
Math 2250, Lab 9 Extra Credit

References: Edwards-Penney Sections 5.3, 5.4 (Mechanical Vibrations) and 5.6 (Mod-
eling Mechanical Systems). Course slides: Unforced Oscillations and Forced Damped Vi-
brations. For additional information on a mass-spring-dashpot system, and energy, visit
the Linear Physical Systems Analysis web site of Erik Cheever, Professor of Engineering
at Swarthmore College. The relevant section is Mechanical Systems (Translating), then the
Mathematical Model and Energy/Power links.

1. Energy in a mass-spring-dashpot system
The figure below depicts an example of a forced, damped mass-spring system. Illustrated
in the figure is a seismoscope, a device used to record ground acceleration or displace-
ment during an earthquake. The external force is the vertical ground force due to the
earthquake.

In a damped mass-spring system, symbols m, c and k are non-negative constants rep-
resenting respectively the mass in kilograms, the damping constant in Newton-seconds
per meter, and the Hooke’s constant in Newtons per meter. We use x(t) to represent the
signed displacement of the mass at time t, with x = 0 being the equilibrium position.
Three forces act on the damped mass-spring system: the force cx′(t) due to the dashpot,
the Hooke’s restoring force kx(t) due to the spring, and the Newton’s Second Law force
mass×acceleration = mx′′(t). The sum of the forces must equal the external forcing,
f(t). This gives the equation for a damped spring-mass system:

mx′′(t) + cx′(t) + kx(t) = f(t).

Suppose we wish to account for the total energy of the mass-spring configuration, ne-
glecting the heat energy loss due to damping. We define the total energy E(t) to be the
sum of kinetic and potential energy. Potential energy PE(t) is stored by the compressed
or stretched spring, and it is the work done to stretch/compress the spring as the mass
moves from equilibrium x = 0 to position x(t):

PE(t) =
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Kinetic energy for translation of a mass m with velocity v(t) = x′(t) is given by

KE(t) =
m

2
[x′(t)]2.

The sum is the total energy

E(t) = PE(t) + KE(t) =
1

2

(
k[x(t)]2 + m[x′(t)]2

)
(a) Take the derivative of E(t) with respect to time, using the chain rule on the right

hand side of the equation. Then, simplify your result so that you get a formula
for E ′(t) that only depends on the external forcing f(t), the velocity x′(t), and the
damping coefficient c.

(b) Assume that f(t) ≡ 0 and the spring constant k 6= 0. In this case, what condition
on the damping coefficient c guarantees that the energy in the system is constant
(i.e., dE/dt = 0)?

(c) Solve the initial value problem x′′ + 2x′ + 4x = 0, x(0) = 0, x′(0) = 1. Substitute
x(t) and x′(t) into the energy function E(t) to obtain

E(t) = e−2t
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(d) Plot the energy curve E(t) computed in part (c) on domain 0 ≤ t ≤ 4.

(e) Answer the following questions about the energy plot in part (d).

1. What values were substituted for m, c, k, f to obtain the initial value problem
in part (c)?

2. What is the physical meaning of the initial conditions x(0) = 0, x′(0) = 1?

3. Approximately how long will it take for the system in part (c) to lose 80% of
its initial energy E(0)?

4. Give mathematical details for why the energy curve E(t) in part (d) is mono-
tonic.

5. The energy curve in part (d) is nearly constant on time intervals when the
velocity is nearly zero. Explain in a sentence the contribution of potential and
kinetic energy to E ′(t) ≈ 0 (meaning E(t) ≈ constant) on small time intervals.
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