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A "zip" file containing all of the programs in this document (and other 
SCILAB documents at InfoClearinghouse.com) can be downloaded at 
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OOrrddiinnaarryy  DDiiffffeerreennttiiaall  EEqquuaattiioonnss  
 
 
The chapter starts with a review of concepts of differential equations and symbolic solution 
techniques that can be applied using SCILAB.   Since SCILAB is not a symbolic environment, its 
applications to symbolic solutions of ordinary differential equations (ODEs) is limited.   
However, SCILAB can be used to calculate intermediate numerical steps in the solutions.  The 
strength of SCILAB in solving ODEs is in its numerical applications.  Thus, the chapter also 
includes a number of numerical solutions to ODEs through user-programmed and pre-
programmed SCILAB functions. 
 
 
 

IInnttrroodduuccttiioonn  ttoo  ddiiffffeerreennttiiaall  eeqquuaattiioonnss  
 
Differential equations are equations involving derivatives of a function.  Because many physical 
quantities are given in terms of rates of change of a certain quantity with respect to one or 
more independent quantities, derivatives appear frequently in the statement of physical laws.   
For example, the flux of heat, q [J/m2], in a one-dimensional direction is given by  
 

q = -k⋅(dT/dx), 
 
where T[K or oC] is the temperature, x [m] is positions, and k [J/(m K) or J/(m oC)].  This 
equation can be considered as a differential equation if q and k are known, and we are trying 
to solve for the temperature as a function of x, i.e., T = T(x).   The equation of conservation of 
energy for heat transfer in one-dimension, where there are no sources or sink of heat, requires 
that the rate of change of the heat flux across an area perpendicular to the x-axis be zero, 
i.e., dq/dx = 0,or, 

 
 
If k is a constant, i.e., not a function of x, then, the equation of conservation of energy 
reduces to  

d2T/dx2 = 0. 
 
The last two expressions are also differential equations.  The solution for these equations will 
be a function T = T(x) representing the temperature. 
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DDeeffiinniittiioonnss  
 
The following definitions allow us to classify equations, thus providing general guidelines for 
obtaining solutions. 
 
 
 
 

Ordinary and partial differential equations 
 
When the dependent variable is a function of a single independent variable, as in the cases 
presented above, the differential equation is said to be an ordinary differential equation 
(ODE).  If the dependent variable is a function of more than one variable, a differential 
equation involving derivatives of this dependent variable is said to be a partial differential 
equation (PDE).  An example of a partial differential equation would be the time-dependent 
would be the Laplace’s equation for the stream function, ψ(x,y,z), of a three-dimensional, 
inviscid flow: 

∂2ψ/∂x2 + ∂2ψ/∂y2 + ∂2ψ/∂x2 = 0. 
 
 

Order and degree of an equation 
 
The order of a differential equation is the order of the highest-order derivative involved in the 
equation.  Thus, the ODE 

dy/dx  + 3xy = 0 
 
is a first-order equation, while Laplace’s equation (shown above) is a second-order equation. 
 
The degree of a differential equation is the highest power to which the highest-order derivative 
is raised.  Therefore, the equation 
 

(d3y/dt3)2+(d2y/dx2)5-xy = ex, 
 
is a third order, second-degree ODE, while the equation 
 

∂y/∂t = c⋅(∂y/∂x), 
 
is a first-order, first-degree PDE. 
 
 

Linear and non-linear equations 
 
An equation in which the dependent variable and all its pertinent derivatives are of the first 
degree is referred to as a linear differential equation.  Otherwise, the equation is said to be 
non-linear.   Examples of linear differential equations are:  
 

d2x/dt2 + β⋅(dx/dt) + ωo⋅x = A sin ωf t, 
and 

∂C/∂t + u⋅(∂C/∂x) = D⋅(∂2C/∂x2). 
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Constant or variable coefficients 
 
The following equation: 

d3y/dt3+π⋅ (d2y/dx2)2-5⋅y = ex, 
 
where all the coefficients accompanying the dependent variable and its derivative are 
constant, would be classified as a third order, linear ODE with constant coefficients.   Instead, 
the equation  
 

∂2C/∂t2 – u(x,t)⋅ (∂C/∂x) = 0, 
 
would be classified as a second-order, linear PDE with variable coefficients. 
 
 

Homogeneous and non-homogeneous equations 
 
Typically, differential equations are arranged so that all the terms involving the dependent 
variable are placed on the left-hand side of the equation leaving only constant terms or terms 
involving the independent variable(s) only in the right-hand side.  When arranged in this 
fashion, a differential equation that has a zero right-hand side is referred to as a homogeneous 
equation.  Examples of homogeneous equations are: 
 

d2x/dt2 + β⋅(dx/dt) + ωo⋅x = 0, 
and 

(x-1)⋅(dy/dx) + 2⋅x⋅y = 0. 
 

On the other hand, if the right-hand side of the equation, after placing the terms involving the 
dependent variable and its derivatives on the left-hand side, is non-zero, the equation is said 
to be non-homogeneous.  Non-homogeneous versions of the last two equations are:  
 

d2x/dt2 + β⋅(dx/dt) + ωo⋅x = Ao⋅e -t/τ, 
and 

(x-1)⋅(dy/dx) + 2⋅x⋅y = x2-2x. 
 
 
 
 
 
 
 

SSoolluuttiioonnss  
 
A solution to a differential equation is a function of the independent variable(s) that, when 
replaced in the equation, produces an expression that can be reduced, through algebraic 
manipulation, to the form 0 = 0.   For example, the function  

y = sin x, 
is a solution to the equation  

d2y/dx2 + y = 0, 
 
because when we replace y into the equation we have  
 

-sin x + sin x = 0, 
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or,  0 = 0, for all values of x.  This follows from the fact that dy/dx = cos(x), and d2y/dx2 = 
 -sin(x). 
 

General and particular solutions 
 
A general solution is one involving integration constants so that any choice of those constants 
represents a solution to the differential equation.   For example, the function  
 

x = C⋅e-t, 
is a general solution to the equation  

dx/dt + x = 0, 
 
because, substituting C⋅e-t for x in the equation produces  
 

- C⋅e-t  + C⋅e-t = 0. 
 
A particular solution is a solution corresponding to a specific value of the integration 
constants.  For example, the function  
 

y = x2/2 
 
 is a particular solution to the equation,  
 

dy/dx – x = 0. 
 
A general solution for this equation would be  
 

y = x2/2 + C, 
 
where C is an arbitrary integration constant. 
 
Given the solution of the homogeneous equation, yh(x), the solution of the corresponding non-
homogeneous equation, y(x), can be written as  
 

y(x) = yh(x) + yp(x), 
 
where yp(x) is a particular solution to the ODE. 
 

