
Forced Damped Vibrations

• Forced Damped Motion

• Definitions

• Visualization

• Cafe door

• Pet door

• Damped Free Oscillation Model

• Tuning a Damper

• Bicycle trailer



Forced Damped Motion
Real systems do not exhibit idealized harmonic motion, because damping occurs. A watch
balance wheel submerged in oil is a key example: frictional forces due to the viscosity of
the oil will cause the wheel to stop after a short time. The same wheel submerged in air
will appear to display harmonic motion, but indeed there is friction present, however small,
which slows the motion.

Consider a spring–mass system consisting of a massm and a spring with Hooke’s constant
k, with an added dashpot or damper, depicted in Figure 1 as a piston inside a cylinder
attached to the mass. A useful physical model, for purposes of intuition, is a screen door
with door–closer: the closer has a spring and an adjustable piston–cylinder style damper.
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Figure 1. A spring-mass system with damper



Model Derivation
The damper is assumed to operate in the viscous domain, which means that the force due
to the damper device is proportional to the speed that the mass is moving: F = cx′(t).
The number c ≥ 0 is called the damping constant. Three forces act: (1) Newton’s second
law F1 = mx′′(t), (2) viscous damping F2 = cx′(t) and (3) the spring restoring force
F3 = kx(t). The sum of the forces F1 + F2 + F3 acting on the system must equal the
external force f(t), which gives the equation for a damped spring–mass system

mx′′(t) + cx′(t) + kx(t) = f(t).(1)

Definitions
The motion is called damped if c > 0 and undamped if c = 0. If there is no external
force, f(t) = 0, then the motion is called free or unforced and otherwise it is called
forced.



Visualization
A useful visualization for a forced system is a vertical laboratory spring–mass system with
damper placed inside a box, which is transported down a washboard road inside an auto
trunk. The function f(t) is the vertical oscillation of the auto trunk. The function x(t) is
the motion of the mass in response to the washboard road. See Figure 2.
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Figure 2. A spring-mass system with damper in a box transported in an auto trunk along
a washboard road.



Cafe door
Restaurant workers make trips through a cafe door, which blocks the view of the kitchen
– see Figure 3. The door is equipped with a spring which tries to restore the door to the
equilibrium position x = 0, which is the plane of the door frame. There is a damper
attached, to reduce door oscillations.

Figure 3. A cafe door on three hinges with damper in the lower hinge. The equilibrium
position is the plane of the door frame.



Model Derivation
The top view of the door, Figure 4, shows how the angle x(t) from equilibrium x = 0 is
measured from different door positions.
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Figure 4. Top view of a cafe door, showing the three possible door positions.

The figure implies that, for modeling purposes, the cafe door can be reduced to a torsional
pendulum with viscous damping. This results in the cafe door equation

Ix′′(t) + cx′(t) + κx(t) = 0.(2)

The removal of the spring (κ = 0) causes the solution x(t) to be monotonic, which is a
reasonable for a springless cafe door.



Pet door
Designed for dogs and cats, the small door in Figure 5 allows animals free entry and exit.

Figure 5. A pet door.
The equilibrium position is the plane of the door frame.

The pet door swings freely from hinges along the top edge. One hinge is spring–loaded
with damper. Like the cafe door, the spring restores the door to the equilibrium position
while the damper acts to eventually stop the oscillations. However, there is one fundamental
difference: if the spring–damper system is removed, then the door continues to oscillate!

The cafe door model will not describe the pet door.



Model Derivation
For modeling purposes, the door can be compressed to a linearized swinging rod of length
L (the door height). The torque I = mL2/3 of the door assembly becomes important,
as well as the linear restoring force kx of the spring and the viscous damping force cx′ of
the damper. All considered, a suitable model is the pet door equation

I x′′(t) + cx′(t) +

(
k +

mgL

2

)
x(t) = 0.(3)

Derivation of (3) is by equating to zero the algebraic sum of the forces. Removing the damper and spring
(c = k = 0) gives a harmonic oscillator x′′(t) + ω2x(t) = 0 with ω2 = 0.5mgL/I, which establishes sanity
for the modeling effort.

