
Introduction to Maple Versions 9.5 to 15
Information in this document was compiled and updated by Angie Gardiner from:

Multivariate Mathematics with Maple by James A. Carlson and Jennifer M. Johnson, copyright 1996
Introduction to Maple V.4 in the Undergraduate Computer Lab by James A. Carlson and Jennifer M. Johnson, 1993

Math 2250 Maple Tutorial by Nick Korevaar
Math 2250, 2270, 2280 Maple Tutorial edits by Grant Gustafson, 2012

What is Maple?
Maple is a general purpose software package containing tools useful in the study of a wide variety of
problems. We can use Maple like a calculator to carry out numerical computation, or we can use the
programming features of Maple to produce a more complicated sequence of computations. In addition
to numerical computation, we can do symbolic or algebraic computations in Maple. This software
package has built-in functions for solving many kinds of equations, for working with matrices and
vectors, and for differentiation and integration. It also contains functions which allow us to create
visual representations of curves and surfaces from their mathematical descriptions.

Using a software package like Maple gives new ways to think about problems. For example, we can
use the computer to run numerical experiments. This means that we can not only look at more realistic
versions of standard problems, but we can easily look at many more examples, in the process
developing a better intuitive feel for the essential features of a general problem and its solutions. Often
these experiments suggest further questions or interpretations that might otherwise go unnoticed.
Patterns that appear in these experiments give insight into and motivation for the standard approaches
to these problems - and frequently highlight the limitations of these methods.

In many situations the graphics features of Maple are a useful tool for geometrical visualization of
ideas, understanding definitions and exploring techniques. Use the graphical interface to develop your
intuition while learning new topics.

Before you start learning Maple, it is helpful to familiarize yourself with the facilities in the computer
lab in the T. Benny Rushing Mathematics Student Center. Please refer to "Introduction to the Computer
Lab" for this information. Campus departments with computer facilities have installed maple under a
campus-wide site license. It may be convenient to do xmaple sessions in your own department, or 24/7
from home with maple, a non-graphical interface running in an xterm window.

The Basics
Starting Maple.
 Unix Terminal Instructions. If you are using a UNIX station in our lab, either move the cursor into
the local window and type xmaple &, use the middle mouse button on the background to get a menu
from which you can select X Maple V12 (or another version), or click on the maple leaf icon at the
bottom of the screen. Soon a new window will appear. Click and hold the mouse, then move the
window. When satisfied, release the mouse button.
 MacLab Instructions. If you are using a Mac in our lab, click on the icon at the upper right corner of
your screen labeled /. This will open a new window. Click on the Applications button in this window,
and then select XDarwin from the applications and run it rootless. After a couple of minutes, you will
get a terminal window. In this window, type ssh sunfire. Now you can type xmaple at the prompt to
start Maple. Once Maple opens, you can use the buttons in the upper right corner of each window to
resize the windows if you like.

Saving a file. To save a Maple session that you have been working on and give it a name, choose File
-> Save As from the menus at the top of the screen. A Save As window will appear. If you want to
save your file under the name hwk1 (for example), enter hwk1 in the Filename box. If there is already
a *.mws in the box, make sure that you delete the * . Then hit the Return (Macs) or Enter (UNIX) key,
or click on OK. It is best to keep file names simple, using only letters and numbers, without any special

(1)(1)

symbols. In particular, it is a good idea to avoid using spaces or periods. Maple will add the .mws or
.mw extension to identify the saved file as a Maple worksheet. Be careful about reusing a file name
from a previous session. For example, if last week you made a file named Lines.mws and this week
you open a new Maple session and call it Lines.mws also, this will ERASE the file you created last
week. Notice that the Save As window lists the Maple files in your current directory, so you can see
which names you have already used. Once you have given your file a name, you can do File -> Save,
or use the save icon at the top of the window.

Crashed Maple Recovery. After a crash of maple, there is a file in the same directory with extension
_MAS.BAK which contains all recent typing since the last save. Load the file that crashed and also this
_MAS.BAK file with matching file name. Mouse-copy from the save-file into the crashed file, to get
back whatever typing is possible. Be selective, then save the file in case of another crash event.

Copy/Paste. Maple rookies can avoid typing errors by copying known valid code with the mouse
(highlight, then ctrl-C), followed by paste onto a new line (mouse click at target location, then ctrl-V).
Copy works from text documents and also PDF documents (copy requires adobe reader). To paste, try
the menu item PASTE. Then ctrl-V. Then RIGHT MOUSE BUTTON. Then MIDDLE MOUSE
BUTTON. If none of that works, then hold down the SHIFT KEY and try the mouse buttons again.

 Mac Workstation. If you are using a Mac, use the mouse to highlight the command(s) you want to
copy, then choose Edit -> Copy from the menus.
 Move the cursor to where you want to paste the text, then choose Edit -> Paste.
 Unix Workstation. Press and hold down the left mouse button at the beginning of the text you want
to copy. Still holding the button down, drag the mouse
 until you have highlighted the desired text. Release the mouse button. Move the cursor to the
position where you want to paste. Click the left mouse button
 to mark this spot. Click the middle mouse button to paste.
 Repeat Paste. Copied text stays in memory and anytime you press the middle mouse button (or
choose Paste from the Edit menu) it will be pasted at the
 current cursor position. This can cause surprises, if you accidentally hit the middle mouse button.
An immediate ctrl-z will undo the error. For safety,
 mouse-copy some blank space to clear the copied text.