Verifying solutions using SCILAB 
 
Since SCILAB is not a symbolic environment it is not suitable for the verification of solutions 
other than polynomial solutions.   As indicated in Chapter 8, SCILAB provides function derivat 
to calculate derivatives of polynomials.   If we have a function that can be expressed as a 
polynomial, we can use function derivat to check if that function satisfies a particular 
differential equation as illustrated in the example below: 
 
Check that the function y(x) = x3-2x+4 is a solution to the differential equation, d2y/dx2 - 6x = 0 
using SCILAB: 
 
-->x = poly(0,'x'); y = x^3-2*x+4; 
 
 -->derivat(derivat(y))-6*x 
 ans  = 
  
    0   
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Initial conditions and boundary conditions 
 
To determine the specific value of the constant(s) of integration, we need to provide values of 
the solution, or of one or more of its derivatives, at specific points.  These values are referred 
to as the conditions of the solution.  For example, we could specify that the solution to the 
equation  
 

d2y/dt2+y = 0, 
must satisfy the conditions  

y(0) = -5, 
and  

dy/dt = -1 at t = 5. 
 
Initial conditions are provided at a single value of the independent variable so that after 
evaluating those conditions at that point all the integration constants are uniquely specified.   
In general, first order differential equations include one integration constant, requiring only 
one condition to be evaluated to uniquely determine the solution.  Thus, this type of equations 
needs only one initial condition.   The term “initial condition” is used because many first order 
equations involve a derivative with respect to time, and the condition given to specify the 
solution is typically the value of the function at time equal to zero, i.e., an initial value of the 
function.   Boundary conditions, on the other hand, are provided at more then one value of the 
independent variable(s).  The term “boundary conditions” is used because the function is 
evaluated at the “boundaries” of the solution domain in order to specify the solution. 
 
An example of initial conditions used in a solution will be to solve the equation  
 

d2u/dt2 + 2⋅(du/dt) = 0, 
given  

u(0) = 1, du/dt|t=0 = -1. 
 
An example of boundary conditions used in a solution will be to solve the equation  
 

d2y/dx2+y = A sin x, 
 
using  

y(0) = A/2, and y(1) = -A/2. 
 
In general, the solution of a n-th order ODE requires n conditions. 
 
 

SSyymmbboolliicc  ssoolluuttiioonnss  ttoo  oorrddiinnaarryy  ddiiffffeerreennttiiaall  eeqquuaattiioonnss  
 
By symbolic solutions we understand those solutions that can be expressed as a closed-form 
function of the independent variable.  Because solution of first-order differential equations 
imply integrating the derivative involved in the equation, many of the techniques used for 
solving first-order ODEs follow from integration techniques. Details of some techniques used for 
solving ordinary differential equations follow. 
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Solution techniques for first-order, linear ODEs with constant 
coefficients 
 
A first order equation is an equation of the form  
 

a⋅(dy/dx)n+ b⋅ym = f(x), 
 
where a, b, n and m are, in general, real numbers.  Some specific techniques for linear 
equations, i.e., when n = m = 1, follow.   This catalog of solutions for linear ODEs is intended as 
a review of the techniques.   Numerical solutions using SCILAB will be presented in a later 
chapter. 
 
 

 Equations of the form: dy/dx = f(x)  -- Direct integration  
 
An equation of the form dy/dx = f(x) can be re-written as  
 

dy= f(x)dx, 
 

and a general solution found by direct integration,  
 

∫ dy =∫ f(x)dx, 
or  

y = ∫ f(x)dx+C. 
 

If an initial condition y(xo) = yo, is given, then the integration can be calculated as 
 

or, 
 

 
If the function f(x) is a polynomial, we can use the SCILAB user-defined function intpoly to 
produce the indefinite integral.   Consider the example in which dy/dx = f(x) = x3 + x + 2.  
The solution, with the help of SCILAB, is calculated as: 
 
-->f = poly([2,1,0,3],'x','coeff') 
 f  = 
  
              3   
    2 + x + 3x    
 
-->getf(‘intpoly’) 
  
-->fInt = intpoly(f) 
  
 Indefinite integral - Add integration constant    
  
 fInt  = 
  
             2       4   
    2x +  .5x +  .75x    

∫ ∫=
y

y

x

xo o

dxxfdy ,)(

∫=−
x

xo

dxxfyy .)(0
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Thus, the general solution is : 

 
y(x) = 2x+0.5*x2+0.75*x4 + C 

 
 

 Equations of the form: dy/dx = g(y) -- Inversion and direct integration 
  

Equations of the form dy/dx = g(y), can be re-written as  
 

dy/g(y) = dx. 
 
Thus, an indefinite integral will be given by  
 

∫ dy/g(y) = ∫ dx, 
or  

∫ dy/g(y) = x + C. 
 
From the latter expression, the dependent variable y may be solved for.   A similar 
approach is followed when using a definite integral, i.e., one with initial condition y(xo) = 
yo.  The integration in this case reads: 
 

 
 
 

 Equations of the form: dy/dx = f(x)g(y)  -- Separation of variables 
 

Equations of the form dy/dx = f(x)g(y), can be separated into  
 

dy/g(y) = dx/g(x), 
 
and then integrated using indefinite integrals for general solutions, or definite integrals 
with initial conditions for particular solutions.   

 
 

 Equations of the form: dy/dx = g(y/x) 
 
Using the change of variable  

u = y/x, 
we have  

y = u⋅x, 
 

dy = u⋅dx + x⋅du, 
then 

(u⋅dx + x⋅du)/dx = g(u), 
 

u⋅dx +x⋅du = g(u)⋅dx, 
 

[g(u)-u] ⋅dx = x⋅du, 
 

∫ ∫ −==
y

y

x

x o
o o

xxdx
yg

dy .
)(
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from which the variables x and u can be separated as  
 

du/[g(u)-u] = dx/x. 
 

After integration, we replace  
u = y/x 

 
back in the result, and isolate, if possible, y(x). 
 

 
 Equations of the form: a⋅(dy/dx)+ b⋅y = f(x) -- Integrating factors 

 
The expression  

a⋅(dy/dx)+ b⋅y = f(x) 
 

constitutes the most general form of a first-order, linear, ordinary differential equation.  
The equation can be re-written as 
 

dy/dx + (b/a) ⋅y = (1/a)⋅f(x), 
 
You can prove that, by multiplying both sides of this form of the equation by a function,  

 
IF(x) = exp(b⋅x/a), 

 
 
 

 
known as an integrating factor, the equation becomes: 
 

 
This equation can be easily integrated to read: 
 

 
In terms of the integrating factor, this solution will be: 
 

y(x) = (1/IF(x))⋅[(1/a) ⋅∫IF(x) ⋅f(x) ⋅dx + C]. 
 

 
 

Integrating factors for first-order, linear ODEs with variable 
coefficients 
 
An equation with variable coefficients such as  
 

K1(x)(dy/dx) + K2(x)y(x) = K3(x), 
 

can be reduced to the form,  

).(exp1)(exp xf
a

xb
a

xy
a

xba
dx
d ⋅





 ⋅⋅=



 ⋅





 ⋅⋅

.)(exp1exp)( 



 +⋅





 ⋅⋅⋅





 ⋅−= ∫ Cxf

a
xb
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xbxy
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dy/dx + g(x)y(x) = f(x), 

 
by dividing the entire equation by K1(x).  The latter equation can be solved by multiplying both 
sides of the equation by the integrating factor  
 

IF(x) = exp(∫g(x)dx). 
 
