Differential Equations and Linear Algebra 2250 Sample Midterm Exam 2 Version 1, 21 Mar 2014

Instructions: This in-class exam is designed to be completed in 30 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 3/4, answers count 1/4.

1. (The 3 Possibilities with Symbols)

Let a, b and c denote constants and consider the system of equations

$$\begin{pmatrix} 0 & 0 & 0 \\ -2b-4 & 3 & a \\ b+1 & -1 & 0 \\ -1-b & 1 & a \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ b^2 \\ b \\ b^2-b \end{pmatrix}$$

- (a) [40%] Determine a and b such that the system has a unique solution.
- (b) [30%] Explain why a = 0 and $b \neq 0$ implies no solution. Ignore any other possible no solution cases.
- (c) [30%] Explain why a = b = 0 implies infinitely many solutions. Ignore any other possible infinitely many solution cases.

\mathbf{S}	\mathbf{cores}
1	•
2	
3	
4	
5	

2. (Vector Spaces) Do all parts. Details not required for (a)-(d).

(a) [10%] True or false: There is a subspace S of \mathcal{R}^3 containing none of the vectors $\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 3\\1\\2 \end{pmatrix}$.

(b) [10%] True or false: The set of solutions \vec{u} in \mathcal{R}^3 of a consistent matrix equation $A\vec{u} = \vec{b}$ can equal all vectors in the *xy*-plane, that is, all vectors of the form $\vec{u} = (x, y, 0)$.

(c) [10%] True or false: Relations $x^2 + y^2 = 0$, y + z = 0 define a subspace in \mathcal{R}^3 .

(d) [10%] True or false: Equations x = y, z = 2y define a subspace in \mathcal{R}^3 .

(e) [20%] Linear algebra theorems are able to conclude that the set S of all polynomials $f(x) = c_0 + c_1 x + c_2 x^2$ such that $f'(x) + \int_0^1 f(x) x dx = 0$ is a vector space of functions. Explain why $V = \operatorname{span}(1, x, x^2)$ is a vector space, then fully state a linear algebra theorem required to show S is a subspace of V. To save time, do not write any subspace proof details.

(f) [40%] Find a basis of vectors for the subspace of \mathcal{R}^5 given by the system of restriction equations

$3x_1$	+	$2x_3$	+	$4x_4$	+	$10x_{5}$	=	0,
$2x_1$	+	x_3	+	$2x_4$	+	$4x_5$	=	0,
$-2x_1$					+	$4x_5$	=	0,
$2x_1$	+	$2x_3$	+	$4x_4$	+	$12x_{5}$	=	0.

Use this page to start your solution. Attach extra pages as needed.

3. (Independence and Dependence) Do all parts.

(a) [10%] State a dependence test for 3 vectors in \mathcal{R}^4 . Write the hypothesis and conclusion, not just the name of the test.

(b) [10%] State fully an independence test for 3 polynomials. It should apply to show that 1, 1 + x, x(1 + x) are independent.

(c) [10%] For any matrix A, $\operatorname{rank}(A)$ equals the number of lead variables for the problem $A\vec{x} = \vec{0}$. How many non-pivot columns in an 8×8 matrix A with $\operatorname{rank}(A) = 6$?

(d) [30%] Let \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 denote the rows of the matrix

$$A = \begin{pmatrix} 0 & -2 & 0 & -6 & 0 \\ 0 & 2 & 0 & 5 & 1 \\ 0 & 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 3 & 0 \end{pmatrix}.$$

Decide if the four rows \vec{v}_1 , \vec{v}_2 , \vec{v}_3 , \vec{v}_4 are independent and display the details of the chosen independence test.

(e) [40%] Extract from the list below a largest set of independent vectors.

$$\vec{v_1} = \begin{pmatrix} 0\\0\\0\\0\\0\\0 \end{pmatrix}, \vec{v_2} = \begin{pmatrix} 0\\2\\2\\-2\\0\\2 \end{pmatrix}, \vec{v_3} = \begin{pmatrix} 0\\1\\1\\-1\\0\\1 \end{pmatrix}, \vec{v_4} = \begin{pmatrix} 0\\3\\-1\\0\\5 \end{pmatrix}, \vec{v_5} = \begin{pmatrix} 0\\1\\1\\1\\0\\3 \end{pmatrix}, \vec{v_6} = \begin{pmatrix} 0\\0\\0\\2\\0\\2 \\0\\2 \end{pmatrix}.$$

Use this page to start your solution. Attach extra pages as needed.

4. (Determinants) Do all parts.

(a) [10%] True or False? The value of a determinant is the product of the diagonal elements.

(b) [10%] True or False? The determinant of the negative of the $n \times n$ identity matrix is -1.

(c) [20%] Assume given 3×3 matrices A, B. Suppose $A^2B = E_2E_1A$ and E_1 , E_2 are elementary matrices representing respectively a swap and a multiply by -5. Assume det(B) = 10. Let C = 2A. Find all possible values of det(C).

(d) [30%] Determine all values of x for which $(I+C)^{-1}$ fails to exist, where C equals the transpose of the matrix $\begin{pmatrix} 2 & 0 & -1 \\ 3x & 0 & 1 \\ x - 1 & x & x \end{pmatrix}$. (e) [30%] Let symbols a, b, c denote constants. Apply the adjugate [adjoint] formula for the inverse to

find the value of the entry in row 3, column 4 of A^{-1} , given A below.

Use this page to start your solution. Attach extra pages as needed.

5. (Linear Differential Equations) Do all parts.

(a) [20%] Solve for the general solution of 15y'' + 8y' + y = 0.

(b) [40%] The characteristic equation is $r^2(2r+1)^3(r^2-2r+10) = 0$. Find the general solution y of the linear homogeneous constant-coefficient differential equation.

(c) [20%] A fourth order linear homogeneous differential equation with constant coefficients has two particular solutions $2e^{3x} + 4x$ and xe^{3x} . Write a formula for the general solution.

(d) [20%] Mark with X the functions which **cannot** be a solution of a linear homogeneous differential equation with constant coefficients. Test your choices against this theorem:

The general solution of a linear homogeneous nth order differential equation with constant coefficients is a linear combination of Euler solution atoms.

$e^{\ln 2x }$	e^{x^2}	$2\pi + x$	$\cos(\ln x)$
$\cos(x\ln 3.7125)$	$x^{-1}e^{-x}\sin(\pi x)$	$\cosh(x)$	$\sin^2(x)$

Use this page to start your solution. Attach extra pages as needed.