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4.5 Earth to the Moon

A projectile launched from the surface of the earth is attracted both by
the earth and the moon. The altitude r(t) of the projectile above the
earth is known to satisfy the initial value problem (see Technical Details
page 261)

r′′(t) = − Gm1

(R1 + r(t))2
+

Gm2

(R2 −R1 − r(t))2
,

r(0) = 0, r′(0) = v0.

(1)

The unknown initial velocity v0 of the projectile is given in meters per
second. The constants in (1) are defined as follows.

G = 6.6726× 10−11 N-m2/kg2 Universal gravitation constant,
m1 = 5.975× 1024 kilograms Mass of the earth,
m2 = 7.36× 1022 kilograms Mass of the moon,
R1 = 6, 378, 000 meters Radius of the earth,
R2 = 384, 400, 000 meters Distance from the earth’s center

to the moon’s center.

Jules Verne. In his 1865 novel From the Earth to the Moon, Jules
Verne asked what initial velocity must be given to the projectile in order
to reach the moon. The question in terms of equation (1) becomes:

What minimal value of v0 causes the projectile to have zero
net acceleration at some point between the earth and the
moon?

The projectile only has to travel a distance R equal to the surface-to-
surface distance between the earth and the moon. The altitude r(t)
of the projectile must satisfy 0 ≤ r ≤ R. Given v0 for which the net
acceleration is zero, r′′(t) = 0 in (1), then the projectile has reached a
critical altitude r∗, where gravitational effects of the moon take over and
the projectile will fall to the surface of the moon.

Let r′′(t) = 0 in (1) and substitute r∗ for r(t) in the resulting equation.
Then

− Gm1

(R1 + r∗)2
+

Gm2

(R2 −R1 − r∗)2
= 0,

r∗ =
R2

1 +
√
m2/m1

−R1 ≈ 339, 260, 779 meters.
(2)

Using energy methods (see Technical details, page 261), it is possible to
calculate exactly the minimal earth-to-moon velocity v∗0 required for the
projectile to just reach critical altitude r∗:

v∗0 ≈ 11067.19091 meters per second.(3)
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A Numerical Experiment. The value v∗0 ≈ 11067.19091 in (3)
will be verified experimentally. As part of this experiment, the flight
time is estimated. Such a numerical experiment must adjust the initial
velocity v0 in initial value problem (1) so that r(t) increases from 0 to
R. Graphical analysis of a solution r(t) for low velocities v0 gives insight
into the problem; see Figure 7.
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Figure 7. Jules Verne Problem.
The solution r(t) of (1) for v0 = 1000.
The projectile rises to a maximum
height of about 51, 530 meters, then it
falls back to earth. The trip time is
206 seconds.

The numerical experiment solves (1) using lsode3, then the solution is
graphed, to see if the projectile falls back to earth (as in Figure 7) or if it
reaches an altitude near r∗ and then falls to the moon. Suitable starting
values for the initial velocity v0 and the trip time T are v0 = 1000 and
T = 210 (see Figure 7), in the case when the projectile falls back to
earth. The projectile travels to the moon when the r-axis of the graphic
has maximum greater than r∗ ≈ 339, 260, 779 meters. The logic is that
this condition causes the gravitation effects of the moon to be strong
enough to force the projectile to fall to the moon.

In Table 20 appears maple initialization code. In Table 21, group 2 is
executed a number of times, to refine estimates for the initial velocity
v0 and the trip time T . A summary of some estimates appear in Table
22. The graphics produced along the way resemble Figure 7 or Figure
8. A successful trip to the moon is represented in Figure 8, which uses
v0 = 11068 meters per second and T = 515250 seconds.
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Figure 8. Experimental trip to the moon.

The initial velocity is v0 = 24, 764 miles per hour and the trip time is 143

hours. See Table 22 for details about how these values were obtained.

3The acronym lsode stands for the Livermore Laboratory numerical stiff solver
for ordinary differential equations. The computer algebra system maple documents
and implements this algorithm. In maple versions after 9, replace method=lsode by
stiff=true to improve speed.
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Table 20. Initialization code in maple for the numerical experiment.