After identifying the integrating factor, IF(x), the solution procedure is very similar to the case 
of a first-order, constant-coefficient ODEs, i.e.,  
 

y(x) = (1/FI(x))⋅[∫FI(x) ⋅f(x) ⋅dx + C]. 
 

Exact differential equations 
 
An expression of the form,  

F(x,y)⋅dx + G(x,y)⋅dy = 0, 
 
Is said to be an exact differential equation in two dimensions, if the components F(x,y) and 
G(x,y) satisfy the conditions  

∂F/∂y = ∂G/∂x. 
 
In such case, it is possible to find a function u(x,y), such that  
 

F(x,y) = ∂u/∂x, G(x,y) = ∂u/∂y. 
 
The equation, u(x,y) = C, where C is a constant, will represent a solution to the exact 
differential equation: 

F(x,y)⋅dx + G(x,y)⋅dy = 0. 
 
 

Solutions of homogeneous linear equations of any order with 
constant coefficients  
 
Consider the linear, constant-coefficient, homogeneous ODE of order n: 
 

d(n)y/dx(n) + b n-1⋅(dy(n-1) /dx(n-1)) +  …+ b2⋅(d2y/dx2) + b1⋅(dy/dx) + b0⋅y = 0. 
 
where the coefficients b0, b1, …, bn-1, are constant.  We can use the operator D(k) = d (k)/dx(k), 
to re-write the equation as 
 

D(n)y + b n-1⋅D(n-1) y +  …+ b2⋅D2y + b1⋅Dy + b0⋅y = f(x). 
 
Treating the operators D(k), (k = n, n-1, …, 1), as algebraic terms, the equation is re-written as  
 

[D(n) + b n-1⋅D(n-1)  +  …+ b2⋅D2 + b1⋅D + b0]⋅y = 0. 
 

The idea is that the linear combination of the operators, shown above in square brackets, is 
applied to the function y(x), in a similar manner as algebraic terms would be multiplied to it.   
 
Associated with the latter expression is a polynomial known as the characteristic equation of 
the ODE, and written as 

λn + b n-1⋅λ n-1  +  …+ b2⋅λ2 + b1⋅λ + b0 = 0. 
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Suppose that the characteristic equation has n independent roots, then the general solution of 
the linear, constant-coefficient, homogeneous ODE of order n given earlier is 
 

y = C1⋅eλ
1
x + C2⋅eλ

2
x + … + Cn-1⋅eλ

n-1
 x + Cn⋅eλ

n
x. 

 
If out of the n roots there is one that has multiplicity m, then the m terms corresponding to 
this root λ in the solution, will be   
 

C(1) ⋅eλx + C(2) ⋅ x⋅eλx + C(1) ⋅ x2⋅eλx + …+ C(1) ⋅ xm-1⋅eλx. 
 
 
Example 1 –  Determine the general solution to the homogeneous equation  
 

d3y/dx3-4⋅(d2y/dx2)-11⋅(dy/dx)+30⋅y = 0. 
 
In terms of the D operator, this ODE can be written as 
 

[ D3-4⋅ D2-11⋅D +30]y = 0. 
 
The characteristic equation corresponding to this ODE is 
 

λ3-4⋅λ2-11⋅λ +30 = 0. 
 

To obtain solutions to this equation in SCILAB use: 
 
-->lam = poly(0,'lam') 
 lam  = lam    
  
-->p = lam^3-4*lam^2-11*lam+30 
 p  = 
                     2     3   
    30 - 11lam - 4lam + lam    
  
-->roots(p) 
 ans  = 
!   2. ! 
! - 3. ! 
!   5. ! 
 
Thus, a general solution to the ODE under consideration is  
 
 

y = C1⋅e2x + C2⋅e-3x + C3⋅e5x. 
 
Example 2 – Determine the general solution to the homogeneous ODE: 
 

d4y/dx4-7⋅(d3y/dx3)+18⋅(d2y/dx2)-20⋅(dy/dx)+8⋅y = 0. 
 
In terms of the D operator, this ODE can be written as: 
 

[D4-7⋅D3+18⋅D2-20⋅D+8]y = 0. 
 
Thus, the characteristic equation is 
 

λ4-7⋅ λ 3+18⋅ λ 2-20⋅ λ +8 = 0. 
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To obtain the solution of this equation using SCILAB try the following commands: 
 
-->p = lam^4-7*lam^3+18*lam^2-20*lam+8 
 p  = 
                     2      3     4   
    8 - 20lam + 18lam - 7lam + lam    
  
-->roots(p) 
 ans  = 
  
!   1. ! 
!   2. ! 
!   2. ! 
!   2. ! 
 
Since root λ = 2 has multiplicity of 3, the solution becomes: 
 

y(x) = C1e
x + e2x(C2 + C3x + C4x

2). 
 
 

Obtaining the particular solution for a second-order, linear ODE 
with constant coefficients 
 
Thus, how do we come up with a particular solution, yp, to complete the solution to a non-
homogeneous equation, y = yh+yp, given the solution to the homogeneous equation, yh? In this 
section we present a general method to obtain yp for second-order, linear ODEs with constant 
coefficients.  The reason why we choose second-order equations is not only because they are 
the simpler equations to solve (not including first-order equations, which were discussed in 
great detail in an earlier section), but also because they are useful to model a number of real-
life situations.  Typical systems modeled by second-order ODEs are the damped and undamped 
oscillatory behavior in spring-mass and electric circuit systems. 
 
The general expression for a second-order, linear, non-homogeneous ODE with constant 
coefficients is  

d2y/dx2 + b1⋅(dy/dx) + b0⋅y = h(x). 
 
The first step is to obtain the solution to the homogeneous equation 
 

d2y/dx2 + b1⋅(dy/dx) + b0⋅y = 0, 
 

by using the solutions to the characteristic equation 
 

λ2 + b1⋅ λ + b0 = 0. 
 
Consider the case in which the solutions to the characteristic equation are real numbers.  The 
solutions to this quadratic equation can be two different values of λ, say λ1 and λ2, in which 
case the homogeneous solution is written as  

yh(x) = C1⋅exp(λ1⋅x) + C2⋅exp(λ2⋅x), 
 
or a single solution of multiplicity 2, say λ0, in which case we write  
 

yh(x) = (C1+C2⋅x) exp(λ0⋅x). 
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If the two solutions to the quadratic (characteristic) equation are complex numbers, they must 
be complex conjugates of each other as required by the fundamental theorem of algebra.  In 
this case we can write  
 

λ1 =α+βi, and λ2 =α-βi, 
 
where α and β are real numbers.   Thus, the solution C1⋅exp(λ1⋅x) + C2⋅exp(λ2⋅x), becomes 
 

C1⋅e(α+βi)x + C2⋅e(α-βi)x = C1⋅eαx⋅eiβx + C2⋅eα x⋅e-i βx = eα x⋅(C1⋅cos βx + i⋅C1⋅sin βx + C2⋅cos βx - i⋅C2⋅sin 
βx) = eα x⋅[(C1+C2)⋅cos βx + i⋅(C1-C2)⋅sin βx] = eα x⋅(K1⋅cos βx + K2⋅sin βx), 

 
where  

K1 = (C1+C2), and K2 = i⋅(C1-C2). 
 
