Eigenanalysis

- What's Eigenanalysis?
- Fourier's Eigenanalysis Model is a Replacement Process
- Powers and Fourier's Model
- Differential Equations and Fourier's Model
- Fourier's Model Illustrated
- What is Eigenanalysis? What's an Eigenvalue? What's an Eigenvector?
- Data Conversion Example
- History of Fourier's Model
- Determining Equations. How to Compute Eigenpairs.
- Independence of Eigenvectors.

What's Eigenanalysis?

Matrix eigenanalysis is a computational theory for the matrix equation

$$\mathbf{y} = A\mathbf{x}.$$

Fourier's Eigenanalysis Model

For exposition purposes, we assume A is a 3×3 matrix.

(1)
$$\begin{aligned} \mathbf{x} &= c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 \text{ implies} \\ \mathbf{y} &= A \mathbf{x} \\ &= c_1 \lambda_1 \mathbf{v}_1 + c_2 \lambda_2 \mathbf{v}_2 + c_3 \lambda_3 \mathbf{v}_3. \end{aligned}$$

Eigenanalysis Notation

The scale factors λ_1 , λ_2 , λ_3 and independent vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 depend only on A. Symbols c_1 , c_2 , c_3 stand for arbitrary numbers. This implies variable \mathbf{x} exhausts all possible fixed vectors in \mathbf{R}^3 .

Fourier's Model is a Replacement Process

$$A\left(c_1\mathrm{v}_1+c_2\mathrm{v}_2+c_3\mathrm{v}_3
ight)=c_1\lambda_1\mathrm{v}_1+c_2\lambda_2\mathrm{v}_2+c_3\lambda_3\mathrm{v}_3.$$

To compute Ax from $x = c_1v_1 + c_2v_2 + c_3v_3$, replace each vector v_i by its scaled version $\lambda_i v_i$.

Fourier's model is said to **hold** provided there exist scale factors and independent vectors satisfying (1). Fourier's model is known to fail for certain matrices A.

Powers and Fourier's Model

Equation (1) applies to compute powers A^n of a matrix A using only the basic vector space toolkit. To illustrate, only the vector toolkit for R^3 is used in computing

$$A^5\mathrm{x}=x_1\lambda_1^5\mathrm{v}_1+x_2\lambda_2^5\mathrm{v}_2+x_3\lambda_3^5\mathrm{v}_3.$$

This calculation does not depend upon finding previous powers A^2 , A^3 , A^4 as would be the case by using matrix multiply.

Details for $A^3(\mathbf{x})$

Let $\mathbf{x} = x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3$. Then

$$egin{array}{rll} A^3(x) &=& A^2(A(x)) \ &=& A^2(x_1\lambda_1\mathrm{v}_1+x_2\lambda_2\mathrm{v}_2+x_3\lambda_3\mathrm{v}_3) \ &=& A(A(x_1\lambda_1\mathrm{v}_1+x_2\lambda_2\mathrm{v}_2+x_3\lambda_3\mathrm{v}_3)) \ &=& A(x_1\lambda_1^2\mathrm{v}_1+x_2\lambda_2^2\mathrm{v}_2+x_3\lambda_3^2\mathrm{v}_3) \ &=& x_1\lambda_1^3\mathrm{v}_1+x_2\lambda_2^3\mathrm{v}_2+x_3\lambda_3^3\mathrm{v}_3 \end{array}$$

Differential Equations and Fourier's Model

Systems of differential equations can be solved using Fourier's model, giving a compact and elegant formula for the general solution. An example:

$$egin{array}{rcl} x_1' &=& x_1 \ +& 3x_2, \ x_2' &=& 2x_2 \ -& x_3, \ x_3' &=& -5x_3. \end{array}$$