Editing your Maple file. It may take more than one session at the computer to complete your analysis.
 Save your work on disk, and come back to the lab and open your Maple file again to continue working.
 Often it will be useful to take with you a printed copy of your Maple session so you can think about
what you have done so far, and how you want to continue when you come back to the lab, or so that
you can get help from a lab instructor, a friend, or the instructor.

Cleaning Up. You can also delete text or commands by using the mouse to highlight the area you want
to delete, then hitting the Delete key. To delete an entire computation or a plot, move the cursor into the
command block (square left bracket on the left screen edge) that produced the computation or click on
the plot. Hold down the Control key and press the Delete key. The Edit menu has a duplicate.
Accelerate typing by learning key shortcuts from the menus.

Comments . In any command line, Maple ignores anything typed after the # symbol to the end of that
line. An example:

solve (3*x + 2*y - 5*z, z); # Solve for z in terms of symbols
x and y

Block Comments. If you want to add comments between commands, move the cursor into the first

command. Then click on the icon T at the top of the screen (left of [>) . A new text block appears
below and the cursor moves into the block. The pull-down menus and buttons at the top of the Maple
window allow you to control the size and style of the text you enter. Default text is black at 12 points.

Printing. To print your Maple session directly from Maple, choose Print from the File menu (or click
on the Printer icon). In the Printer Setup window that appears, check that Print Command is selected,
rather than Output to File, and click Print. If the default output is the printer, then to print to a file,
choose the box marked Print To File on the General tab of the print dialog box. Some maple versions
don't have the feature.) The default print command (lpr) should send a printout of your Maple
worksheet to the printer. If only part of your worksheet is printing, try changing the default print
command (inside maple) to lpr -l or lpr -oraw.

Alternatively, you can save your Maple session to a postscript file, then print that file from a local
terminall window. To do this, in the Printer Setup window choose Output to File and click Print. This
will create a postscript file from your Maple worksheet and will store it with some name, like hwk1.ps.
 To send this file to the printer, go to the local window and type lpr hwk1.ps, then press Enter. If you
are printing from the local window, make sure that you are printing a .ps file. The file type .mws can
only be printed from xmaple. Print PDF files from acroread (adobe reader). Don't use lpr on PDF files,
because of printer filters that silently change the print file contents.

* *If you are having trouble printing, please ask the lab assistant for
help.* *

Coming back for more. When you come back to work on a Maple file that you've already started,
your task now is to reopen that file and get back to where you left off. To open a file, choose File ->
Open. An Open File window will appear. In this window you will see a list of Maple files. Click on
the file that you want to open, then press the Enter key or click OK.

 It is not enough to just OPEN the saved file!

Although Maple displays a record of your last session, it unloads variables. One way to get Maple to
reload variables from last time is to go to the beginning of your file and hit the Return key until you get
to the last line of the file. (You might want to use the arrow keys to skip the lines that displayed plots
or requests for help files). This will ensure that Maple's memory of your last session is restored. A

shortcut for executing the entire worksheet is to click the icon !!! at the top of the window. Inserting

a #-sign at the front of plot or help lines will quiet down the worksheet re-execute.

Using Maple
The best way to learn Maple is by using it. But first, a few remarks about Maple. The symbol > is the
command prompt, which Maple uses to signal you that it awaits your command. Commands normally

end with a semicolon (;) if you want to see the output or a colon (:) if you don't want to see the
output. Maple is a programming language. It has strict rules of punctuation, grammar, and spelling. If
something is not working right, check to see if you are following the rules. For example, the
Mapleengine will get confused if you write 2x instead of 2*x. Check for things like misspelled names
or extra or missing parentheses. If further thought doesn't clear things up, ask a human for help. You
will soon become an expert troubleshooter.

(2)(2)

(4)(4)

(6)(6)

(5)(5)

(3)(3)

(7)(7)

While learning Maple, you will often have questions about how a particular command or function is
used. Fortunately, Maple can help. To ask about a command whose name you know, just type a
question mark, followed by the name of the command. Thus

?solve

gives information on the solve command. Scroll forward to the examples at the end. Most questions
are answered by the examples. If not answered, then use the technical information at the beginning of
the help file. For specific help on how to do something in maple, use a google search in a browser - it is
faster than sorting through maple's help system.

The help system in maple supports full text search or topic search of Maple's help files. You will find
these options under the Help menu in the upper right corner of the Maple window. You will also find
other handy things, such as Introduction, New User's Tour, and Using Help. Rookies are frustrated by
the help system, but encouraged by google searches, which can answer a specific question.

Hand Calculator Examples. Let's get started! Go ahead and type along with these
examples.

