=x^{2}+C
$$

2 Example (Quadrature) Solve $y^{\prime}=3 e^{x}, y(0)=2$.
Candidate solution. The method of quadrature is applied.

$$
\begin{aligned}
& y^{\prime}(x)=3 e^{x} \\
& y^{\prime}(x) d x=3 e^{x} d x \\
& \int y^{\prime}(x) d x=\int 3 e^{x} d x \\
& y(x)+c_{1}=3 e^{x}+c_{2} \\
& y(x)=3 e^{x}+C \\
& 2=y(0)=3 e^{0}+C \\
& y(x)=3 e^{x}-1
\end{aligned}
$$

Copy the equation.
Multiply both sides by $\boldsymbol{d x}$.
Add an integral on each side.
Fundamental theorem of calculus (FTC) used left. Integral table used right.
$y(x)=3 e^{x}+C \quad$ Quadrature complete. Next, find C.
$2=y(0)=3 e^{0}+C \quad$ Substitute $x=0$. Use $y(0)=2$.

Candidate Solution:

$$
y(x)=3 e^{x}-1
$$

Two-Panel Answer Check

A typical answer check involves two panels, because two equations must be tested: (1) The differential equation, and (2) The initial condition. Abbreviations LHS=Left-Hand-side and RHS=Right-Hand-Side are used in the displays.

$$
\begin{aligned}
& \text { Verify DE. Panel } 1 \text { of the answer check tests the so- } \\
& \begin{array}{ll}
\text { lution } y=3 e^{x}-1 \text { of the differential equation (DE) } \\
y^{\prime}=3 e^{x} \text { : } & \\
\begin{array}{rll}
\text { LHS } & =y^{\prime} & \\
& & \text { Left side of the differen- } \\
& =\left(3 e^{x}-1\right)^{\prime} & \\
& =3 e^{x}-0 & \\
\text { Substitute } y=3 e^{x}-1 . \\
& \text { Sum rule, constant rule } \\
\text { and }\left(e^{u}\right)^{\prime}=u^{\prime} e^{u} .
\end{array} & \text { DE verified. }
\end{array}
\end{aligned}
$$

Verify IC. Panel 2 of the answer check tests the initial condition (IC) $y(0)=2$:

$$
\begin{aligned}
\text { LHS } & =y(0) & & \begin{array}{l}
\text { Left side of the initial } \\
\text { condition } y(0)=2 .
\end{array} \\
& =\left.\left(3 e^{x}-1\right)\right|_{x=0} & & \begin{array}{l}
\text { Substitute } y=3 e^{x}- \\
\\
\end{array}=3 e^{0}-1
\end{aligned}
$$