Thus, for the case of two complex solutions to the characteristic equation, the homogeneous 
solution is a sinusoidal function whose amplitude grows (α>0) or decreases (α<0) with x: 
 

yh(x) = eα x⋅(K1⋅cos βx + K2⋅sin βx). 
 
If the solutions are imaginary numbers, i.e., if α = 0 in the previous result, the homogeneous 
solution is a pure sinusoidal function: 
 

yh(x) = K1⋅cos βx + K2⋅sin βx. 
 
To obtain the particular solution, yp(x), that will produce the overall solution of the non-
homogeneous ODE, y(x) = yh(x) +yp(x), follow this rule that refers to the sub-sequent table of 
functions: 
 

 If h(x), in the general non-homogeneous ODE, is given by one of the functions in the 
first column of the table shown below, choose for yp(x) a linear combination of h(x) and its 
linearly independent derivatives, as shown in the second column of the table. 

 
 

 If h(x) is the sum of some of the functions shown in column 1 of the table below, 
choose for yp(x) the sum of the functions in the corresponding lines. 

 
 

 If a term in h(x) is a solution of the homogeneous equation corresponding to the ODE 
under consideration, modify your choice of yp(x) by multiplying the appropriate line of 
column 2 by x or x2, depending on whether the root of the characteristic equation (column 
3) is simple or double. 

 
Term in h(x) Choice for yp(x) Root of char. eqn. 

c⋅eαx C0⋅eαx α, real 
c⋅xn ( n = 0, 1, …) Cn⋅xn + Cn-1⋅xn-1 + … + C1⋅x + C0 0 
c⋅sin βx C1⋅sin βx + C2⋅sin βx iβ, imaginary 
c⋅cos βx C1⋅sin βx + C2⋅sin βx iβ, imaginary 

 
Once the particular solution is set up by following the rule above, the undetermined 
coefficients in yp(x) can be determined by substituting yp(x) into the ODE.  
 
Example 1 – Obtain the general solution to the non-homogeneous, second-order, linear ODE: 
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d2y/dx2 - 5⋅(dy/dx) +6⋅y = x2. 
 
The characteristic equation of the homogeneous equation is  
 

λ2-5⋅λ +6 = 0, 
or  

(λ-3)⋅(λ-2) = 0, 
with solutions  

λ = 2, and λ = 3. 
Thus, the homogeneous solution is  

yh(x) = K1⋅e2x + K2⋅e3x. 
 
Since the right-hand side of the non-homogeneous equation is  
 

h(x) = x2, 
from the table above we select  

yp(x) = C2x
2+C1x+C0. 

 
To obtain the values of C0, C1, and C2, replace the solution yp(x) into the ODE.  The derivatives 
are, dyp/dx = 2C2x+C1, and d2yp/dx2 = 2C2, which replaced into the equation produce 
 

2C2 -5(2C2x+C1) + 6(C2x
2+C1x+C0) = x2, 

or 
6C2x

2 + (6C1-10C2)x + (6C0-5C1+2C2) = x2
. 

 

Comparing the coefficients of the terms x2, x1, and x0, in both sides of the resulting equation 
allows us to write the following system of linear equations: 
 

                6C2 = 1 
      6C1 – 10C2 = 0 
6C0-5C1+   2C2 = 0 

 
A solution, using SCILAB, produces: 
 
-->A = [0,0,6;0,6,-10;6,-5,2], b = [1;0;0] 
 A  = 
  
!   0.    0.    6.  ! 
!   0.    6.  - 10. ! 
!   6.  - 5.    2.  ! 
 
 
 
 b  = 
  
!   1. ! 
!   0. ! 
!   0. ! 
  
-->C = A\b 
 C  = 
  
!    .1759259 ! 
!    .2777778 ! 
!    .1666667 ! 
 
 
The solution is:  
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C0 = 0.1759259, C1 = 0.2777778, and C2 = 0.1666667 
 
Thus,                         yp(x) = 0.1666667x2+0.2777778x+0.1759259, 
 
and the general equation to the non-homogeneous equation becomes: 
 

y(x) = yh(x)+yp(x) = K1⋅e2x + K2⋅e3x + 0.1666667x2+0.2777778x+0.1759259. 
 
 
 
 

AApppplliiccaattiioonnss  ooff  OODDEEss  II  ::  aannaallyyssiiss  ooff  ddaammppeedd  aanndd  
uunnddaammppeedd  ffrreeee  oosscciillllaattiioonnss  

 
Consider the mass-spring system shown in the figure below.   The mass is removed from its 
equilibrium position (x = 0) and released at a position x = x0 at t=0.  At the moment of its 
release the body was moving with a speed v = vo.  The diagram shows the body of mass m being 
acted upon by the restoring force of the spring, Fs = - k⋅x, and by a viscous damping force, Fv = 
- β⋅v = - β ⋅ (dx/dt). 
 

 
Newton’s second law, when applied in the x-direction to the mass m is written as: 
 

−kx – β (dx/dt)  =m (d2x/dt2), 
 
which results in the second-order, linear, ordinary differential equation: 
 

d2x/dt2 + (β/m)⋅(dx/dt)+(k/m)⋅x = 0. 

Undamped motion 
 
Let us first consider the case in which the motion is undamped, i.e., b = 0.  The equation in 
this case reduces to  

d2x/dt2 +(k/m)⋅x = 0. 
 
The corresponding characteristic equation is  
 

λ2 + (k/m) = 0, 
with solutions, 

λ = ± i⋅√ (k/m) = ±i⋅ωo. 
 

This result suggest a solution of the form  
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x(t) = C1 cos ωot + C2 sin  ωot. 

 
Alternatively, by taking  

C1 = A cos φ, and C2 = - A sin φ, 
the solution can be written as  

x(t) = A⋅cos(ωot + φ). 
 
The quantity  

ωo = √(k/m) 
 

is known as the natural angular frequency of the harmonic motion that results when no viscous 
damping is present.   The frequency of the oscillation can be calculated from  
 

f = 2π/ωο = 1/T, 
 

where T is the period of the oscillation (i.e., the time that the mass takes to return to a pre-
defined position in the motion).  The quantity φ is known as the angular phase of the 
oscillation, and A is known as the amplitude. 
 