2 + 2; 3*5; 6-2:
4
15

All three computations were done, although only two results are shown (the colon : at the end of a
command suppresses the output). If you forget the semicolon, go ahead and put it on the next line:

3*5
;

15
Addition +, subtraction -, and division / are standard, and parentheses are used as in algebra. An
asterisk * indicates multiplication and a caret ^ is used for powers:

(1 + 2) * (6 + 7) - 12 / 7;
261
7

3^(2.1);
10.04510857

Whenever possible, Maple tries to compute exact quantities. Our first command gives its answer as a
fraction, rather than as a decimal, contrary to what you might expect. The second command gives a
decimal, or "floating point" answer because we used this form in our question. To force Maple to give

results in floating point (decimal) form, use evalf:

Pi; # The constant 3.1415727... prints as a greek letter
pi; # Symbol PI, prints as a greek letter (confusing isn't it?)

evalf(Pi); # Print PI to 10 digits default
3.141592654

(10)(10)

(8)(8)

(9)(9)

(11)(11)

(12)(12)

exp(1); # the number e=2.818... prints as lowercase italic e
evalf(%); # The % sign stands for the most recently computed quantity.
e; # symbol e prints as lowercase italic e
evalf(%);

e
2.718281828

e
e

Upper and Lower Case Madness.
Maple code distinguishes upper-case letters from lower-case. Thus evalf(pi) is not the same as
evalf(Pi).
The function evalf can take a second (optional) argument which determines the precision of the
output.

evalf(Pi, 50); # Compute Pi to 50 digits.
3.1415926535897932384626433832795028841971693993751

Spacing.
For the most part, spacing is unimportant in Maple. In the code line above, spaces could be omitted or
added without causing any problems.
Thoughtful use of spacing makes Maple code easier to read, easier to understand, and easier to edit.

Standard mathematical functions can be used in Maple so long as we know their names.

abs(-14) + sin(1) - sqrt(2) + exp(cos(1.6*Pi)) + arctan(3);

evalf(%);
16.03838871

Maple expression syntax can often be found by intelligent guessing. Thus tan(45) does indeed
compute the tangent, and 20! computes a factorial.
If your first guess doesn't work, then use Maple help or switch to a browser search engine, looking for
sample code.

Packages.
In addition to the functions in the Maple library, there are specialized packages (libraries) of functions
that can be loaded using the command with.
For example, to do certain work with matrices and vectors requires the linear algebra package. You do
this by typing

with (LinearAlgebra); # This package is recommended for
differential equation and linear algebra courses

(8)(8)

(13)(13)

(16)(16)

(12)(12)

(15)(15)

(14)(14)

This command produces a list of all the functions in this package and gives you access to them in your
current Maple session.
If you close Maple and reopen it later, you must reload any special packages you want to use.

Once familiar with a package, load it silently using a colon. (:) instead of a semicolon (;).

with (linalg): # Silence output. Old package, support being
removed by maplesoft.

Other Packages. Some packages of interest are plots, DEtools, and student.

Algebra. Maple code uses variables and algebra. Consider, for example, the expression

with variables a,b.

(a + b)^2;

expand (%);

give the expanded form, and

factor (%);

brings us back to our starting point. To make long computations easier and more intelligible, we can
assign values to variables using ":="

p := (a + b)^2; b := 1; p;

(19)(19)

(21)(21)

(18)(18)

(8)(8)

(24)(24)

(27)(27)

(22)(22)

(23)(23)

(16)(16)

(20)(20)

(26)(26)

(12)(12)

(17)(17)

(25)(25)

In these examples, variables store an expression or a number. Variables can store almost anything, for
example, a list of points, an equation, a set, a piece of text, or a function definition:

pts := [[1,2], [3,4]]; # a double-list or list-of-lists

eqn := 2*x - 3*y = 5; # eqn abbreviates equation 2x+3y=5

eqns := { 2*x - 3*y = 5, 5*x - 3*y = 1 }; # A set of two
equations

tag := "The nth partial sum is"; # strings are delimited by
double quotes

print (pts, eqn, eqns, tag); #checks our assignments

f := x -> x^2; # defines a function. Use 2 symbols,
MINUS and GREATER-THAN

g:=unapply(x^2,x); # defines a function, with recusive
symbol evaluation

f(2); f(3); g(2); g(3);
4
9
4
9

Assignment. Anything we can define or compute in Maple can be assigned to a variable for
future reference using ":=". The symbol = by itself is used to test equality.
A space is NOT allowed between the : and the = in an assignment statement. Beware of using equal
only when you meant colon-equal. Such typos are maddening to discover
and the typo generates no maple error message.

Variables can be returned to their original symbolic (unassigned) state. The commands

b := 'b'; # same as unassign('b'); Removes b:=1; assignment
made above to symbol b.

p; # re-execute formula for p, with b:=1 replaced by
symbol b

 Similarly, clears the variables assigned above using unassign():

unassign ('pts', 'eqn', 'eqns', 'tag');

print (pts, eqn, eqns, tag);

(39)(39)

(8)(8)

(35)(35)

(36)(36)

(34)(34)

(30)(30)

(16)(16)

(29)(29)

(32)(32)

(28)(28)

(12)(12)

(33)(33)

(38)(38)

(31)(31)

(37)(37)

 The restart command clears ALL variables and unloads all packages. So, if you need one later, you
must reload it using with.

restart; # A drastic way to clear variables and computer memory
Also got rid of library loads for linalg and LinearAlgebra
which were done above.

Pay special attention to the kind of quotes used in examples. The possibilities are the single quote ',
the backquote ̀ , and the double quote ". They all play different roles.

