Matrix Exponential: Putzer Formula
 Variation of Parameters for Systems
 Undetermined Coefficients for Systems

- The 2×2 Matrix Exponential $e^{A t}$
- Putzer Formula for 2×2 Matrices
- How to Remember Putzer's 2×2 Formula
- Variation of Parameters
- Undetermined Coefficients

The 2×2 Matrix Exponential $e^{A t}$ The matrix $\boldsymbol{e}^{\boldsymbol{A} t}$ has columns equal to the solutions of the two problems

$$
\left\{\begin{array} { l }
{ \vec { \mathbf { u } } _ { 1 } ^ { \prime } (t) = A \vec { \mathbf { u } } _ { 1 } (t) , } \\
{ \vec { \mathbf { u } } _ { 1 } (0) = (\begin{array} { l }
{ 1 } \\
{ 0 }
\end{array}) }
\end{array} \quad \left\{\begin{array}{l}
\overrightarrow{\mathbf{u}}_{2}^{\prime}(t)=A \overrightarrow{\mathbf{u}}_{2}(t), \\
\overrightarrow{\mathbf{u}}_{2}(0)=\binom{0}{1}
\end{array}\right.\right.
$$

Briefly, the matrix $\Phi(t)=e^{A t}$ satisfies the two conditions

1. $\Phi^{\prime}(t)=A \Phi(t)$,
2. $\Phi(0)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

Putzer Formula for 2×2 Matrices

$$
\begin{array}{ll}
e^{A t}=e^{\lambda_{1} t} I+\frac{e^{\lambda_{1} t}-e^{\lambda_{2} t}}{\lambda_{1}-\lambda_{2}}\left(A-\lambda_{1} I\right) & A \text { is } 2 \times 2, \lambda_{1} \neq \lambda_{2} \text { real. } \\
e^{A t}=e^{\lambda_{1} t} I+t e^{\lambda_{1} t}\left(A-\lambda_{1} I\right) & A \text { is } 2 \times 2, \lambda_{1}=\lambda_{2} \text { real. } \\
e^{A t}=e^{a t} \cos b t I+\frac{e^{a t} \sin b t}{b}(A-a I) & \begin{array}{l}
A \text { is } 2 \times 2, \lambda_{1}=\bar{\lambda}_{2}=a+i b, \\
b>0
\end{array}
\end{array}
$$

How to Remember Putzer's 2×2 Formula

The expressions

$$
\begin{align*}
& e^{A t}=r_{1}(t) I+r_{2}(t)\left(A-\lambda_{1} I\right) \\
& r_{1}(t)=e^{\lambda_{1} t}, \quad r_{2}(t)=\frac{e^{\lambda_{1} t}-e^{\lambda_{2} t}}{\lambda_{1}-\lambda_{2}} \tag{1}
\end{align*}
$$

are enough to generate all three formulas. Fraction \boldsymbol{r}_{2} is the $\boldsymbol{d} / \boldsymbol{d} \boldsymbol{\lambda}$-Newton quotient for \boldsymbol{r}_{1}. It has limit $t e^{\boldsymbol{\lambda}_{1} t}$ as $\boldsymbol{\lambda}_{2} \rightarrow \boldsymbol{\lambda}_{1}$, therefore the formula includes the case $\boldsymbol{\lambda}_{1}=\boldsymbol{\lambda}_{\mathbf{2}}$ by limiting. If $\boldsymbol{\lambda}_{1}=\overline{\boldsymbol{\lambda}}_{2}=\boldsymbol{a}+\boldsymbol{i b}$ with $\boldsymbol{b}>\boldsymbol{0}$, then the fraction \boldsymbol{r}_{2} is already real, because it has for $\boldsymbol{z}=e^{\lambda_{1} t}$ and $\boldsymbol{w}=\boldsymbol{\lambda}_{1}$ the form

$$
r_{2}(t)=\frac{z-\bar{z}}{w-\bar{w}}=\frac{\sin b t}{b}
$$

Taking real parts of expression (1) gives the complex case formula.

Variation of Parameters \qquad

Theorem 1 (Variation of Parameters for Systems)

Let \boldsymbol{A} be a constant $\boldsymbol{n} \times \boldsymbol{n}$ matrix and $\mathbf{F}(\boldsymbol{t})$ a continuous function near $\boldsymbol{t}=\boldsymbol{t}_{\mathbf{0}}$. The unique solution $\mathbf{x}(\boldsymbol{t})$ of the matrix initial value problem

$$
\mathrm{x}^{\prime}(t)=A \mathrm{x}(t)+\mathrm{F}(t), \quad \mathrm{x}\left(t_{0}\right)=\mathrm{x}_{0}
$$

is given by the variation of parameters formula

$$
\begin{equation*}
\mathrm{x}(t)=e^{A t} \mathrm{x}_{0}+e^{A t} \int_{t_{0}}^{t} e^{-r A} \mathbf{F}(r) d r \tag{2}
\end{equation*}
$$

Undetermined Coefficients

Theorem 2 (Polynomial solutions)

Let $f(t)$ be a polynomial of degree \boldsymbol{k}. Assume \boldsymbol{A} is an $\boldsymbol{n} \times \boldsymbol{n}$ constant invertible matrix. Then $\mathbf{u}^{\prime}=A \mathbf{u}+f(t) \mathbf{c}$ has a polynomial solution $\mathbf{u}(t)=\sum_{j=0}^{k} \mathbf{c}_{j}{ }_{j!}^{j_{j!}}$ of degree k with vector coefficients $\left\{\mathrm{c}_{j}\right\}$ given by the relations

$$
\mathrm{c}_{j}=-\sum_{i=j}^{k} f^{(i)}(0) A^{j-i-1} \mathbf{c}, \quad 0 \leq j \leq k
$$