 
The velocity of the motion is given by  
 

v = dx/dt = -ωo⋅A sin(ωot + φ), 
and its acceleration, is  

a = dv/dt = -ωo
2⋅A cos(ωot + φ), 

 
The initial conditions, x(0) = xo, v(0) = vo, can be used to evaluate the constants A and f, as 
follows: 

xo = x(0) = A cos φ , 
and  

vo = v(0) = -ωo⋅A sin φ. 
Thus,  

tan φ = - vo/(ωo xo), or φ = tan-1(-vo/(ωo xo)), 
and 

A = [xo
2 + (vo/ωo)

2]1/2. 
 
 

Damped motion 
 
If damping occurs (β≠0), the characteristic equation becomes  
 

λ2 +  (β/m)⋅λ + ωo
2 = 0, 

whose solutions are 
λ = -(β/(2⋅m))± √ ([β/(2⋅m)]2-ωo

2) = - α ± √ (α2-ωo
2), 

where 
α = β/(2⋅m). 

 
The nature of the solution will depend on the relative size of the coefficients α and ωo, as 
follows: 
 

 If α < ωo, then √ (α2-ωo
2) = i⋅ω1, where  

 
ω1 = √(ωo

2-α2) 
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is real, and the solutions of the characteristic equation are  
 

λ1 = -α+ i⋅ω1, and λ2 = -α- i⋅ω1. 
 

The solution to the ODE, therefore, is written as  
 

x(t) = e–αt (C1 cos ω1t + C2⋅sin ω1t) = Ao⋅e–αt⋅cos(ω1t +φ1). 
 

The parameter  
ω1 = √(ωo

2-α2) = √[(k/m)2-(β/(2m))2] = √(4k2-β2)/(2m), 
 

represents the damped angular frequency of the oscillation, and φ1 represents the 
corresponding angular phase.   Ao is the amplitude of the oscillation at t = 0.   If we define 
a variable amplitude,  

A(t) = Ao⋅e–αt, 
 
then the solution to the ODE, also known as the signal, can be written as 
 

x(t) = A(t)⋅cos(ω1t +φ1). 
 
Please notice that this solution is very similar to the case of an undamped oscillation, 
except for the fact that in a damped oscillation the amplitude decreases with time.  The 
amplitude decreases, or decays, with time because the parameter α = β/(2m) is positive.  
Therefore, the function exp(-αt) decreases with time. 

 
 If α = ωo, then the characteristic equation produces the solution λ = -α, with 

multiplicity 2, in which case the solution becomes  
 

x(t) = e–αt (C1 + C2⋅t). 
 
This solution represents a linear function of t subjected to a decay factor, exp(-αt). 

 
 If α > ωo, then √ (α2-ωo

2) = K is real, and K < α, the solutions of the characteristic 
equation become  

λ1 = -α+ K = -c1, and λ2 = -α-K = - c2, 
 

both negative. Therefore, the resulting signal can be written as: 
 

x(t) = C1⋅exp(-c1t) + C2⋅exp(-c2t). 
 
Notice that the last two cases, namely, α = ωo and α > ωo, produce signals that decay with 
time.  These cases correspond to harmonic motions that are said to be over-damped, i.e., the 
viscous damping is large enough to quickly damp out any oscillation after the body of mass m is 
released. 
Initial conditions for damped oscillatory motion 
 
The expression for the position of a damped oscillatory motion is given by  
 

x(t) = Ao⋅e–αt⋅cos(ω1t +φ1), 
 
while the velocity, v(t) = dx/dt, is given by  
 

v(t) = -A0 e
-αt( α cos(ωIt+φ1) + ωI sin(ωIt+φ1)). 
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Given the initial conditions x(t0) = x0 and v(t0) = v0, we can form a system of two non-linear 
equations in the unknowns A0 and φ1, namely, 
 

f1(A0,φ1)  =  Ao⋅e–αt
0⋅cos(ω1t0 + φ1) – x0, 
 

f2(A0,φ1)  =  -A0 e
-αt

0( α cos(ωIt0+φ1) + ωI sin(ωIt0+φ1)) – v0. 
 

With appropriate values of the parameters α, ωI, t0, x0, and v0, we can use SCILAB function 
fsolve to obtain the values of A0 and φ1, as illustrated in an upcoming example. 
 
Before presenting the example, however, we will write out the expression for the acceleration 
so that we can use it in producing the graphics of the example: 
 

a(t) = A0 e
-αt

0( α2 cos(ωIt+φ1) + 2α ωI sin(ωIt+φ1) – ωI
2 cos(ωIt+φ1)). 

 
 
Example 1 – Damped oscillatory motion:  Plot position, velocity, and acceleration 
corresponding to the following parameters:  m = 1 kg, β = 0.1N⋅s/m, k = 0.5 N/m.  To 
determine the constants Ao and φ1, use initial conditions, x0 = 1.5 m, and v0 = -5.0 m/s.  With 
these values,  
 

ωo = (k/m)1/2 = (0.5N/1kg⋅m)1/2 = (0.5 s-2) 1/2 = 0.7071 s-1 = 0.7071 rad/s, 
and  

α = β/(2m) =0.1 N⋅s/ (2×1 kg⋅m) = 0.05 s-1=0.05 rad/s. 
 

Since, α < ωo, the resulting signal is that of a damped oscillation with  
 

ω1 = √(ωo
2-α2) = √(0.70712−0.052) = 0.7053 rad /s. 

 
To solve for the constants Ao and φ1 with SCILAB, we first define the set of non-linear equations 
to be solved.  In the function thus defined A0 is represented by s(1) and φ1 is represented by 
s(2): 
 
 
-->deff('[FF]=f(s)',['f1=s(1)*exp(-a*t0)*cos(wI*t0+s(2))-x0';... 
-->'f2 = -s(1)*exp(-a*t0)*(a*cos(wI*t0+s(2))+wI*sin(wI*t0+s(2)))-v0';... 
-->'FF = [f1;f2]']) 
 
 
Next, we enter the known values, and select a first guess for the solution s0: 
 
 
-->w0 = 0.7071; a = 0.05; wI = 0.7053; x0 = 1.5; v0 = -5.0; t0 = 0; 
 
-->s0 = [5;%pi/3] 
 s0  = 
  
!   5.        ! 
!   1.0471976 ! 
 
The solution for s(1) = A0 and s(2) = φ1  is obtained by using: 
 
-->fsolve(s0,f) 
 ans  = 
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!   7.1421364 ! 
!   1.3591997 ! 
 
 
Thus, A0 = 7.1221364 and φ1 = 1.3591997, and the position x(t) is given by 
  
 

x(t) = Ao exp(-0.05t) cos(0.7053t – φ1). 
 