Here is an extended example of how to use variables and assignment statements:

F := m*a; # Newton's formula for force

m := 2.1; a := 5; # set the mass and acceleration

F; # compute the force
10.5

a := 21.9; # reset the acceleration

F; # recompute force
45.99

a := 'a'; # clear a with single quotes

s:="a"; # make a one-character string, no
substitution of symbol a
s:="m"; # one-character string, again no
substitution of symbol m (m equals 2.1)

F; # recompute F, symbol a was restored

The subs command lets us make temporary substitutions in an expression as opposed to assigning
values. For example, try this:

g := (a+1)^2 / (b-1)^3 + a / (b-1);

simplify (g);

subs(a=3, b=2, g);
19

or this

subs(a = x+y, b = x+1, g); # x,y can be symbols or := assigned

(16)(16)

(39)(39)

(8)(8)

(40)(40)

(12)(12)

values or constants

simplify(%); a; b; # The symbol % means the answer of
the previous computation
 # The variables a and b were not permanently
assigned a value.

a
b

Graphing
Standard Coordinates. Maple can construct many kinds of graphs, a feature that you can use to
visualize mathematical objects and processes.
The command

plot(sin(3*x), x = -Pi..Pi);

x
0 1 2 3

1

produces a plot containing the curve for in the interval from to . No space is allowed
between the double-dots in a plot command.
Scales on the x-axis and y-axis are chosen in the maple engine. To change this behavior:

plot(sin(3*x), x = -Pi..Pi, scaling = constrained);

(16)(16)

(39)(39)

(8)(8)

(12)(12)

x
0 1 2 3

1

Sometimes it is useful to restrict the range over which varies. We get a misleading graph from

plot(tan(x), x = -5..5);

x
0 2 4

2000

4000

6000

8000

10000

It does not accurately represent the vertical asymptotes of . Better results are obtained with

plot(tan(x), x = -5..5, y = -5..5);

x
0 2 4

y 2

4

We can plot several curves at once. To plot and together we say
plot({ sin(x), sin(3*x) }, x = -Pi..Pi); # The curve
equations are inside set-delimiters of curly braces

(16)(16)

(39)(39)

(8)(8)

(12)(12)

x
0 1 2 3

1

plot(1+x^2,x=0.1 .. 0.8); # Decimal points can conflict with
double-dot range parsing [compare x=.1...8]

x

Now the first argument of plot is a set of expressions to be graphed. Sets are enclosed in curly braces
and individual items are separated by commas.

We could also use the display command found in the plots package:

with(plots):

plot1 := plot(x^2, x = 0..4): # Don't display plot data, use
colon

plot2 := plot(3*x^2 - 2, x = 0..4):

display([plot1, plot2]);

x
0 1 2 3 4

0

10

20

30

40

Parametric Equations

(41)(41)

(16)(16)

(39)(39)

(8)(8)

(12)(12)

A curve in the plane can be described as the graph of a function, as in the graph of for

 in the interval from -1 to 1.
It can be given parametrically as in for in the interval from to .
Often we interpret such a curve as the path traced by a moving particle at time .
Use the plot command to draw a curve from this parametric description:

plot([2*cos(t), sin(t), t = 0..Pi]); # unconstrained,
distorted graphic

0 1 2

1

plot([2*cos(t), sin(t), t = 0..Pi], scaling = constrained); #
constrained is not distorted

0 1 2

1

Polar Coordinates

Polar plots are a special kind of parametric plot. The polar coordinates () of points on a curve can

be given as a function of some parameter . In many cases the parameter is just the angle . Consider
the ellipse defined in standard coordinates by . To find an equation relating the polar

coordinates and of a typical point on this ellipse, we make the substitution and
, where .

subs(x = r*cos(t), y = r*sin(t), x^2 + 4*y^2 = 4);
simplify(%);
solve(%, r);

(39)(39)

(8)(8)

(41)(41)

(16)(16)

(42)(42)

(12)(12)

(43)(43)

We find that the ellipse is the collection of points whose polar coordinates () satisfy

, and the following commands draw the right half of the ellipse:

r := 2/sqrt(4 - 3*cos(t)^2):

plot([r, t, t = -Pi/2..Pi/2], coords = polar);

1
0

1

Here are some more of examples of polar plots that you can try:

plot([1, t, t = 0..2*Pi], coords=polar):

plot([t, t, t = 0..2*Pi], coords=polar):

plot([sin(4*t), t, t = 0..2*Pi], coords=polar): # a more realistic
picture is obtained with scaling = constrained.

Plotting Data
Maple can plot data consisting of pairs of and values. For example, if we say

data := [[0, 0.53], [1, 1.14], [2, 1.84], [3, 4.12]];

then data refers to a sequence of five points, () = (0, 0.53), etc. The result is a double list:
something enclosed in square brackets, with comma-separatd elements in square brackets.
Lists are used for collections of objects where the order matters.

data[1]; data[2]; data[3]; data[4]; # Individual items are
accessed this way

(41)(41)

(16)(16)

(39)(39)

(8)(8)

(12)(12)

(43)(43)

(44)(44)

data[3][2]; # To access the second coordinate of the third data
point

1.84

To plot the points in a double-list we use commands like

plot(data, style = point, symbol = circle, color = black);

0 1 2 3

1

2

3

4

plot(data, style = line, view = [0..4, 0..5]);

0 1 2 3 4
0

1

2

3

4

5

plot(data, style = line, title = "Experiment 1"):

Here the double quote is used to specify a plot title string. See ?plot[options] for more
information, e.g., about symbols and line styles available.
You could also try ?readdata and ?stats to find out how to read a file of data points into a Maple
session.