Group 1 defines seven constants G, m1, m2, R1, R2, R3, R and computes values

r∗ ≈ 339, 260, 779 and v∗0 ≈ 11067.19091.

# Group 1: Constants plus rstar and v0star

G:=6.6726e-11: m1:=5.975e24: m2:=7.36e22:

R1:=6.378e6: R2:=3.84e8: R3:=1.74e6:

R:=R2-R1-R3:

ans:=[solve(-G*m1/(r+R1)^2 + G*m2/(R2-R1-r)^2=0,r)]:

rstar:=ans[1];

FF:=r->G*m1/(R1+r)+G*m2/(R2-R1-r):

v0star:=sqrt(2*(FF(0)-FF(rstar)));

Table 21. Iteration code in maple for the numerical experiment.

Group 2 plots a graphic for given v0 and T . A successful trip to the moon

must use velocity v0 > v∗0 ≈ 11067.19091. The relation max0≤t≤T Y (t) > r∗ ≈
339, 260, 779 must be valid. Finally, Y (T ) ≥ R must hold.

# Group 2: Iteration code

v0:=1000: # v0<v0star. Projectile falls to earth.

de:=diff(r(t),t,t)=-G*m1/(r(t)+R1)^2+G*m2/(R2-R1-r(t))^2:

ic:=r(0)=0,D(r)(0)=v0:

p:=dsolve({de,ic},r(t),
type=numeric,method=lsode,startinit=true);

Y:=t->rhs(p(t)[2]):

T:=200: # Guess the trip time T

plot(’Y(t)’,t=0..T);

# Plot done. Change v0, T and re-execute group 2.

Table 22. Experimental results with the lsode solver to obtain esti-

mates for the initial velocity v0 and the trip time T .

v0 T Results

11000 38500 r(T/2) = 1.872× 108, r(T ) = 0
12000 80000 r(T ) > r∗ ≈ 3.39× 108

11125 200000 r(T ) > r∗

11060 780000 r(T/2) = 2.918× 108, r(T ) = 0
11070 377500 r(T ) > r∗

11068 515250 r(T ) ≈ R

Exact trip time. The time T for a trip with velocity v0 = 11068
can be computed once an approximate value for the trip time is known.
For instance, if T = 515250 gives a successful plot, but T = 515150
does not, then the exact value of T is between 515250 and 515150. The
computer algebra system can be used to determine the more precise value
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T = 515206.1757, as follows.

# Group 2

v0:=11068: # Projectile reaches the moon.

de:=diff(r(t),t,t)=-G*m1/(r(t)+R1)^2

+G*m2/(R2-R1-r(t))^2:

ic:=r(0)=0,D(r)(0)=v0:

p:=dsolve({de,ic},r(t),
type=numeric,method=lsode,startinit=true);

Y:=t->rhs(p(t)[2]):

fsolve(’Y(t)’=R,t,515150..515250);

# T==515206.1757

Technical details for (1): To derive (1), it suffices to write down a compe-
tition between the Newton’s second law force relation mr′′(t) and the sum of
two forces due to gravitational attraction for the earth and the moon. Here, m
stands for the mass of the projectile.

Gravitational force for the earth. This force, by Newton’s universal grav-
itation law, has magnitude

F1 =
Gm1m

R2
3

where m1 is the mass of the earth, G is the universal gravitation constant and
R3 is the distance from the projectile to the center of the earth: R3 = R1+r(t).

Gravitational force for the moon. Similarly, this force has magnitude

F2 =
Gm2m

R2
4

where m2 is the mass of the moon and R4 is the distance from the projectile
to the center of the moon: R4 = R2 −R1 − r(t).

Competition between forces. The force equation is

mr′′(t) = −F1 + F2

due to the directions of the force vectors. Simplifying the relations and can-
celling m gives equation (1).

Technical details for (3): To justify the value for v0, multiply equation (1)
by r′ and integrate the new equation from t = 0 to t = t0 to get

1

2
(r′(t0))2 = F (r(t0))− F (0) +

1

2
v20 , where

F (r) =
Gm1

R1 + r
+

Gm2

R2 −R1 − r
.