 
Expressions for the position x(t), velocity v(t), and acceleration a(t) for this motion can be 
entered into SCILAB by defining the following functions: 
 
 
-->A0 = 7.1421364; phi1 = 1.3591997; 
  
-->deff('[xs]=x(t)','xs = A0.*exp(-a.*t).*cos(wI.*t+phi1)')                        
  
-->deff('[vs]=v(t)',... 
-->'vs =-A0.*exp(-a.*t).*(a.*cos(wI.*t+phi1)+wI.*sin(wI.*t+phi1))')                       
  
-->deff('[acc]=aa(t)',... 
-->'acc=A0.*exp(-a.*t).*(a^2.*cos(wI.*t+phi1)+... 
-->2.*a.*wI.*sin(wI.*t+phi1)-wI^2.*cos(wI.*t+phi1))') 
 
 
To plot the signals x(t), v(t), and a(t) in the t-interval (0,30) use the following SCILAB 
commands: 
 
 
-->tt = [0:0.1:30]; xx = x(tt); vv = v(tt); -->aaa = aa(tt); 
  
-->plot2d([tt',tt',tt'],[xx',vv',aaa'],[2,3,4],'111',... 
-->'position@velocity@acceleration',[0 -10 30 10]) 
  
-->xtitle('Damped oscillatory motion', 't', 'x,v,a') 
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The results are shown in the following graph: 

 
 
 
Notice the oscillatory nature of the three functions, as well as their amplitudes’ decay with 
time as expected. 
 
 

Creating phase portraits of oscillatory motion 
 
A phase portrait for oscillatory, or any kind of, motion is a plot involving the dependent 
variable and one of its derivatives, or two derivatives of the dependent variable.  For example, 
a plot of velocity, v(t), versus position, x(t), represents a phase portrait.  Other phase portraits 
would be a(t) vs. x(t), and a(t) vs. v(t).   
 
 
Example 1. Plot the time-dependent plots and phase portraits for the signal obtained in 
Example 1 in the previous section.   To plot these phase portraits we generate data on position, 
velocity, and acceleration as function of time t in the interval [0,90], as follows: 
 
 
-->tt = [0:0.1:90]; xx = x(tt); vv = v(tt); aaa = aa(tt); 
 
 
The phase portraits are generated as follows: 
 
-->xset('window',1);plot(xx',vv') 
-->xtitle('v-vs-x phase portrait','x','v') 
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-->xset('window',2);plot(xx',aaa') 
-->xtitle('a-vs-x phase portrait','x','a') 
 
 

 
  
 
-->xset('window',3);plot(vv',aaa') 
  
-->xtitle('a-vs-v phase portrait','v','a') 
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The three phase portraits show orbits spiraling inwards towards the center of the picture, i.e., 
towards (0,0).  This is because the amplitude of the variables included in the phase portrait 
decreases at about the same rate with time.   
 
 

AApppplliiccaattiioonnss  ooff  OODDEEss    IIII  ::  aannaallyyssiiss  ooff  ddaammppeedd  aanndd  
uunnddaammppeedd  ffoorrcceedd  oosscciillllaattiioonnss  

  
Earlier we presented the analysis of damped and undamped free oscillations, meaning that, 
once the particle subjected to oscillatory motion is released, all forces acting on it (the 
restoring force of the spring, and the damping force from the dashpot) are internal to the 
system.  If the particle is continuously subjected to an external force (an excitation), then the 
type of oscillations thus generated are termed forced oscillations.  Of interest are excitations 
that are themselves oscillatory.  The simplest case will be an external force,  
 

Fe(t) = Fo cos ωt. 
 
The differential equation for the mass-spring-dashpot system, including the excitation, Fe(t), is 
now written as: 

d2x/dt2 + (β/m)⋅(dx/dt)+(k/m)⋅x = (Fo/m)⋅cos ω⋅t. 
 
Let’s assume that the values of the parameters m, b, and k are such that the solution of the 
homogeneous equation is  

xh(t) = Ao⋅e –at⋅cos(ωo⋅t+φ). 
 
Also, because the term cos ωt shows up in the right-hand side term, the table for selecting the 
particular solution (shown earlier in this chapter), suggest that we try 
 

xp(t) = C1 cos ωt + C2 sin ωt. 
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Because this particular solution must satisfy the governing ODE, we can write 
 

d2xp/dt2 + (β/m)⋅(dxp/dt)+(k/m)⋅xp = (Fo/m)⋅cos ω⋅t. 
 

The values of C1 and C2, using ω0
2 = k/m, are: 

 

 
 

 
The particular solution can be written now as 
 

 
Suppose that we want to write this solution as  
 

xp(t) = Ap cos (ωt + φp) = Ap cos ωt cos φp – Ap sin ωt sin φp, 
 
by comparing the last two expressions we find that  
 

Ap cos φp = F0m(ωo
2-ω2)/[ ω2β2+m2 (ωo

2-ω2) 2], 
and  

Ap sin φp = - F0ωβ/[ ω2β2+m2 (ωo
2-ω2) 2], 

 
from which,  

Ap
2 = F0

2/[ ω2β2+m2 (ωo
2-ω2) 2], 

and  
tan φp = - ωβ/(m(ωo

2-ω2)). 
 
Thus, the particular solution can be written as: 

 
To analyze the behavior of this particular solution, first we study the case in which no damping 
is present, i.e., β = 0.  In such case, φp = 0, and the particular solution becomes  
 

 
For this case, the amplitude of the oscillation, Ap(ω), becomes infinity as ω ! ωo.  This 
condition is known as resonance.  Thus resonant conditions will occur if the exciting force has 
the same frequency as the natural frequency of the system.  In practice, the amplitude of the 
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undamped oscillations grows without bound until the system is severely damaged or destroyed.  
This is important for analyzing building response to earthquakes.  Every building has a natural 
frequency of vibration.  If a building is subjected for a long period of time to an earthquake 
with a frequency similar or equal to its natural frequency, the building may suffer severe 
damages as consequence of the earthquake. 
 
If damping is present, then the amplitude of the oscillation is given by  

 
which has a maximum  

 
when  

β2 = 2m2 (ωo
2-ω2). 

 
 
Since the general solution of the damped equation, 
 

xh(t) = Ao⋅e –at⋅cos(ωo⋅t+φ), 
 
decreases with time, it will eventually become negligible when compared to the particular 
solution.  Thus, it is said that the general solution represents the transient (temporary) 
response of the system to the exciting force, Fe(t).  The particular solution, which turns out to 
be a sinusoidal wave, represents the steady-state response of the system. 
 