(39)(39)

(46)(46)

(8)(8)

(47)(47)

(41)(41)

(16)(16)

(50)(50)

(12)(12)

(49)(49)

(43)(43)

(48)(48)

(45)(45)

Solving Equations
Consider some examples:

solve(x^2 + 3*x = 2.1);

solve(x^3 + x = 27): #This gives a complicated
answer!

solve(x^3 + x = 27.0);

The second command gives an exact, but complicated, answer. Replacing 27 by 27.0 forces Maple to
give decimal approximations instead, as do the commands

fsolve(x^3 + x = 27);
2.888941572

fsolve(x^3 + x=27, x, complex);

In general, solve looks for exact answers using algebraic methods, whereas fsolve uses numberical
methods to find approximate solutions in floating-point form. Compare

solve(tan(x) - x = 2);

fsolve(tan(x) - x = 2);
1.274392662

Maple responds with an echo of the failed command, or a blank line, if it cannot find the solution you
asked for.
Command fsolve may not find all solutions. To understand why not, it is helpful to look at a graph

plot({ tan(x) - x, 2 }, x = 0..10, y = -10..10);

x
2 4 6 8 10

y

0

5

10

(39)(39)

(8)(8)

(51)(51)

(52)(52)

(57)(57)

(41)(41)

(16)(16)

(56)(56)

(12)(12)

(43)(43)

(58)(58)

(55)(55)

(59)(59)

(54)(54)

(53)(53)

(60)(60)

This will give you an idea of how many solutions there are and what their approxmiate location is.
Then give fsolve a range of -values in which to search:

fsolve(tan(x) - x = 2, x = 4..5);
4.561140431

Often we need to use the solution of an equation in a later problem. To do this, assign a name to it.
Here is one example.

r := solve(x^2 + 3*x -2.1 = 0);

The answer has the form r := , , where is the first root and is the second. Such an object - a
bunch of items separated by commas, is called an expression sequence. One picks out items of an
expression sequence this way:

r[1];
0.5856653615

r[2];

Here are some computations with items from an expression sequence:

r[1] + r[2]; # sum of the roots

r[1]*r[2]; # their product

subs(x = r[1], 2*x + 3); # find 2(first solution) + 3
4.171330723

We can also solve systems of equations:

solve({ 2*x + 3*y = 1, 5*x + 7*y = 2 },[x,y]);

x; y; # Surprise: symbols x,y unassigned by solve()
x
y

A system of equations is given as a - a bunch of items enclosed in curly brackets and separated by
commas. Sets are often used when the order of the objects is unimportant. In reply to the solve
command above, Maple tells us how to choose and to solve the system, but it does not give and
these particular values. To force it to assign these values, we use the assign function:

s := solve({ 2*x + 3*y = 1, 5*x + 7*y = 2 }, [x,y]);
assign(s);
x; y; #check that it worked

1

Important note: To type multiple line commands, as above, use Shift-Return instead of Return.
And a warning: You may have trouble later if you leave numerical values assigned to the variables , ,

(39)(39)

(8)(8)

(62)(62)

(66)(66)

(41)(41)

(16)(16)

(61)(61)

(64)(64)

(63)(63)

(65)(65)

(12)(12)

(43)(43)

(67)(67)

and . Maple will not forget these assigned values, even though you have gone on to a new problem
where means something different. It is a good idea to return variables to their unassigned state when
you finish your problem.

x := 'x'; y := 'y'; r := 'r'; # or, unassign('x','y','r'):

Recall that restart also clears all variables.

Finally, symbolic parameters are allowed in solve commands. However, in that case we have to tell
Maple which ones to solve for and which ones to treat as unspecified constants:

solve(a*x^2 + b*x + c, x); # solve ax^2+bx+c=0 for x

solve(a*x^3 + b*x^2 + c*x +d, x):

solve({ a*x + b*y = h, c*x + d*y = k }, [x,y]): #
solving a system for x and y. Wrong answer for ad-bc=0. Maple
engine
 # makes
undisclosed assumptions. Do ?solve to find out why.

Functions
Although Maple has a large library of standard functions, we often need to define new ones. For
example, to define

we say

p := x -> 18*x^4 + 69*x^3 - 40*x^2 - 124*x - 48;

Think of the symbol -> as an arrow: it tells what to do with the input , namely, produce the output
18*x^4 + 69*x^3 - 40*x^2 -124*x - 48.
To understand the historical origins of this notation, read about lambda functions, a subject of interest
to computer science areas.
Once the function p is defined, we can do the usual computations with it, e.g.,

p(-2);

p(1/2);

p(a+b);

simplify(%);

(76)(76)

(68)(68)

(70)(70)

(74)(74)

(72)(72)

(39)(39)

(8)(8)

(71)(71)

(41)(41)

(77)(77)

(16)(16)

(78)(78)

(73)(73)

(12)(12)

(69)(69)

(43)(43)

(67)(67)

(75)(75)

It is important to keep in mind that functions and expressions are different kinds of mathematical
objects. Mathematicians know this, and so does Maple. Compare the results of the following:

p; # function
p

p(x); # expression

p(y); # expression

p(3); # expression
2541

As further proof, try the following:

factor(p);
p

factor(p(x));

plot(p, -2..2);

0 1 2

100

200

300

plot(p(x), x = -2..2); # same result
Functions of several variables can be defined as easily as can functions of a single variable:

f := (x,y) -> exp(-x) * sin(y);

f(1,2);

g := (x,y) -> alpha*exp(-k*x)*sin(w*y);

g(1,2);

alpha := 2; k := 3; g(1,2);

(39)(39)

(8)(8)

(87)(87)

(80)(80)

(79)(79)

(83)(83)

(85)(85)

(41)(41)