(4)

The expression F (r) is minimized when F ′(r) = 0 or else at r = 0 or r = R.
The right side of (1) is F ′(r), hence F (r) has unique critical point r = r∗.
Compute F (0) = 62522859.35, F (r∗) = 1281502.032 and F (R) = 3865408.696.
Then the minimum of F (r) is at r = r∗ and F (r∗) ≤ F (r(t0)).

The left side of (4) is nonnegative, therefore also the right side is nonnegative,
giving 1

2 v
2
0 ≥ F (0) − F (r(t0)). If the projectile ever reaches altitude r∗, then

r(t0) = r∗ is allowed and v0 ≥
√

2F (0)− 2F (r∗) ≈ 11067.19091. Restated,
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v0 < 11067.19091 implies the projectile never reaches altitude r∗, hence it falls
back to earth. On the other hand, if v0 > 11067.19092, then by (4) and F (r∗) ≤
F (r) it follows that r′(t) > 0 and therefore the projectile cannot return to earth.
That is, r(t) = 0 for some t > 0 can’t happen.

In summary, the least launch velocity v∗0 which allows r(t) = r∗ for some t > 0
is given by the formulas

v∗0 =
√

2F (0)− 2F (r∗), F (r) =
Gm1

R1 + r
+

Gm2

R2 −R1 − r
.

This completes the proof of equation (3).

Exercises 4.5

Critical Altitude r∗. The symbol r∗

is the altitude r(t) at which gravita-
tional effects of the moon take over,
causing the projectile to fall to the
moon.

1. Justify from the differential equa-
tion that r′′(t) = 0 at r∗ = r(t)
implies the first relation in (2):

Gm2

(R2 − R1 − r∗)2
−

Gm1

(R1 + r∗)2
= 0.

2. Solve the relation of the previous
exercise for r∗, symbolically, to
obtain the second equation of (2):

r∗ =
R2

1 +
√
m2/m1

−R1.

3. Use the previous exercise and val-
ues for the constants R1, R2, m1,
m2 to obtain the approximation

r∗ = 339, 260, 779 meters.

4. Determine the effect on r∗ for a
one percent error in measurement
m2. Replace m2 by 0.99m2 and
1.01m2 in the formula for r∗ and
report the two estimated critical
altitudes.

Escape Velocity v∗0 . The symbol
v∗0 is the velocity r′(0) such that
limt→∞ r(t) = ∞, but smaller launch
velocities will cause the projectile to
fall back to the earth. Throughout, de-
fine

F (r) =
Gm1

R1 + r
+

Gm2

R2 −R1 − r
.

5. Let v0 = r′(0), r∗ = r(t0). Derive
the formula

1

2
(r′(t0))2 = F (r∗)− F (0) +

1

2
v20

which appears in the proof details.

6. Verify using the previous exercise
that r′(t0) = 0 implies

v∗0 =
√

2(F (0)− F (r∗)).

7. Verify by hand calculation that
v∗0 ≈ 11067.19091 meters per sec-
ond.

8. Argue by mathematical proof that
F (r) is not minimized at the end-
points of the interval 0 ≤ r ≤ R.

Numerical Experiments. Assume
values given in the text for physical
constants. Perform the given experi-
ment, using numerical software, on ini-
tial value problem (1), page 258. The
cases when v0 > v∗0 escape the earth,
while the others fall back to earth.

9. RK4 solver, v0 = 11068, T =
515000. Plot the solution on 0 ≤
t ≤ T .

10. Stiff solver, v0 = 11068, T =
515000. Plot the solution on 0 ≤
t ≤ T .

11. RK4 solver, v0 = 11067.2, T =
800000. Plot the solution on 0 ≤
t ≤ T .
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12. Stiff solver, v0 = 11067.2, T =
800000. Plot the solution on 0 ≤
t ≤ T .

13. RK4 solver, v0 = 11067, T =
1000000. Plot the solution on
0 ≤ t ≤ T .

14. Stiff solver, v0 = 11067, T =
1000000. Plot the solution on
0 ≤ t ≤ T .

15. RK4 solver, v0 = 11066, T =
800000. Plot the solution on 0 ≤
t ≤ T .

16. Stiff solver, v0 = 11066, T =
800000. Plot the solution on 0 ≤
t ≤ T .

17. RK4 solver, v0 = 11065. Find
a suitable value T which shows

that the projectile falls back to
earth, then plot the solution on
0 ≤ t ≤ T .