The general solution is given by the formula [Fourier's theorem, proved later]

$$egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} = c_1 e^t egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} + c_2 e^{2t} egin{pmatrix} 3 \ 1 \ 0 \end{pmatrix} + c_3 e^{-5t} egin{pmatrix} 1 \ -2 \ -14 \end{pmatrix},$$

which is related to Fourier's model by the symbolic formulas

$$egin{aligned} \mathrm{x}(0) &= c_1 \mathrm{v}_1 + c_2 \mathrm{v}_2 + c_3 \mathrm{v}_3 \ & ext{undergoes replacements } \mathrm{v}_i o e^{\lambda_i t} \mathrm{v}_i ext{ to obtain} \ \mathrm{x}(t) &= c_1 e^{\lambda_1 t} \mathrm{v}_1 + c_2 e^{\lambda_2 t} \mathrm{v}_2 + c_3 e^{\lambda_3 t} \mathrm{v}_3. \end{aligned}$$

Fourier's model illustrated _

Let

$$A = egin{pmatrix} 1 & 3 & 0 \ 0 & 2 & -1 \ 0 & 0 & -5 \end{pmatrix} \ \lambda_1 = 1, \qquad \lambda_2 = 2, \qquad \lambda_3 = -5, \ v_1 = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}, \ v_2 = egin{pmatrix} 3 \ 1 \ 0 \end{pmatrix}, \ v_3 = egin{pmatrix} 1 \ -2 \ -14 \end{pmatrix}.$$

Then Fourier's model holds (details later) and

$$x = c_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} 1 \\ -2 \\ -14 \end{pmatrix} \text{ implies}$$

$$Ax = c_1(1) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2(2) \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} + c_3(-5) \begin{pmatrix} 1 \\ -2 \\ -14 \end{pmatrix}$$

Eigenanalysis might be called *the method of simplifying coordinates*. The nomenclature is justified, because Fourier's model computes y = Ax by scaling independent vectors v_1 , v_2 , v_3 , which is a triad or **coordinate system**.

What is Eigenanalysis?

The subject of **eigenanalysis** discovers a coordinate system v_1 , v_2 , v_3 and scale factors λ_1 , λ_2 , λ_3 such that Fourier's model holds. Fourier's model simplifies the matrix equation y = Ax, through the formula

$$A(c_1\mathrm{v}_1+c_2\mathrm{v}_2+c_3\mathrm{v}_3)=c_1\lambda_1\mathrm{v}_1+c_2\lambda_2\mathrm{v}_2+c_3\lambda_3\mathrm{v}_3.$$

What's an Eigenvalue?

It is a scale factor. An eigenvalue is also called a *proper value* or a *hidden value* or a *characteristic value*. Symbols λ_1 , λ_2 , λ_3 used in Fourier's model are eigenvalues.

The **eigenvalues** of a model are scale factors. Think of them as a system of units *hidden* in the matrix A.

What's an Eigenvector? __

Symbols v_1 , v_2 , v_3 in Fourier's model are called eigenvectors, or *proper vectors* or *hidden* vectors or characteristic vectors. They are assumed independent.

The eigenvectors of a model are independent directions of application for the scale factors (eigenvalues). Think of each eigenpair (λ, \mathbf{v}) as a coordinate axis \mathbf{v} where the action of matrix A is to move λ units along \mathbf{v} .

Data Conversion Example _

Let x in \mathbb{R}^3 be a data set variable with coordinates x_1 , x_2 , x_3 recorded respectively in units of meters, millimeters and centimeters. We consider the problem of conversion of the mixed-unit x-data into proper MKS units (meters-kilogram-second) y-data via the equations

(2)
$$egin{array}{lll} y_1 &= x_1, \ y_2 &= 0.001 x_2, \ y_3 &= 0.01 x_3. \end{array}$$

Equations (2) are a model for changing units. Scaling factors $\lambda_1 = 1$, $\lambda_2 = 0.001$, $\lambda_3 = 0.01$ are the **eigenvalues** of the model.