(16)(16)

(78)(78)

(82)(82)

(81)(81)

(12)(12)

(43)(43)

(67)(67)

(84)(84)

(86)(86)

w := 3.5; g(1,2);

alpha := 'alpha'; g(1,2);

Calculus

Derivatives
To compute the derivative of the expression , say

diff(x^3 - 2*x + 9, x);

To compute the second derivative, say

diff(x^3 - 2*x + 9, x, x);

or alternatively,

diff(x^3 - 2*x + 9, x$2);

This works because Maple translates the expression x$2 into the sequence x, x. By analogy, x$3
would give the third derivative. Thus one can easily compute derivatives of any order. Now suppose
that we are given a function defined by

g := x -> x^3 - 2*x + 9;

It seems natural to use

diff(g, x);
0

to get the derivative of . However, Maple expects an expression in and so interprets as a constant,
giving the wrong result. The command

diff(g(x), x);

which uses the expression , works correctly. The subtlety here is an important one: diff operates
on expressions, not on functions - is a function while is an expression. To define the derivative
of a function, use Maple's D operator:

dg := D(g);

(93)(93)

(39)(39)

(91)(91)

(8)(8)

(94)(94)

(92)(92)

(88)(88)

(41)(41)

(16)(16)

(90)(90)

(78)(78)

(12)(12)

(89)(89)

(43)(43)

(67)(67)

The result is a function. You can work with it just as you worked with . Thus you can compute
function values and make plots:

dg(1);
1

plot({ g(x), dg(x) }, x = -5..5, title = `g(x) = x^3 - 2x + 9
and its derivative`);

x
0 2 4

50

100

g(x) = x^3 - 2x C 9 and its
derivative

Partial Derivatives

To compute partial derivatives:

q := sin(x*y); # expression with two variables

diff(q, x); # partial with respect to x

diff(q, x, y); # compute d/dy of dq/dx

As in the one variable case, there is an operator for computing derivatives of functions (as opposed to
expressions):

k := (x,y) -> cos(x) + sin(y);

D[1](k); # partial with respect to x

D[2](k); # partial with repsect to y

(39)(39)

(95)(95)

(8)(8)

(101)(101)

(102)(102)

(98)(98)

(103)(103)

(99)(99)

(41)(41)

(16)(16)

(100)(100)

(78)(78)

(12)(12)

(43)(43)

(67)(67)

(97)(97)

(96)(96)

D[1,1](k); # second partial with respect to x

D[1,2](k); # partial with respect to y, then x
0

D[1](D[2](k)); # same as above;
0

Integrals
To compute integrals, use int. The indefinite integral (antiderivative) is given by int(x^3,

x).
The following examples illustrate maple engine integration by parts, substitution, and partial fractions:

int(1/x, x);

int(x*sin(x), x);

int(sin(3*x + 1), x);

int(x/ (x^2 - 5*x + 4), x);

Nonetheless, Maple can't do everything:

int(sin(sqrt(1-x^3)), x);

The last response echoed back the indefinite integral, a signal that the Maple engine failed to find an

antiderivative for . In fact, it can be proved that no such antiderivative exists.
There are cases when the engine fails but there is an antiderivative. And cases when the engine gets the
wrong answer.
The lesson: don't trust maple; use maple to assist solving a problem, do not use maple as an authority.

To compute definite integrals like we say int(x^3, x = 0..1). Note that the only

difference is that we give an interval of integration.

Numerical Integration.

Let us return to the integral , which Maple did not evaluate symbolically. Maple

finds a numerical value for the definite integral by this syntax:

int(sin(sqrt(1 - x^3)), x = 0..1);

(39)(39)

(95)(95)

(109)(109)

(105)(105)

(8)(8)

(104)(104)

(106)(106)

(108)(108)

(41)(41)

(16)(16)

(78)(78)

(110)(110)

(12)(12)

(43)(43)

(67)(67)

(107)(107)

evalf(%); # Force numerical evaluation. Works only if
there are no undefined symbols.

0.7315380065

evalf(Int(sin(sqrt(1 - x^3)), x = 0..1)); # The inert
integral Int(...) skips symbolic evaluation. Speed advantage.

0.7315380065

Another approach to numerical integration is to use the student package.

with(student): # load the package

j := sin(sqrt(1 - x^3)); # define the integrand

trapezoid(j, x = 0..1); # apply trapezoid rule

evalf(%); # put in decimal form

0.6879899163

By default the trapezoid command approximates the area under the graph of with
four trapezoidal panels.
For greater accuracy use more panels, i.e., a finer subdivision of the interval of integration:

panels:=10: evalf(trapezoid(j, x = 0..1, panels));
0.7202948615

Better yet, use a more sophisticated numerical method like Simpson's rule:

evalf(simpson(j, x = 0..1));
0.7130564636

Only an even number of subdivisions is allowed, as in simpson(j, x = 0..1, 10).

The student package is well worth exploring. Among other things it has tools for displaying figures
which explain the meaning of integration:

leftbox(j, x = 0..1, 10);

(39)(39)

(95)(95)

(8)(8)

(104)(104)

(112)(112)

(111)(111)

(113)(113)

(41)(41)

(16)(16)

(114)(114)

(78)(78)

(12)(12)

(43)(43)

(67)(67)

x
0 1

0

The area of the figure displayed by leftbox is computed by leftsum:

evalf(leftsum(j, x = 0..1, 10));
0.7623684108

One can also experiment with rightbox and middlebox and their companion functions
rightsum and middlesum.

