
Math 2250 Lab 4 Name/Unid:

Due Date: 2/6/2014 Class ID: Section:

1. (30 points) Leslie Leroy Irvin bails out of an airplane at the altitude of 16,000 ft, falls
freely for 20 seconds. Assume linear air resistance kv ft/s2 with drag coefficient ρ=0.18
without the parachute and ρ=1.8 with the parachute.

(a) Write down the ODE that describes the velocity v before he opens the parachute
and solve the IVP.

(b) Find the velocity v at time 1 sec, the velocity when he just opens the parachute
(t=20 sec), and the terminal velocity.

Consider the same IVP as in part (a). Apply the following methods to approx-
imate the solution function on the time interval 0 ≤ t ≤ 1. Do these computations
by hand (using a calculator or other technology to do each step, but not using pro-
grammed code). Use programmed code (numericsWN.m) or Maple as a technology
answer check.

(c) Euler Method: use step size h = 0.5, i.e. 2 time steps.

(d) Improved Euler Method: use step size h = 0.5 again.

(e) Runge-Kutta Method: use step size h = 1.0, i.e. just 1 time step.

(f) Compare these approximations for v(1) with the exact solution at t = 1 sec and
comment about the relative accuracy of the three techniques, by computing the
relative errors

|vapprox − vexact
vexact

|

in each case.

Note: The step sizes are so large that you don’t expect any of the techniques
to be extremely accurate.

References: Edwards-Penney Sections 2.3, 2.4, 2.5, 2.6. Course documents: Numerical
Methods Manuscript Section 4.6, Numerical Methods Slides, and Numerical Methods
Sample Maple Code. See also: numericsWN.m Matlab file created by Dr. W. Nesse.

http://www.math.utah.edu/%7Egustafso/s2014/2250/julesVerne-skydiving-lander.pdf
http://www.math.utah.edu/%7Egustafso/s2014/2250/julesVerne-skydiving-lander.pdf
http://www.math.utah.edu/%7Egustafso/s2014/2250/numericalDE2008.pdf
http://www.math.utah.edu/%7Egustafso/s2014/2250/Euler-Heun-RK4-Exact-Dy-equ-1-x-y.txt
http://www.math.utah.edu/%7Egustafso/s2014/2250/Euler-Heun-RK4-Exact-Dy-equ-1-x-y.txt
http://www.math.utah.edu/%7Egustafso/s2014/2250/labs/week4/numericsWN.m


2. (40 points) If we drop a package from a helicopter with a parachute attached, the air
resistance caused by the parachute is not really linear. Assume for a certain type of
parachute the acceleration equation is modeled by

v′(t) = 32− 0.72v − 0.36v1.8

v(0) = 0

where velocity has units of ft/s and the package shape and weight are included in the
drag details.

(a) What is the terminal velocity in this model? Notice that the “slope function”
32−0.72v−0.36v1.8 is a decreasing function of v for v > 0, that its value is 32 when
v=0, and that its limit as v →∞ is −∞. Thus, the slope function has exactly one
root and you can find it using the Matlab “solve” command or other software.

(b) This is a differential equation which does NOT have an elementary solution. Use
“numericsWN.m” (you may modify the Matlab code according to your need) or
another computer algebra system (i.e. Maple) to estimate the solution values at
t=1 and t=2 seconds with the numerical methods Euler, Improved Euler and Runge-
Kutta using step sizes h=0.25 and h=0.025.
• Write the approximate solution for each method with each h and each time t=1
and t=2.
• Plot your results and comment about apparent accuracy of the three methods
with these different choices of time step size.

(c) Since we don’t know the exact solution function in this problem, there is not a
quick, direct way to check the accuracy of our numerical approximate solutions.
There are error estimates that some of you will learn in later numerical analysis
classes (analogous to error estimates you may have learned for Taylor series). For
the purpose of this lab, undertake the following crude test: Compare the numerical
approximations for velocity at t = 1 and t = 2, for Runge-Kutta with h = 0.25 and
h = 0.025. If these approximations are close , then it’s likely that they are also
close to the exact solution.

(d) Based on your work above, approximately what fraction of the terminal velocity is
attained at t = 1 and t = 2 seconds using the Runge-Kutta Method?

(e) What does the asymptote on the plot mean? What happens if you change the
initial condition to v(0)= 5 and v(0)= 20?

References: Edwards-Penney Sections 2.3, 2.4, 2.5, 2.6. Course documents: Numerical
Methods Manuscript Section 4.6, Numerical Methods Slides, Numerical Methods Sample
Maple Code, and Nonlinear Drag Maple Code. See also: numericsWN.m Matlab file
created by Dr. W. Nesse.
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http://www.math.utah.edu/%7Egustafso/s2014/2250/julesVerne-skydiving-lander.pdf
http://www.math.utah.edu/%7Egustafso/s2014/2250/julesVerne-skydiving-lander.pdf
http://www.math.utah.edu/%7Egustafso/s2014/2250/numericalDE2008.pdf
http://www.math.utah.edu/%7Egustafso/s2014/2250/Euler-Heun-RK4-Exact-Dy-equ-1-x-y.txt
http://www.math.utah.edu/%7Egustafso/s2014/2250/Euler-Heun-RK4-Exact-Dy-equ-1-x-y.txt
http://www.math.utah.edu/%7Egustafso/s2014/2250/labs/week4/nonlinear-drag-ejected-baggage-example.mpl
http://www.math.utah.edu/%7Egustafso/s2014/2250/labs/week4/numericsWN.m
http://www.math.utah.edu/%7Egustafso/s2014/2250/labs/week4/numericsWN.m


3. (30 points) The classic Lotka-Volterra model of competition between two species which
compete for the same resource helps to answer the following question: Under what
conditions will two species coexist? Suppose you have two species (i.e. rabbits and
sheep) which compete for the same food supply (i.e. grass ) and that the amount of this
resource is limited. For simplicity, we will ignore other factors such as predation and
seasonal effects. A system that represents the population dynamics of these two species
is given as follows:

dR

dt
= R(5−R− 2S)

dS

dt
= S(3−R− S)

where R(t) represents the population of rabbits at time t, S(t) represents the population
of sheep and R(t),S(t)≥ 0.

Find the equilibrium points of this system. That is, solve for dR
dt

= 0 and dS
dt

= 0
simultaneously. Provide a technology answer check.

References: Edwards-Penney, Section 9.1. Course Documents: Linear Algebraic Equa-
tions Manuscript, Introduction to Linear Equations Slides, and Unique Solution Case
Slides. See also: Strogatz, Steven H. Nonlinear Dynamics and Chaos (1994), Section
6.4.
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http://www.math.utah.edu/~gustafso/s2014/2250/linearequDRAFT.pdf
http://www.math.utah.edu/~gustafso/s2014/2250/linearequDRAFT.pdf
http://www.math.utah.edu/~gustafso/s2014/2250/introLinearEquations.pdf
http://www.math.utah.edu/~gustafso/s2014/2250/linearEquationsUniqueSolCase.pdf
http://www.math.utah.edu/~gustafso/s2014/2250/linearEquationsUniqueSolCase.pdf