18. Stiff solver, v0 = 11065. Find
a suitable value T which shows
that the projectile falls back to
earth, then plot the solution on
0 ≤ t ≤ T .

19. RK4 solver, v0 = 11070. Find a
suitable value T which shows that
the projectile falls to the moon,
then plot the solution on 0 ≤ t ≤
T .

20. Stiff solver, v0 = 11070. Find a
suitable value T which shows that
the projectile falls to the moon,
then plot the solution on 0 ≤ t ≤
T .
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4.6 Skydiving

A skydiver of 160 pounds jumps from a hovercraft at 15, 000 feet. The
fall is mostly vertical from zero initial velocity, but there are significant
effects from air resistance until the parachute opens at 5, 000 feet. The
resistance effects are determined by the skydiver’s clothing and body
shape.

Velocity Model. Assume the skydiver’s air resistance is modeled in
terms of velocity v by a force equation

F (v) = av + bv2 + cv3.

The constants a, b, c are given by the formulas

a = 0.009, b = 0.0008, c = 0.0001.

In particular, the force F (v) is positive for v positive. According to
Newton’s second law, the velocity v(t) of the skydiver satisfies mv′(t) =
mg − F (v). We assume mg = 160 pounds and g ≈ 32 feet per second
per second. The velocity model is

v′(t) = 32− 32

160

(
0.009v(t) + 0.0008v2(t) + 0.0001v3(t)

)
, v(0) = 0.

Distance Model. The distance x(t) traveled by the skydiver, mea-
sured from the hovercraft, is given by the distance model

x′(t) = v(t), x(0) = 0.

The velocity is expected to be positive throughout the flight. Because
the parachute opens at 5000 feet, at which time the velocity model must
be replaced the open parachute model (not discussed here), the distance
x(t) increases with time from 0 feet to its limiting value of 10000 feet.
Values of x(t) from 10000 to 15000 feet make sense only for the open
parachute model.

Terminal Velocity. The terminal velocity is an equilibrium solu-
tion v(t) = v∞ of the velocity model, therefore constant v∞ satisfies

32− 32

160

(
0.009v∞ + 0.0008v2∞ + 0.0001v3∞

)
= 0.

A numerical solver is applied to find the value v∞ = 114.1 feet per
second, which is about 77.8 miles per hour. For the solver, we define
f(v) = 32− F (v) and solve f(v) = 0 for v. Some maple details:

f:=v->32 - (32/160)*(0.009*v+0.0008*v^2+0.0001*v^3);

fsolve(f(v)=0,v); # 114.1032777 ft/sec

60*60*fsolve(f(v)=0,v)/5280; # 77.79768934 mi/hr
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A Numerical Experiment. The Runge-Kutta method will be ap-
plied to produce a table which contains the elapsed time t, the skydiver
velocity v(t) and the distance traveled x(t), up until the distance reaches
nearly 10000 feet, whereupon the parachute opens.

The objective here is to illustrate practical methods of table production
in a computer algebra system or numerical laboratory. It is efficient in
these computational systems to phrase the problem as a system of two
differential equations with two initial conditions.

System Conversion. The velocity substitution v(t) = x′(t) used in the
velocity model gives us two differential equations in the unknowns x(t),
v(t):

x′(t) = v(t), v′(t) = g − 1

m
F (v(t)).