The following is a graph showing the amplitude, Ap(ω), as function of the angular frequency, w, 
for a particular set of values of the parameters, namely, F0 = 25 N, k = 100 N/m, m = 1.0 kg, 
which gives w0  = 3.162277 rad/s.   The graph is obtained using SCILAB as shown below.  First, 
we define the function for Ap(ω), and the constant parameters: 
 
-->deff('[AA]=Ap(om)','AA=F0./sqrt(om.^2.*b.^2+m.^2.*(w0.^2-om.^2).^2)') 
  
-->F0 = 25; k = 10; m = 1.0; w0 = sqrt(k/m) 
 w0  = 3.1622777   
 
Next, we define a vector bb containing 5 different values of the damping parameter β, and a 
vector om containing values of ω in the range (0,6).   The lengths of vectors bb and om are the 
values n and m,  respectively: 
 
-->bb = [1.0, 5.0, 10.0, 50.0, 100.0]; om = [0:0.1:6]; 
  
-->n = length(bb); m = length(om);  
 
The next step is to create a matrix Amp (Amplitudes) with m rows and n columns whose 
elements will contain the values Ampij = Ap(omi,bbj).   The following commands show how to 
load matrix Amp: 
 
->Amp = zeros(m,n); 
 
-->for j = 1:n 
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-->      b = bb(j); Amp(:,j) = Ap(om'); 
-->end; 
 
To produce the plot showing curves of Ap(ω) for different values of β is produced by using: 
 
-->plot2d([om',om',om',om',om'],... 
-->[Amp(:,1),Amp(:,2),Amp(:,3),Amp(:,4),Amp(:,5)],... 
-->[1:1:5],'111','b=1@b=5@b=10@b=50@b=100',[0 0 6 1.8]) 
  
-->xtitle('Amplitude of forced oscillation','w','A(w)') 
 

 
 
 
The plot shows that as the value of β decreases the amplitude reaches a maximum near the 
value of ω = ω0.  If there were no damping, i.e., β ! 0, then Ap(ω) ! ∞ at that point, 
indicating the condition of resonance. 
 
 

AApppplliiccaattiioonnss  ooff  OODDEEss  IIIIII::  OOsscciillllaattiioonnss  iinn  eelleeccttrriicc  
cciirrccuuiittss  
 
Electric circuits involving resistors, capacitors, and inductors are often times characterized by 
an oscillatory behavior represented by electric current I through the circuit.  Consider a simple 
series RLC circuit as shown in the figure below. 
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In the figure, E(t) stands for the time-dependent voltage (volts), I(t) is the electric current 
through the circuit once the switch is set to ON (amperes), R is the equivalent resistance of the 
circuit (ohms), L is the equivalent inductance of the circuit (henrys), and C is the equivalent 
capacitance (farads).    The electric current, I(t), is the rate of change of electric charge with 
respect to time, i.e., I(t) = dq/dt, where q = electric charge (coulombs), and t is time (sec).   
The properties of resistors, capacitors, and inductors are such that if V represents the voltage 
across one of those components the following relationships hold: 
 

 Resistors,    VR = R⋅I = R⋅(dq/dt) 
 Capacitors,    VC = q/C 
 Inductors,   VL = L⋅(dI/dt) = L⋅(d2q/dt2) 

 
To put together a differential equation for this circuit we use Kirchoff’s law of voltages around 
the series circuit:  VR + VL + VC = E(t), i.e.,  
 

R⋅(dq/dt) + L⋅(d2q/dt2) + q/C = E(t). 
 
Alternatively, we can take the derivative of this equation with respect to t and write the 
equation in terms of the current, I = dq/dt, as follows: 
 

R⋅(dI/dt)  + L⋅(d2I/dt2) + (1/C)⋅I = dE/dt. 
 
Thus, we can either solve the equation in terms of the electric charge, q(t), re-written as: 
 

(d2q/dt2) + (R/L)⋅(dq/dt) + q/(LC) = E(t)/L, 
 
or, in terms of the electric current, I(t), re-written as: 
 

(d2I/dt2) + (R/L)⋅(dI/dt) + I/(LC) = (1/L)(dE/dt). 
 
To simplify the solution we introduce the constants ωo

2 = 1/(LC) and β = R/(2L), and solve the 
equation in terms of the electric charge, q(t), i.e.,  
 

(d2q/dt2) + 2⋅β⋅(dq/dt) + ωo
2⋅q = E(t)/L. 
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Solution to the homogeneous equation 
 
Consider first, the homogeneous case, i.e., E(t) = 0, which is the situation that would occur is 
the capacitor is charged and the voltage source is by-passed.  The resulting governing equation 
is 

(d2q/dt2) + 2⋅β⋅(dq/dt) + ωo
2⋅q = 0, 

 
which is the same as the case of free oscillations with damping for a spring-mass-dashpot 
system.    
 
If the constant value  

22
01 βϖϖ −=  

 
is real, the solution is a damped oscillation, i.e.,  
 

).cos()( 10 φϖβ += − teQtq t  
 

If ω1 is not real, then the solution is a combination of exponential functions, i.e.,   
 

 
 

 
Since the governing equation for q(t) in an RLC circuit is the same as the governing equation 
for the position of a particle in a mass-spring-dashpot system, we can borrow many of the 
results obtained in the previous two sections to analyze RLC circuits.  Some applications are 
presented in the exercise section. 
 

FFiinniittee  ddiiffffeerreenncceess  aanndd  nnuummeerriiccaall  ssoolluuttiioonnss  
 
To solve differential equations numerically we can replace the derivatives in the equation with 
finite difference approximations on a discretized domain.  This results in a number of algebraic 
equations that can be solved one at a time (explicit methods) or simultaneously (implicit 
methods) to obtain values of the dependent function yi corresponding to values of the 
independent function xi in the discretized domain. 
 

Finite differences 
 
A finite difference is a technique by which derivatives of functions are approximated by 
differences in the values of the function between a given value of the independent variable, 
say x0, and a small increment (x0+h).  For example, from the definition of derivative,  
 

df/dx = lim h!0 (f(x+h)-f(x))/h, 
 
we can approximate the value of  df/dx by using the finite difference approximation  
 

(f(x+h)-f(x))/h 
with a small value of h.   
 
The following table shows approximations to the derivative of the function  
 

f(x) = exp(-x) sin (x2/2), 
 

tt eCeCtq 21
21)( αα −− +=
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at x = 2, using finite differences.  The actual value of the derivative is -0.23569874791.  The 
third column in the table shows the error in evaluating the derivative, i.e., the difference 
between the numerical derivative ∆f/∆x and the actual value.   
 

h ∆f/∆x error 
0.1 -0.244160077 0.00846132909 

0.01 -0.236684829 0.00098608109 
0.001 -0.235798686 0.00009993809 

0.0001 -0.235708734 0.00000998609 
0.00001 -0.235699726 0.00000097809 

0.000001 -0.235698825 0.00000007709 
0.0000001 -0.235698734 0.00000001391 

0.00000001 -0.235698724 0.00000002391 
0.000000001 -0.235698752 0.00000000409 

 
This exercise illustrates the fact that, as h!0, the value of the finite difference 
approximation, (f(x+h)-f(x))/h, approaches that of the derivative, df/dx, at the point of 
interest. 
A plot of the error as a function of h also reveals the fact that the error is proportional to the 
value of the x-increment h.   The following plots, using different ranges of h, are produced 
with SCILAB out of the data in the table.    
 
