

1. (30 points) Given two vectors \mathbf{u}, \mathbf{v} , that are not scalar multiples, i.e $\mathbf{u} \neq c\mathbf{v}$, consider the diagram below. We will assume that the vectors have been labeled so that $|\mathbf{v}| > |\mathbf{u}|$, and that the angle θ between \mathbf{u}, \mathbf{v} is an angle of at most $\frac{\pi}{2}$.

- (a) Show $\vec{?} = \mathbf{u} \mathbf{v}$ using vector addition.
- (b) Compute $|\mathbf{u} \mathbf{v}|^2$ in two ways.
 - i. by expanding dot product identity $|\mathbf{u} \mathbf{v}|^2 = (\mathbf{u} \mathbf{v}) \cdot (\mathbf{u} \mathbf{v})$ (which is true because the magnitude squared of any vector is the dot product of that vector with itself).
 - ii. by using trigonometry and the Pythagorean Theorem on two subtriangles that have right angles obtained by drawing a line segment perpendicular to \mathbf{v} , from the vertex where \mathbf{u} and ? meet, down to \mathbf{v} .
- (c) Use your work in (b) to deduce that $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| \cdot |\mathbf{v}| \cdot \cos \theta$ where θ is the acute angle between \mathbf{u} and \mathbf{v} .

References: Edwards-Penney Sections 4.1, 4.6. Course documents: *Slides on Vector Algebra, Linear Algebra Manuscript*, and *Slides on Vector Models and Vector Spaces*. See also: Stewart, J. (2005). *Calculus: Concepts and Contexts*, Sections 9.2, 9.3: Vectors, The Dot Product. (Available in the Math Tutoring Center).

2. (35 points) In the previous problem, we confirmed the well-known identity

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| \cdot |\mathbf{v}| \cdot \cos \theta,$$

where θ is the angle between \mathbf{u}, \mathbf{v} .

- (a) As a special case of the identity above, explain why \mathbf{u} and \mathbf{v} are perpendicular exactly when $\mathbf{u} \cdot \mathbf{v} = 0$.
- (b) Let W be a plane with $(x_0, y_0, z_0) \in W$. Let (x, y, z) be any other point in the plane. Let vector $(a, b, c)^T$ be perpendicular to W (a normal vector). Explain why x, y, z must satisfy the "plane" equation:

$$ax + by + cz = d$$

where $d = ax_0 + by_0 + cz_0$. Hint: the vector going from (x_0, y_0, z_0) to (x, y, z) must be perpendicular to the normal vector, allowing you to use the dot product identity above.

- (c) For the plane through the origin given by 2x + 5y z = 0, verify the three position vectors $\mathbf{u} = (1, 0, 2)^T$, $\mathbf{v} = (-3, 2, 4)^T$, $\mathbf{w} = (0, 2, 10)^T$ (from the origin, which is in the plane, to the endpoints of the position vectors, which are also in the plane) are perpendicular to the normal vector $(2, 5, -1)^T$.
- (d) In multivariable calculus and physics you learn how to use the cross product of pairs of vectors in 3-space, in order to find perpendicular vectors. Take the cross product of the vectors \mathbf{u}, \mathbf{v} in part (c), and verify that you get a multiple of the normal vector $(2, 5, -1)^T$.

References: Edwards-Penney Sections 4.1, 4.6. Course documents: *Linear Algebra Manuscript, Slides on Orthogonality* and *Slides on Vector Models and Vector Spaces.* See also: Stewart, J. (2005). *Calculus: Concepts and Contexts*, Sections 9.4, 9.5: Cross Product, Equations of Lines and Planes. (Available in the Math Tutoring Center).

3. (35 points) (a) Suppose we have a matrix $A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$ and a square determined by points (0,0), (0,1), (1,1), (1,0). What will the image of the square look like under transformation by the matrix A? i.e.

$$\left(\begin{array}{c} y_1\\ y_2 \end{array}\right) = A \left(\begin{array}{c} x_1\\ x_2 \end{array}\right)$$

where $(x_1, x_2)^T$ is a point on the original square and $(y_1, y_2)^T$ is its image after transformation by A. Draw the image of the square after this transformation.

- (b) Find the area of the parallelogram in (a). (Hint: think of the parallelogram as sitting inside a larger rectangle $0 \le y_1 \le 4, 0 \le y_2 \le 4$). Compare this area to the determinant of A.
- (c) Show, for the general \mathbf{u}, \mathbf{v} in the first quadrant, with \mathbf{v} counterclockwise from \mathbf{u} , the area of the parallelgram having the vectors \mathbf{u}, \mathbf{v} as adjacent sides (as in the

special case above) always equals
$$\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix}$$
.

(d) What happens if you compute $\begin{vmatrix} v_1 & u_1 \\ v_2 & u_2 \end{vmatrix}$ instead?

References: Edwards-Penney Sections 3.6, 4.1. Course documents: *Linear Algebra Manuscript*, *Determinant Theory Manuscript* and *Slides on Determinants*. See also: Lay, David C. (2003). *Linear Algebra and its Applications*, Section 1.8: Matrix Transformations.