Define f(v) = g − (1/m)F (v). The path we follow is to execute the
maple code below, which produces the table that follows using the default
Runge-Kutta-Fehlberg algorithm.

eq:=32 - (32/160)*(0.009*v+0.0008*v^2+0.0001*v^3:

f:=unapply(eq,v);

de1:=diff(x(t),t)=v(t); de2:=diff(v(t),t)=f(v(t));

ic:=x(0)=0,v(0)=0;opts:=numeric,output=listprocedure:

p:=dsolve({de1,de2,ic},[x(t),v(t)],opts);

X:=eval(x(t),p); V:=eval(v(t),p);

fmt:="%10.2f %10.2f %10.2f\n";

seq(printf(fmt,5*t,X(5*t),V(5*t)),t=0..18);

t x(t) v(t) t x(t) v(t)

5.00 331.26 106.84 50.00 5456.76 114.10
10.00 892.79 113.97 55.00 6027.28 114.10
15.00 1463.15 114.10 60.00 6597.80 114.10
20.00 2033.67 114.10 65.00 7168.31 114.10
25.00 2604.18 114.10 70.00 7738.83 114.10
30.00 3174.70 114.10 75.00 8309.35 114.10
35.00 3745.21 114.10 80.00 8879.86 114.10
40.00 4315.73 114.10 85.00 9450.38 114.10
45.00 4886.25 114.10 90.00 10020.90 114.10

The table says that the flight time to parachute open at 10,000 feet is
about 90 seconds and the terminal velocity 114.10 feet/sec is reached in
about 15 seconds.

More accurate values for the flight time 89.82 to 10,000 feet and time
14.47 to terminal velocity can be determined as follows.
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fsolve(X(t)=10000,t,80..95);

fsolve(V(t)=114.10,t,2..20);

Alternate Method. Another way produce the table is to solve the
velocity model numerically, then determine x(t) =

∫ t
0 v(r)dr by numerical

integration. Due to accuracy considerations, a variant of Simpson’s rule
is used, called the Newton-cotes rule. The maple implementation of
this idea follows.

The first method of conversion into two differential equations is preferred,
even though the alternate method reproduces the table using only the
textbook material presented in this chapter.

f:=unapply(32-(32/160)*(0.009*v+0.0008*v^2+0.0001*v^3),v);

de:=diff(v(t),t)=f(v(t)); ic:=v(0)=0;

q:=dsolve({de,ic},v(t),numeric);

V:=t->rhs(q(t)[2]);

X:=u->evalf(Int(V,0..u,continuous,_NCrule));

fmt:="%10.2f %10.2f %10.2f\n";

seq(printf(fmt,5*t,X(5*t),V(5*t)),t=0..18);

Ejected Baggage. Much of what has been done here applies as well
to an ejected parcel, instead of a skydiver. What changes is the force
equation F (v), which depends upon the parcel exterior and shape. The
distance model remains the same, but the restraint 0 ≤ x ≤ 10000 no
longer applies, since no parachute opens. We expect the parcel to reach
terminal velocity in 5 to 10 seconds and hit the ground at that speed.

Variable Mass. The mass of a skydiver can be time-varying. For
instance, the skydiver lets water leak from a reservoir. This kind of
problem assumes mass m(t), position x(t) and velocity v(t) for the diver.
Then Newton’s second law gives a position-velocity model

x′(t) = v(t),

(m(t)v(t))′ = G(t, x(t), v(t)).

The problem is similar to rocket propulsion, in which expended fuel
decreases the in-flight mass of the rocket. Simplifying assumptions make
it possible to present formulas for m(t) and G(t, x, v), which can be used
by the differential equation solver.

Exercises 4.6

Terminal Velocity. Assume force
F (v) = av + bv2 + cv3 and g = 32,
m = 160/g. Using computer assist,

find the terminal velocity v∞ from the
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velocity model

v′ = g − 1

m
F (v), v(0) = 0.(1)

1. a = 0, b = 0 and c = 0.0002.

2. a = 0, b = 0 and c = 0.00015.

3. a = 0, b = 0.0007 and c =
0.00009.

4. a = 0, b = 0.0007 and c =
0.000095.

5. a = 0.009, b = 0.0008 and c =
0.00015.

6. a = 0.009, b = 0.00075 and c =
0.00015.

7. a = 0.009, b = 0.0007 and c =
0.00009.

8. a = 0.009, b = 0.00077 and c =
0.00009.

9. a = 0.009, b = 0.0007 and c = 0.

10. a = 0.009, b = 0.00077 and c = 0.