Equation (3) is formally the cafe door equation with an added linearization term
0.5mgLx(t) obtained from 0.5mgL sinx(t).



Damped Free Oscillation Model
All equations can be reduced, for suitable definitions of constants p and q, to the simplified
second order differential equation

x′′(t) + p x′(t) + q x(t) = 0.(4)



Tuning a Damper

• The pet door and the cafe door have dampers with an adjustment screw. The screw
changes the damping coefficient c which in turn changes the size of coefficient p in
(4). More damping c means p is larger.

• There is a critical damping effect for a certain screw setting: if the damping is decreased
more, then the door oscillates, whereas if the damping is increased, then the door has a
monotone non-oscillatory behavior. The critical effect provides the least time for clos-
ing the door. The monotonic behavior can result in the door opening in one direction
followed by slowly settling to exactly the door jamb position. If p is too large, then it
could take 10 minutes for the door to close!

• The critical case corresponds to the least p > 0 (the smallest damping constant c >
0) required to close the door with this kind of monotonic behavior. The same can
be said about decreasing the damping: the more p is decreased, the more the door
oscillations approach those of no damper at all, which is a pure harmonic oscillation.



As viewed from the characteristic equation r2 + pr + q = 0, the change is due to a
change in character of the roots from real to complex. The physical response and the three
cases in Euler’s constant–coefficient recipe lead to the following terminology.

Classification Defining properties
Overdamped Distinct real roots r1 6= r2

Positive discriminant
x = c1e

r1t + c2e
r2t

= exponential× monotonic function
Critically damped Double real root r1 = r2

Zero discriminant
x = c1e

r1t + c2 t e
r1t

= exponential× monotonic function
Underdamped Complex conjugate roots α± i β

Negative discriminant
x = eαt(c1 cosβt+ c2 sinβt)
= exponential× harmonic oscillation



Distinguishing the Three Damped Models
Consider the pet door or the cafe door, modeled by a differential equation

ay′′ + by′ + cy = 0

with constant coefficients a, b, c. We imagine the door closing due to adjustment of
the damper screw, which affects the magnitude of coefficient b: small values of b create
oscillation and large values non-oscillation.

Classification Physical Meaning
Overdamped The door closes slowly without oscillations.
Critically damped The door closes without oscillations, in the least

amount of time.
Underdamped The door oscillates through the jamb position many

times with decreasing amplitudes.



Bicycle trailer
An auto tows a one–wheel trailer over a washboard road. Shown in Figure 6 is the trailer
strut, which has a single coil spring and two dampers. The massm includes the trailer and
the bicycles.
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Figure 6. A trailer strut with dampers on a washboard road



Road Surface Model
Suppose a washboard dirt road has about 2 full oscillations (2 bumps and 2 valleys) every
3 meters and a full oscillation has amplitude 6 centimeters. Let s denote the horizontal
distance along the road and let ω be the number of full oscillations of the roadway per unit
length. The oscillation period is 2π/ω, therefore 2π/ω = 3/2 or ω = 4π/3.

A model for the road surface is

y =
5

100
cosωs.



Model Derivation
Let x(t) denote the vertical elongation of the spring, measured from equilibrium. Newton’s second law gives a
force F1 = mx′′(t) and the viscous damping force is F2 = 2cx′(t). The trailer elongates the spring by x− y,
therefore the Hooke’s force is F3 = k(x−y). The sum of the forces F1+F2+F3 must be zero, which implies

mx′′(t) + 2cx′(t) + k(x(t)− y(t)) = 0.

Write s = vt where v is the speedometer reading of the car in meters per second. The expanded differential
equation is the forced damped spring-mass system equation

mx′′(t) + 2cx′(t) + kx(t) =
k

20
cos(4πvt/3).

The solution x(t) of this model, with x(0) and x′(0) given, describes the vertical excursion of the trailer bed
from the roadway.

The observed oscillations of the trailer are modeled by the steady-state solution

xss(t) = A cos(4πvt/3) +B sin(4πvt/3),

where A, B are constants determined by the method of undetermined coefficients. From the physical data, the
amplitude

√
A2 +B2 of this oscillation might be 6cm or larger.