Data Conversion Example – Continued

Problem (2) can be represented as y = Ax, where the diagonal matrix A is given by

$$A = egin{pmatrix} \lambda_1 & 0 & 0 \ 0 & \lambda_2 & 0 \ 0 & 0 & \lambda_3 \end{pmatrix}, \hspace{1em} \lambda_1 = 1, \hspace{1em} \lambda_2 = rac{1}{1000}, \hspace{1em} \lambda_3 = rac{1}{100}.$$

Fourier's model for this matrix A is

$$A\left(c_1egin{pmatrix}1\0\0\0\end{pmatrix}+c_2egin{pmatrix}0\1\0\1\end{pmatrix}+c_3egin{pmatrix}0\0\1\end{pmatrix}\end{pmatrix}=c_1\lambda_1egin{pmatrix}1\0\0\0\end{pmatrix}+c_2\lambda_2egin{pmatrix}0\1\0\1\end{pmatrix}+c_3\lambda_3egin{pmatrix}0\0\1\end{pmatrix}$$

The eigenvectors v_1 , v_2 , v_3 of the model are the columns of the identity matrix.

Summary _____

The eigenvalues of a model are scale factors, normally represented by symbols

 $\lambda_1, \ \ \lambda_2, \ \ \lambda_3, \ \ \ldots$

The **eigenvectors** of a model are independent **directions of application** for the scale factors (eigenvalues). They are normally represented by symbols

 v_1, v_2, v_3, \ldots

History of Fourier's Model

The subject of **eigenanalysis** was popularized by J. B. Fourier in his 1822 publication on the theory of heat, *Théorie analytique de la chaleur*. His ideas can be summarized as follows for the $n \times n$ matrix equation y = Ax.

The vector y = Ax is obtained from eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ and eigenvectors v_1, v_2, \ldots, v_n by replacing the eigenvectors by their scaled versions $\lambda_1 v_1, \lambda_2 v_2, \ldots, \lambda_n v_n$:

$$egin{array}{rcl} \mathrm{x} &= c_1 \mathrm{v}_1 &+ c_2 \mathrm{v}_2 &+ \cdots + c_n \mathrm{v}_n & ext{implies} \ \mathrm{y} &= x_1 \lambda_1 \mathrm{v}_1 &+ x_2 \lambda_2 \mathrm{v}_2 &+ \cdots + c_n \lambda_n \mathrm{v}_n. \end{array}$$

Determining Equations

The eigenvalues and eigenvectors are determined by homogeneous matrix-vector equations. In Fourier's model

$$A(c_1\mathrm{v}_1+c_2\mathrm{v}_2+c_3\mathrm{v}_3)=c_1\lambda_1\mathrm{v}_1+c_2\lambda_2\mathrm{v}_2+c_3\lambda_3\mathrm{v}_3$$

choose $c_1 = 1$, $c_2 = c_3 = 0$. The equation reduces to $Av_1 = \lambda_1 v_1$. Similarly, taking $c_1 = c_2 = 0$, $c_2 = 1$ implies $Av_2 = \lambda_2 v_2$. Finally, taking $c_1 = c_2 = 0$, $c_3 = 1$ implies $Av_3 = \lambda_3 v_3$. This proves the following fundamental result.

Theorem 1 (Determining Equations in Fourier's Model)

Assume Fourier's model holds. Then the eigenvalues and eigenvectors are determined by the three equations

$$egin{aligned} A \mathrm{v}_1 &= \lambda_1 \mathrm{v}_1, \ A \mathrm{v}_2 &= \lambda_2 \mathrm{v}_2, \ A \mathrm{v}_3 &= \lambda_3 \mathrm{v}_3. \end{aligned}$$

Determining Equations and Linear Algebra

The three relations of the theorem can be distilled into one homogeneous matrix-vector equation

$$A\mathbf{v} = \lambda \mathbf{v}.$$

Write it as $Ax - \lambda x = 0$, then replace λx by λIx to obtain the standard form^{*a*}

$$(A-\lambda I)\mathrm{v}=0, \hspace{1em}\mathrm{v}
eq 0.$$

Let $B = A - \lambda I$. The equation Bv = 0 has a nonzero solution v if and only if there are infinitely many solutions. Because the matrix is square, infinitely many solutions occurs if and only if rref(B) has a row of zeros. Determinant theory gives a more concise statement: det(B) = 0 if and only if Bv = 0 has infinitely many solutions. This proves the following result.