Numerical Experiment. Assume the
skydiver problem (1) with g = 32 and
constants m, a, b, c supplied below.
Using computer assist, apply a numer-
ical method to produce a table for the
elapsed time t, the velocity v(t) and
the distance x(t). The table must end
at x(t) ≈ 10000 feet, which determines
the flight time.

11. m = 160/g, a = 0, b = 0 and
c = 0.0002.

12. m = 160/g, a = 0, b = 0 and
c = 0.00015.

13. m = 130/g, a = 0, b = 0.0007 and
c = 0.00009.

14. m = 130/g, a = 0, b = 0.0007 and
c = 0.000095.

15. m = 180/g, a = 0.009, b = 0.0008
and c = 0.00015.

16. m = 180/g, a = 0.009, b =
0.00075 and c = 0.00015.

17. m = 170/g, a = 0.009, b = 0.0007
and c = 0.00009.

18. m = 170/g, a = 0.009, b =
0.00077 and c = 0.00009.

19. m = 200/g, a = 0.009, b = 0.0007
and c = 0.

20. m = 200/g, a = 0.009, b =
0.00077 and c = 0.

Flight Time. Assume the skydiver
problem (1) with g = 32 and constants
m, a, b, c supplied below. Using com-
puter assist, apply a numerical method
to find accurate values for the flight
time to 10,000 feet and the time re-
quired to reach terminal velocity.

21. mg = 160, a = 0.0095, b = 0.0007
and c = 0.000092.

22. mg = 160, a = 0.0097, b =
0.00075 and c = 0.000095.

23. mg = 240, a = 0.0092, b = 0.0007
and c = 0.

24. mg = 240, a = 0.0095, b =
0.00075 and c = 0.

Ejected Baggage. Baggage of 45
pounds is dropped from a hovercraft at
15, 000 feet. The fall is mostly vertical
from zero initial velocity, but there are
significant effects from air resistance.
The resistance effects are determined
by the baggage shape and surface con-
struction. Assume air resistance force
F (v) = av + bv2 + cv3, g = 32 and
mg = 45. Using computer assist, find
accurate values for the flight time to
the ground and the terminal velocity.
Estimate the time required to reach
99.95% of terminal velocity.

25. a = 0.0095, b = 0.0007, c =
0.00009

26. a = 0.0097, b = 0.00075, c =
0.00009

27. a = 0.0099, b = 0.0007, c =
0.00009

28. a = 0.0099, b = 0.00075, c =
0.00009



268

4.7 Lunar Lander

A lunar lander goes through free fall to the surface of the moon, its
descent controlled by retrorockets that provide a constant deceleration
to counter the effect of the moon’s gravitational field.

The retrorocket control is supposed to produce a soft touchdown,
which means that the velocity v(t) of the lander is zero when the lander
touches the moon’s surface. To be determined:

H = height above the moon’s surface for retrorocket activation,

T = flight time from retrorocket activation to soft touchdown.

Investigated here are two models for the lunar lander problem. In both
cases, it is assumed that the lander has mass m and falls in the direction
of the moon’s gravity vector. The initial speed of the lander is assumed
to be v0. The retrorockets supply a constant thrust deceleration g1.
Either the fps or mks unit system will be used. Expended fuel ejected
from the lander during thrust will be ignored, keeping the lander mass
constantly m.

The distance x(t) traveled by the lander t time units after retrorocket
activation is given by

x(t) =

∫ t

0
v(r)dr, 0 ≤ t ≤ T.

Therefore, H and T are related by the formulas

v(T ) = 0, x(T ) = H.

Constant Gravitational Field. Let g0 denote the constant accel-
eration due to the moon’s gravitational field. Assume given initial ve-
locity v0 and the retrorocket thrust deceleration g1. Define A = g1 − g0,
the effective thrust. Set the origin of coordinates at the center of mass
of the lunar lander. Let vector ~ı have tail at the origin and direction
towards the center of the moon. The force on the lander is mv′(t)~ı by
Newton’s second law. The forces mg0~ı and −mg1~ı add to −mA~ı. Force
competition mv′(t)~ı = −mA~ı gives the velocity model

mv′(t) = −mA, v(0) = v0.