Multiple Integrals
Let be the rectangular region defined by between 0 and 1, and between 0 and 1.
 To integrate over in Maple, we compute the repeated integral. Here is one way to

do this:

int(x^2 + y^2, x = 0..1);

int(%, y = 0..1);
2
3

The first command integrates with respect to the variable, producing an expression in .
The second command integrates the result with respect to to give a number.

Other Calculus Tools
Limits:

g := x -> (x^3 - 2*x + 9)/(2*x^3 + x - 3);

(119)(119)

(120)(120)

(39)(39)

(8)(8)

(104)(104)

(118)(118)

(16)(16)

(126)(126)

(78)(78)

(12)(12)

(43)(43)

(123)(123)

(67)(67)

(116)(116)

(115)(115)

(122)(122)

(95)(95)

(124)(124)

(41)(41)

(117)(117)

(121)(121)

(125)(125)

limit(g(x), x = infinity);
1
2

limit(sin(x)/x, x = infinity);
0

limit(sin(x)/x, x = 0);
1

Taylor expansions and sums:

taylor(exp(x), x = 0, 4); # expansion around x = 0

sum(i^2, i = 1..100); # be sure i is unassigned
338350

sum(x^n, n = 5..10); # needs n to be unassigned

sum(1/d^5, d=1..infinity); evalf(%);

1.036927755

Differential Equations
Maple can solve differential equations for you. One way is to use dsolve:

deq := diff(y(x), x$2) + y(x) = 0;

dsolve(deq, y(x));

Try ?dsolve for more information. We can specify initial conditions and experiment with
parameters.

de := diff(y(x), x) = y(x) - sin(x);

sol := dsolve({de, y(0) = 0.1}, y(x));

sol;

To graph the solution, we need only the right-hand side of sol, which we can get by

plot(rhs(sol), x = 0..10);

(39)(39)

(95)(95)

(8)(8)

(104)(104)

(41)(41)

(16)(16)

(78)(78)

(12)(12)

(43)(43)

(67)(67)

(115)(115)

x
2 4 6 8 10

0

Now let's try to make the slope field and draw some trajectories. We can get the slope field with the
DEplot command from the DEtools package:

with(DEtools):

de := diff(y(x), x) = y(x) - sin(x);
DEplot(de, y(x), x = -3..3, y = -3..3, arrows = line, dirgrid
= [30,30]);

(39)(39)

(95)(95)

(8)(8)

(104)(104)

(41)(41)

(16)(16)

(78)(78)

(12)(12)

(43)(43)

(67)(67)

(115)(115)

x
0 1 2 3

y(x)

1

2

3

Plot the slope field and a few trajectories.

ics:=[[y(0)=0], [y(0)=1], [y(0)=3]]; # Set of initial
conditions. A double list.
DEplot(de, y(x), x = -3..3, y = -3..3, color='black',
linecolor='red', arrows='line', dirgrid=[30,30], ics);

(39)(39)

(95)(95)

(8)(8)

(127)(127)

(104)(104)

(41)(41)

(16)(16)

(78)(78)

(128)(128)

(12)(12)

(129)(129)

(43)(43)

(67)(67)

(115)(115)

x
0 1 2 3

y(x)

1

2

3

Vector and Matrix Operations
To work with vectors and matrices in Maple, first load the linear algebra package:

restart; # with(LinearAlgebra):

Define and display a vector like this:

v := <1, -1>;

v[1]; v[2]; v;
1

print(v);

(135)(135)

(137)(137)

(133)(133)

(136)(136)

(39)(39)

(95)(95)

(132)(132)

(8)(8)

(104)(104)

(41)(41)

(16)(16)

(78)(78)

(130)(130)

(134)(134)

(12)(12)

(138)(138)

(129)(129)

(43)(43)

(67)(67)

(131)(131)

(115)(115)

Note that Maple treats vectors as columns. Now define another vector w and do some simple
computations:

w := <1, 1>;

v+w; # vector or matrix addition

v.w; # dot product
0

Next we define two matrices by rows,
Syntax: A:=Matrix([row1, row2, ...]); where row1 is a comma-separated list [a,b,c ..] of row elements.

A := Matrix([[2,3], [1,2]]);

B := Matrix([[1,1], [0,1]]);

It is easy to make new matrices (or vectors) from old ones as in

augAvw:=< A| v| w >;

Next, we do some computations with our matrices A and B and our vectors v and w:

A+B;

2*(A+B);

A.B;

(143)(143)

(39)(39)

(95)(95)

(8)(8)

(104)(104)

(139)(139)

(140)(140)

(41)(41)

(16)(16)

(142)(142)

(78)(78)

(141)(141)

(12)(12)

(129)(129)

(43)(43)

(67)(67)

(144)(144)

(115)(115)

A.(v+w);

Finally, we can change the individual entries of a matrix with commands like:

A[1,1] := 5; B[2,1] := 1;

A,B; # check

Maple can compute inverses and transposes:

A := Matrix([[2,3], [1,2]]);
B := Matrix([[1,1], [0,1]]);
1/A; A^(-1);

A^+; # Transpose of a matrix, swap rows and columns

LinearAlgebra package.
This package is used to extend the basic operations illustrated above.

LinearAlgebra[Determinant](A); LinearAlgebra[Determinant](B);
with(LinearAlgebra): # load the package to shorten commands
Determinant(A-B); Determinant(A+B);

Shortcut: When typing, maple tries to complete the
command. Use the ESC key to agree, save typing.

