Constant Coefficient Equations

Theorem 1 (First Order Recipe)

Let \boldsymbol{a} and \boldsymbol{b} be constants, $\boldsymbol{a} \neq 0$. Let \boldsymbol{r}_{1} denote the root of $\boldsymbol{a r}+\boldsymbol{b}=\mathbf{0}$.
Then $y=c_{1} e^{r_{1} x}$ is the general solution of the first order equation

$$
a y^{\prime}+b y=0
$$

Theorem 2 (Second Order Recipe)

Let $\boldsymbol{a} \neq 0, \boldsymbol{b}$ and \boldsymbol{c} be real constants. Let $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}$ be the two roots of $a r^{2}+b r+c=0$, real or complex. If complex, then let $r_{1}=\overline{r_{2}}=$ $\alpha+i \boldsymbol{\beta}$ with $\boldsymbol{\beta}>\mathbf{0}$. Consider the following three cases, organized by the sign of the discriminant $D=b^{2}-4 a c$:
$D>0$ (Real distinct roots) $y_{1}=e^{r_{1} x}, \quad y_{2}=e^{r_{2} x}$.
$\boldsymbol{D}=0$ (Real equal roots) $\quad y_{1}=e^{r_{1} x}, \quad y_{2}=x e^{r_{1} x}$.
$D<0$ (Conjugate roots) $\quad y_{1}=e^{\alpha x} \cos (\beta x), \quad y_{2}=$ $e^{\alpha x} \sin (\beta x)$.
Then $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}$ are two solutions of $\boldsymbol{a} \boldsymbol{y}^{\prime \prime}+\boldsymbol{b} \boldsymbol{y}^{\prime}+\boldsymbol{c y}=\mathbf{0}$ and the general solution is given by $\boldsymbol{y}=c_{1} y_{1}+c_{2} y_{2}$, where c_{1}, c_{2} are arbitrary constants.

Theorem 3 (Picard-Lindelöf Existence-Uniqueness)

Let the coefficients $\boldsymbol{a}(\boldsymbol{x}), \boldsymbol{b}(\boldsymbol{x}), \boldsymbol{c}(\boldsymbol{x}), \boldsymbol{f}(\boldsymbol{x})$ be continuous on an interval \boldsymbol{J} containing $\boldsymbol{x}=\boldsymbol{x}_{0}$. Assume $\boldsymbol{a}(\boldsymbol{x}) \neq 0$ on \boldsymbol{J}. Let \boldsymbol{y}_{0} and \boldsymbol{y}_{1} be constants. The initial value problem

$$
\begin{aligned}
& a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x), \\
& y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}
\end{aligned}
$$

has a unique solution $\boldsymbol{y}(\boldsymbol{x})$ defined on \boldsymbol{J}.

Theorem 4 (Superposition)
The homogeneous equation $\boldsymbol{a}(\boldsymbol{x}) \boldsymbol{y}^{\prime \prime}+\boldsymbol{b}(\boldsymbol{x}) \boldsymbol{y}^{\prime}+\boldsymbol{c}(\boldsymbol{x}) \boldsymbol{y}=0$ has the superposition property:

If $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}$ are solutions and $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}$ are constants, then the combination $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ is a solution.

Theorem 5 (Homogeneous Structure)

The homogeneous equation $a(x) y^{\prime \prime}+\boldsymbol{b}(\boldsymbol{x}) \boldsymbol{y}^{\prime}+\boldsymbol{c}(\boldsymbol{x}) \boldsymbol{y}=0$ has a general solution of the form

$$
y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

where $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}$ are arbitrary constants and $\boldsymbol{y}_{1}(\boldsymbol{x}), \boldsymbol{y}_{2}(\boldsymbol{x})$ are solutions.

Theorem 6 (Non-Homogeneous Structure)

The non-homogeneous equation $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x)$ has general solution

$$
y(x)=y_{h}(x)+y_{p}(x)
$$

where
$\boldsymbol{y}_{h}(\boldsymbol{x})$ is the general solution of the homogeneous equation $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$, and
$\boldsymbol{y}_{p}(\boldsymbol{x})$ is a particular solution of the nonhomogeneous equation $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x)$.