^{*a*}Identity I is required to factor out the matrix $A - \lambda I$. It is wrong to factor out $A - \lambda$, because A is 3×3 and λ is 1×1 , incompatible sizes for matrix addition.

College Algebra and Eigenanalysis

Theorem 2 (Characteristic Equation)

If Fourier's model holds, then the eigenvalues λ_1 , λ_2 , λ_3 are roots λ of the polynomial equation

$$\det(A - \lambda I) = 0.$$

The equation $det(A - \lambda I) = 0$ is called the **characteristic equation**. The **characteristic polynomial** is the polynomial on the left, $det(A - \lambda I)$, normally obtained by cofactor expansion or the triangular rule.

Eigenvectors and Frame Sequences

Theorem 3 (Finding Eigenvectors of A)

For each root λ of the characteristic equation, write the frame sequence for $B = A - \lambda I$ with last frame $\operatorname{rref}(B)$, followed by solving for the general solution v of the homogeneous equation Bv = 0. Solution v uses invented symbols t_1, t_2, \ldots . The vector basis answers $\partial_{t_1}v, \partial_{t_2}v, \ldots$ are independent **eigenvectors** of A paired to eigenvalue λ .

Proof: The equation $Av = \lambda v$ is equivalent to Bv = 0. Because det(B) = 0, then this system has infinitely many solutions, which implies the frame sequence starting at B ends with rref(B) having at least one row of zeros. The general solution then has one or more free variables which are assigned invented symbols t_1, t_2, \ldots , and then the vector basis is obtained by from the corresponding list of partial derivatives. Each basis element is a nonzero solution of $Av = \lambda v$. By construction, the basis elements (eigenvectors for λ) are collectively independent. The proof is complete.

Eigenpairs of a Matrix _

Definition 1 (Eigenpair)

An eigenpair is an eigenvalue λ together with a matching eigenvector $\mathbf{v} \neq \mathbf{0}$ satisfying the equation $A\mathbf{v} = \lambda \mathbf{v}$. The pairing implies that scale factor λ is applied to direction \mathbf{v} .

An applied view of an eigenpair is a coordinate axis v and a unit system along this axis. The action of the matrix A is to move λ units along this axis.

A 3 \times 3 matrix A for which Fourier's model holds has eigenvalues λ_1 , λ_2 , λ_3 and corresponding eigenvectors v_1 , v_2 , v_3 . The **eigenpairs** of A are

 $\left(\lambda_{1}, \mathrm{v}_{1}
ight), \left(\lambda_{2}, \mathrm{v}_{2}
ight), \left(\lambda_{3}, \mathrm{v}_{3}
ight).$

Eigenvectors are Independent

Theorem 4 (Independence of Eigenvectors)

If (λ_1, v_1) and (λ_2, v_2) are two eigenpairs of A and $\lambda_1 \neq \lambda_2$, then v_1 , v_2 are independent.

More generally, if $(\lambda_1, v_1), \ldots, (\lambda_k, v_k)$ are eigenpairs of A corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_k$, then v_1, \ldots, v_k are independent.

Theorem 5 (Distinct Eigenvalues)

If an $n \times n$ matrix A has n distinct eigenvalues, then its eigenpairs (λ_1, v_1) , ..., (λ_n, v_n) produce independent eigenvectors v_1, \ldots, v_n . Therefore, Fourier's model holds:

$$A\left(\sum_{i=1}^n c_i \mathrm{v}_i
ight) = \sum_{i=1}^n c_i(\lambda_i \mathrm{v}_i).$$