1
1

(148)(148)

(145)(145)

(146)(146)

(147)(147)

(39)(39)

(95)(95)

(8)(8)

(104)(104)

(139)(139)

(41)(41)

(16)(16)

(78)(78)

(149)(149)

(12)(12)

(129)(129)

(43)(43)

(67)(67)

(144)(144)

(115)(115)

5

Symbolic matrices are as legitimate as numerical ones:

A := Matrix([[a,b], [c,d]]);Determinant(A);

C := Matrix([[3,2,2], [3,1,2], [1,1,1]]);
ReducedRowEchelonForm(C); # Put C into row-reduced form

gaussjord(C);

Elimination Steps.
The hand work on paper can be done error free by defining operations in terms of the LinearAlgebra
package, which do the
three basic toolkit operations combination, swap, multiply. Here's the macro definition set which
makes this process identical
to what is done with paper and pencil. A similar set of macros can be defined for the depreciated

linalg package.

LinearAlgebra package. Reversable operations. a=matrix, t=
target, s=source, c=constant
combo:=(a,s,t,c)->RowOperation(a,[t,s],c); # Replace row t by c
times row s added to row t.
 swap:=(a,s,t)->RowOperation(a,[t,s]); # Swap rows s and t
 mult:=(a,t,c)->RowOperation(a,t,c); # Replace row t by c
times row t. Illegal: c=0

C1 := Matrix([[3,2,2], [3,1,2], [1,1,1]]);

(154)(154)

(157)(157)

(39)(39)

(156)(156)

(95)(95)

(8)(8)

(104)(104)

(155)(155)

(152)(152)

(139)(139)

(150)(150)

(41)(41)

(16)(16)

(78)(78)

(153)(153)

(149)(149)

(12)(12)

(129)(129)

(43)(43)

(67)(67)

(144)(144)

(151)(151)

(115)(115)

C2:=combo(C1,1,2,-1);

C3:=combo(C2,1,3,-1/3);

C4:=combo(C3,2,3,1/3);

C5:=mult(C4,2,-1);

C6:=mult(C5,3,3);

C7:=combo(C6,2,1,-2);

C8:=combo(C7,3,1,-2);

C9:=mult(C8,1,1/3);

(157)(157)

(39)(39)

(95)(95)

(8)(8)

(104)(104)

(139)(139)

(41)(41)

(16)(16)

(78)(78)

(158)(158)

(149)(149)

(12)(12)

(129)(129)

(43)(43)

(67)(67)

(144)(144)

(115)(115)

ReducedRowEchelonForm(C1);

Troubleshooting
Maple's error message are irritating at first. Experience changes that.
 Common Maple Coding Errors.
 1. Do statements end with a semicolon or a colon?

 2. Are parentheses, braces, brackets, etc., balanced? Code like { x,y } is good, but x,y} will
cause trouble.

 3. Are you trying to use something as a variable to which you have already assigned a value?
 To "clear" a variable , say unassign('x'). You can clear many variables at once, e.g.,
unassign('x', 'y').
 You will not have to reload any packages after using the unassign command. A variable that has a
value assigned becomes a constant.

 To display the value of an ordinary variable, type its name, followed by a semicolon, e.g., x;

 4. If things seem hopelessly messed up, issue the command restart; You will have to reload any
needed packages after this.

 5. Are you using a function when an expression is called for, or vice versa? Syntax g := x^2 +
y^2 defines an expression while
 f := (x,y) -> x^2 + y^2 defines a function. It makes good sense to code f(1,3); but
not so much sense to code g(1,2);

 6. Are you using = when := is called for? The first tests for equality (like double-equal in C++) while
the second assigns a value to a variable (like single-equal in C++).

 7. Are you distinguishing between the three kinds of quotes? They are: " the double quote, ' the
single quote, and ̀ the left single quote. The left signle quote
 is basically used for nothing by rookies. when used, it is in expressions like

 ̀ "two" "three"`; "two"
"three"; `two''and"""three`;
 `two` `three`; `two``three`; `two"``"three`;

To see the difference, execute the expressions. The single back quote is not a duplicate double quote.
Single quotes change a name or constant into a symbol.

(157)(157)

(39)(39)

(95)(95)

(8)(8)

(104)(104)

(139)(139)

(41)(41)

(16)(16)

(78)(78)

(149)(149)

(12)(12)

(129)(129)

(43)(43)

(67)(67)

(144)(144)

(115)(115)

For example, print(Digits) and print('Digits') have two different outputs (one is 10, the other symbol

'Digits'). Do ?quotes to settle issues.

 8. If you use a function in a package, load the package first. To use Determinant, load
LinearAlgebra. To use display, load plots. To load package LinearAlgebra, do

 with(LinearAlgebra): Determinant(A); Simple, load a
package once per session.
 LinearAlgebra[Determinant](A); More typing
for bulletproof code.

 9. Use the shortcut ? to inquire about the details of a Maple function, e.g., ?plot for information
about plot or just ? for general information.

 10. If all of the licenses for the current version of Maple are being used, you can use a different
version by calling it up by name, i.e. by typing xmapleV8 or xmapleV15 in a terminal window.

References.
The WWW has many examples of Maple code. Use a search engine to find code that fits your
application. Ask in the Undergraduate Computer Lab for textbooks to check out.