This quadrature-type equation is solved routinely to give

v(t) = −At + v0, x(t) = −At2

2
+ v0t.

The equation v(T ) = 0 gives T = v0/A and H = x(T ) = v20/(2A).
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Numerical illustration. Let v0 = 1200 miles per hour and A = 30000
miles per hour per hour. We compute values T = 1/25 hours = 2.4
minutes and H = x(T ) = 24 miles. A maple implementation appears
below.

v0:=1200; A:=30000;

X:=t->-A*t^2/2+v0*t;

T:=(v0/A): (T*60.0).’min’,X(T).’miles’;

A1:=A*2.54*12*5280/100/3600/3600; # mks units

v1:=v0*12*2.54*5280/100/3600; # mks units

evalf(convert(X(T),units,miles,meters));

The constant field model predicts that the retrorockets should be turned
on 24 miles above the moon’s surface with soft landing descent time
of 2.4 minutes. It turns out that a different model predicts that 24
miles is too high, but only by a small amount. We investigate now this
alternative model, based upon replacing the constant gravitational field
by a variable field.

Variable Gravitational Field. The system of units will be the
mks system. Assume the lunar lander is located at position P above the
moon’s surface. Define symbols:

m = mass of the lander in kilograms,

M = 7.35× 1022 kilograms is the mass of the moon,

R = 1.74× 106 meters is the mean radius of the moon,

G = 6.6726× 10−11 is the universal gravitation constant, in mks units,

H = height in meters of position P above the moon’s surface,

v0 = lander velocity at P in meters per second,

g0 = GM/R2 = constant acceleration due to the moon’s gravity in me-
ters per second per second,

g1 = constant retrorocket thrust deceleration in meters per second per
second,

A = g1 − g0 = effective retrorocket thrust deceleration in meters per
second per second, constant field model,

t = time in seconds,

x(t) = distance in meters from the lander to position P ,

v(t) = x′(t) = velocity of the lander in meters per second.
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The project is to find the height H above the moon’s surface and the
descent time T for a soft landing, using fixed retrorockets at time t = 0.

The origin of coordinates will be P and~ı is directed from the lander to the
moon. Then x(t)~ı is the lander position at time t. The initial conditions
are x(0) = 0, v(0) = v0. Let g0(t) denote the variable acceleration of
the lander due to the moon’s gravitational field. Newton’s universal
gravitation law applied to point masses representing the lander and the
moon gives the expression

Force = mg0(t)~ı =
GmM

(R + H − x(t))2
~ı.

The force on the lander is mx′′(t)~ı by Newton’s second law. The force is
also mg0(t)~ı −mg1~ı. Force competition gives the second order distance
model

mx′′(t) = −mg1 +
mMG

(R + H − x(t))2
, x(0) = 0, x′(0) = v0.

The technique from the Jules Verne problem applies: multiply the dif-
ferential equation by x′(t) and integrate from t = 0 to the soft landing
time t = T . The result:

(x′(t))2

2

∣∣∣∣∣
t=T

t=0

= −g1(x(T )− x(0)) +
GM

R + H − x(t)

∣∣∣∣t=T

t=0

.

Using the relations x(0) = 0, x′(0) = v0, x
′(T ) = 0 and x(T ) = H gives

a simplified implicit equation for H:

−v20
2

= −g1H +
GM

R
− GM

R + H
.

Numerical illustration. Use v0 = 536.448, g1 = 5.3452174 to mimic
the constant field example of initial velocity 1200 miles per hour and
effective retrorocket thrust 30000 miles per hour per hour. A soft landing
is possible from height H = 23.7775 miles with a descent time of T =
2.385 minutes. These results compare well with the constant field model,
which had results of H = 24 miles and T = 2.4 minutes. Some maple

details follow.

