Name \qquad

Differential Equations and Linear Algebra 2250
 Sample Midterm Exam 2
 Version 1, 21 Mar 2014

Instructions: This in-class exam is designed to be completed in 30 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

1. (The 3 Possibilities with Symbols)

Let a, b and c denote constants and consider the system of equations

$$
\left(\begin{array}{crr}
0 & 0 & 0 \\
-2 b-4 & 3 & a \\
b+1 & -1 & 0 \\
-1-b & 1 & a
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
0 \\
b^{2} \\
b \\
b^{2}-b
\end{array}\right)
$$

(a) [40\%] Determine a and b such that the system has a unique solution.
(b) [30\%] Explain why $a=0$ and $b \neq 0$ implies no solution. Ignore any other possible no solution cases.
(c) [30\%] Explain why $a=b=0$ implies infinitely many solutions. Ignore any other possible infinitely many solution cases.

Use this page to start your solution. Attach extra pages as needed.

Name. \qquad
2. (Vector Spaces) Do all parts. Details not required for (a)-(d).
(a) $[10 \%]$ True or false: There is a subspace S of \mathcal{R}^{3} containing none of the vectors $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$.
(b) [10\%] True or false: The set of solutions \vec{u} in \mathcal{R}^{3} of a consistent matrix equation $A \vec{u}=\vec{b}$ can equal all vectors in the $x y$-plane, that is, all vectors of the form $\vec{u}=(x, y, 0)$.
(c) [10%] True or false: Relations $x^{2}+y^{2}=0, y+z=0$ define a subspace in \mathcal{R}^{3}.
(d) [10\%] True or false: Equations $x=y, z=2 y$ define a subspace in \mathcal{R}^{3}.
(e) [20\%] Linear algebra theorems are able to conclude that the set S of all polynomials $f(x)=c_{0}+c_{1} x+$ $c_{2} x^{2}$ such that $f^{\prime}(x)+\int_{0}^{1} f(x) x d x=0$ is a vector space of functions. Explain why $V=\boldsymbol{\operatorname { s p a n }}\left(1, x, x^{2}\right)$ is a vector space, then fully state a linear algebra theorem required to show S is a subspace of V. To save time, do not write any subspace proof details.
(f) $[40 \%]$ Find a basis of vectors for the subspace of \mathcal{R}^{5} given by the system of restriction equations

$$
\begin{aligned}
& 3 x_{1}+2 x_{3}+4 x_{4}+10 x_{5}=0, \\
& 2 x_{1}+x_{3}+2 x_{4}+4 x_{5}=0, \\
&-2 x_{1}+4 x_{5}=0, \\
& 2 x_{1}+2 x_{3}+4 x_{4}+12 x_{5}=0
\end{aligned}
$$

Use this page to start your solution. Attach extra pages as needed.

Name. \qquad
3. (Independence and Dependence) Do all parts.
(a) [10\%] State a dependence test for 3 vectors in \mathcal{R}^{4}. Write the hypothesis and conclusion, not just the name of the test.
(b) [10\%] State fully an independence test for 3 polynomials. It should apply to show that $1,1+x$, $x(1+x)$ are independent.
(c) $[10 \%]$ For any matrix $A, \operatorname{rank}(A)$ equals the number of lead variables for the problem $A \vec{x}=\overrightarrow{0}$. How many non-pivot columns in an 8×8 matrix A with $\operatorname{rank}(A)=6$?
(d) $[30 \%]$ Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ denote the rows of the matrix

$$
A=\left(\begin{array}{rrrrr}
0 & -2 & 0 & -6 & 0 \\
0 & 2 & 0 & 5 & 1 \\
0 & 1 & 0 & 2 & 1 \\
0 & 1 & 0 & 3 & 0
\end{array}\right)
$$

Decide if the four rows $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ are independent and display the details of the chosen independence test.
(e) [40\%] Extract from the list below a largest set of independent vectors.

$$
\overrightarrow{v_{1}}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \overrightarrow{v_{2}}=\left(\begin{array}{r}
0 \\
2 \\
2 \\
-2 \\
0 \\
2
\end{array}\right), \overrightarrow{v_{3}}=\left(\begin{array}{r}
0 \\
1 \\
1 \\
-1 \\
0 \\
1
\end{array}\right), \overrightarrow{v_{4}}=\left(\begin{array}{r}
0 \\
3 \\
3 \\
-1 \\
0 \\
5
\end{array}\right), \overrightarrow{v_{5}}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
0 \\
3
\end{array}\right), \overrightarrow{v_{6}}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
2 \\
0 \\
2
\end{array}\right) .
$$

Use this page to start your solution. Attach extra pages as needed.

Name.
4. (Determinants) Do all parts.
(a) $[10 \%]$ True or False? The value of a determinant is the product of the diagonal elements.
(b) [10\%] True or False? The determinant of the negative of the $n \times n$ identity matrix is -1 .
(c) [20\%] Assume given 3×3 matrices A, B. Suppose $A^{2} B=E_{2} E_{1} A$ and E_{1}, E_{2} are elementary matrices representing respectively a swap and a multiply by -5 . Assume $\operatorname{det}(B)=10$. Let $C=2 A$. Find all possible values of $\operatorname{det}(C)$.
(d) [30\%] Determine all values of x for which $(I+C)^{-1}$ fails to exist, where C equals the transpose of the matrix $\left(\begin{array}{ccc}2 & 0 & -1 \\ 3 x & 0 & 1 \\ x-1 & x & x\end{array}\right)$.
(e) [30\%] Let symbols a, b, c denote constants. Apply the adjugate [adjoint] formula for the inverse to find the value of the entry in row 3 , column 4 of A^{-1}, given A below.

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
a & b & 0 & 1 \\
1 & c & 1 & 2
\end{array}\right)
$$

Use this page to start your solution. Attach extra pages as needed.

Name. \qquad
5. (Linear Differential Equations) Do all parts.
(a) $[20 \%]$ Solve for the general solution of $15 y^{\prime \prime}+8 y^{\prime}+y=0$.
(b) [40\%] The characteristic equation is $r^{2}(2 r+1)^{3}\left(r^{2}-2 r+10\right)=0$. Find the general solution y of the linear homogeneous constant-coefficient differential equation.
(c) $[20 \%]$ A fourth order linear homogeneous differential equation with constant coefficients has two particular solutions $2 e^{3 x}+4 x$ and $x e^{3 x}$. Write a formula for the general solution.
(d) [20\%] Mark with \mathbf{X} the functions which cannot be a solution of a linear homogeneous differential equation with constant coefficients. Test your choices against this theorem:

The general solution of a linear homogeneous nth order differential equation with constant coefficients is a linear combination of Euler solution atoms.

$e^{\ln \|2 x\|}$	$e^{x^{2}}$	$2 \pi+x$	$\cos (\ln \|x\|)$
$\cos (x \ln \|3.7125\|)$	$x^{-1} e^{-x} \sin (\pi x)$	$\cosh (x)$	$\sin ^{2}(x)$

Use this page to start your solution. Attach extra pages as needed.