M:=7.35* 10^(22);R:=1.74* 10^6;G:=6.6726* 10^(-11);

v0_CFM:=1200: A_CFM:=30000: # Constant field model values

cf:=1*5280*12*2.54/100/3600: # miles/hour to meters/second

v0:=v0_CFM*cf; g0:=G*M/R^2: g1:=A_CFM*cf/3600+g0;

eq:= -(v0^2/2) + g1*H + G*M/(R+H) - G*M/R=0:

HH:=[solve(eq,H)][1]; # HH := 38266 meters

de:=diff(x(t),t,t) = -g1 + M*G/(R+HH-x(t))^2;
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ic:= x(0)=0, D(x)(0)=v0;

with(DEtools):

DEplot(de,x(t),t=0..290,[[ic]]);

p:=dsolve({de,ic},x(t),numeric):

X:=t->evalf(rhs(p(t)[2])):

V:=t-> evalf(rhs(p(t)[3])):

TT1:=fsolve(’V(t)’=0,t,100..800): TT:=TT1/60:

TT1.’seconds’, TT.’minutes’;

X(TT1).’meters’, ((X(TT1)*100/2.54)/12/5280).’miles’;

0
0 300

40000

Figure 9. A maple plot
used to determine the
descent time T = 2.385
minutes.

Modeling. The field of the earth has been ignored in both models,
which is largely justified because the universal gravitation law term for
the lander and the earth is essentially zero for lander locations near the
moon.

The field for the lander and the moon is not constant, and therefore it
can be argued that conditions exist when assuming it is constant will
produce invalid and obviously incorrect results.

Are there cases when the answers for the two models differ greatly? Yes,
but the height H of retrorocket activation has to be large. This question
is re-visited in the exercises.

Control problems. The descent problem for a lunar lander is a control
problem in which the controller is the retrorocket plus the duration
of time in which it is active. All we have done here is to decide that
the descent should be controlled by retrorockets well in advance of 24
miles above the moon’s surface. The methods used here can be applied
to gain insight into the bang-bang control problem of turning on the
retrorockets for n intervals of time of durations ∆t1, . . . , ∆tn to make
an almost soft landing.

Primitive numerical methods. The predictions made here using the
computer algebra system maple can be replaced by primitive RK4 meth-
ods and graphing. No practising scientist or engineer would do only that,
however, because they want to be confident of the calculations and the
results. The best idea is to use a black box of numerical and graphi-
cal methods which have little chance of failure, e.g., a computer algebra
system or a numerical laboratory.
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Exercises 4.7

Constant Field. Find the retrorocket
activation time T and the activation
height x(T ). Assume the constant
gravitational field model. Units are
miles/hour and miles/hour per hour.

1. v0 = 1210, A = 30020.

2. v0 = 1200, A = 30100.

3. v0 = 1300, A = 32000.

4. v0 = 1350, A = 32000.

5. v0 = 1500, A = 45000.

6. v0 = 1550, A = 45000.

7. v0 = 1600, A = 53000.

8. v0 = 1650, A = 53000.

9. v0 = 1400, A = 40000.

10. v0 = 1450, A = 40000.

Variable Field. Find the retrorocket
activation time T and the activa-
tion height x(T ). Assume the vari-
able gravitational field model and mks
units.

11. v0 = 540.92, g1 = 5.277.

12. v0 = 536.45, g1 = 5.288.

13. v0 = 581.15, g1 = 5.517.

14. v0 = 603.504, g1 = 5.5115.

15. v0 = 625.86, g1 = 5.59.

16. v0 = 603.504, g1 = 5.59.

17. v0 = 581.15, g1 = 5.59.

18. v0 = 670.56, g1 = 6.59.

19. v0 = 670.56, g1 = 6.83.

20. v0 = 715.26, g1 = 7.83.

Distinguishing Models. The con-
stant field model (1) and the vari-
able field model (2) are verified here,
by example, to be distinct. Find the
retrorocket activation times T1, T2 and
the activation heights x1(T1), x2(T2)
for the two models 1, 2. Relations
A = g1 − g0 and g0 = GM/R2 ap-
ply to compute g1 for the variable field
model.

21. v0 = 1200 mph, A = 10000
mph/h. Answer: 72, 66.91 miles.

22. v0 = 1200 mph, A = 12000
mph/h. Answer: 60, 56.9 miles.

23. v0 = 1300 mph, A = 10000
mph/h. Answer: 84.5, 77.7 miles.

24. v0 = 1300 mph, A = 12000
mph/h. Answer: 70.42, 66.26
miles.