-->h = [1e-1,1e-2,1e-3,1e-4,1e-5,1e-6,1e-7,1e-8,1e-9]; 
  
-->er = [0.00846132909,0.00098608109,0.00009993809,0.00000998609,... 
-->      0.00000097809,0.00000007709,0.00000001391,0.00000002391,... 
-->      0.00000000409]; 
  
-->xset('mark',-9,2) 
-->plot2d(h,er,1,'011',' ',[0 0 0.1 0.01]) 
-->plot2d(h,er,-9,'011',' ',[0 0 0.1 0.01]) 
-->xtitle('error vs. x-increment','h','error') 
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The graphs seem indicate that the error varies linearly with the increment h in the 
independent variable.  It is very common to indicate this dependency by saying that "the error 
is of order h", or error = O(h).  The magnitude of the error can be estimated by using Taylor 
series expansions of the function f(x+h). 
 
 
 
 
 

Finite difference formulas based on Taylor series expansions 
  
 The Taylor series expansion of the function f(x) about the point x = x0 is given by the formula 
 

 
Where f(n)(x0) = (dnf/dxn)|x=x0, and f(0)(x0) = f(x0).   
 
If we let x = x0+h, then x-x0 = h, and the series can be written as 
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Where the expression O(h3) represents the remaining terms of the series and indicates that the 
leading term is of order h3.  Because h is a small quantity, we can write 1 > h, and 
h>h2>h3>h4>…  Therefore, the remaining of the series represented by O(h3) provides the order 
of the error incurred in neglecting this part of the series expansion when calculating f(x0+h). 
 
From the Taylor series expansion shown above we can obtain an expression for the derivative 
f’(x0) as 
 

 
In practical applications of finite differences, we will replace the first-order derivative df/dx 
at x = x0, with the expression (f(x0+h)-f(x0))/h, selecting an appropriate value for h, and 
indicating that the error introduced in the calculation is of order h, i.e., error = O(h). 
 
 

Forward, backward and centered finite difference approximations 
to the first derivative 
 
The approximation 

df/dx = (f(x0+h)-f(x0))/h 
 
is called a forward difference formula because the derivative is based on the value x = x0 and 
it involves the function f(x) evaluated at x = x0+h, i.e., at a point located forward from x0 by an 
increment h.   
 
If we include the values of f(x) at x = x0 - h, and x = x0, the approximation is written as 
 

df/dx = (f(x0)-f(x0-h))/h 
 
and is called a backward difference formula.  The order of the error is still O(h).   
 
A centered difference formula for df/dx will include the points (x0-h,f(x0-h)) and (x0+h,f(x0+h)).  
To find the expression for the formula as well as the order of the error we use the Taylor series 
expansion of f(x) once more.  First we write the equation corresponding to a forward 
expansion: 

f(x0+h) = f(x0)+f’(x0)⋅h+1/2⋅f”(x0)⋅h2+1/6⋅f(3)(x0) ⋅h3 + O(h4). 
 
Next, we write the equation for a backward expansion: 
 

f(x0-h) = f(x0)-f’(x0)⋅h+1/2⋅f”(x0)⋅h2-1/6⋅f(3)(x0) ⋅h3 + O(h4). 
 
Subtracting these two equations results in  
 

f(x0+h)- f(x0-h) = 2⋅f’(x0)⋅h+1/3⋅f(3)(x0) ⋅h3+O(h5). 
 
Notice that the even terms in h, i.e., h2, h4, …, vanish.  Therefore, the order of the remaining 
terms in this last expression is O(h5).  Solving for f’(x0) from the last result produces the 
following centered difference formula for the first derivative:  
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or,  
 

 
This result indicates that the centered difference formula has an error of the order O(h2), while 
the forward and backward difference formulas had an error of the order O(h).  Since h2<h, the 
error introduced in using the centered difference formula to approximate a first derivative will 
be smaller than if the forward or backward difference formulas are used. 
 
 

Forward, backward and centered finite difference approximations 
to the second derivative 
 
To obtain a centered finite difference formula for the second derivative, we'll start by using 
the equations for the forward and backward Taylor series expansions from the previous section 
but including terms up to O(h5), i.e., 
 
 

f(x0+h) = f(x0)+f’(x0)⋅h+1/2⋅f”(x0)⋅h2+1/6⋅f(3)(x0) ⋅h3 + 1/24⋅f(4)(x0) ⋅h4 + O(h5). 
 
 

and 
 

f(x0-h) = f(x0)-f’(x0)⋅h+1/2⋅f”(x0)⋅h2−1/6⋅f(3)(x0) ⋅h3 + 1/24⋅f(4)(x0) ⋅h4 − O(h4). 
 

 
Next, add the two equations and solve for f”(x0): 
 

d2f/dx2 = [f(x0+h)−2⋅f(x0)+f(x0-h)]/h2 + O(h2). 
 
Forward and backward finite difference formulas for the second derivatives are given, 
respectively, by 
 

d2f/dx2 = [f(x0+2⋅h)−2⋅f(x0+h)+f(x0)]/h2 + O(h), 
and 

d2f/dx2 = [f(x0) −2⋅f(x0-h)+f(x0-2⋅h)]/h2 + O(h). 
 

 

Solution of a first-order ODE using finite differences - Euler forward 
method 
 
Consider the ordinary differential equation,  
 

dy/dx = g(x,y), 
subject to the boundary condition,  

y(x1) = y1. 
 

To solve this differential equation numerically, we need to use one of the formulas for finite 
differences presented earlier. Suppose that we use the forward difference approximation for 
dy/dx;, i.e.,  
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dy/dx = (y(x+h)-y(x))/h. 

 
Then, the differential equation is transformed into the following difference equation:  
 

(y(x+h)-y(x))/h = g(x,y), 
from which, 

y(x+h) = y(x)+h⋅g(x,y). 
 
This result is known as Euler's forward method for numerical solution of first-order ODEs. 
 
Since we know the boundary condition (x1,y1) we can start by solving for y at  x2 = x1+h, then 
we solve for y at x3 = x2+h, and so on.  In this way, we generate a series of points (x1, y1), (x2, 
y2), …, (xn, yn),  which will represent the numerical solution to the original ODE.  The upper 
limit of the independent variable xn is either given or selected arbitrarily during the solution.   
 
 The term "discretizing the domain of the independent variable" refers to obtaining a series of 
values of the independent variable, namely, xi, i = 1,2;,..., n, that will be used in the solution.   
Suppose that the range of the independent variable (a,b) is known, and that we use a constant 
value h = ∆x to divide the range into n equal intervals.  By making x1 = a, and xn = b, then we 
find that the values of xi, i = 2,3, ... n, are given by 
 

xi = x1 +(i-1)⋅∆x = a+(i-1)⋅∆x, 
 
and that for i = n, xn = x1 +(n-1)⋅∆x.   This latter result can be used to find n given ∆x,  
 

n = (xn -x1)/ ∆x + 1 = (b-a)/ ∆x + 1, 
or, to find ∆x given n,    

∆x = (xn-x1)/(n-1) = (b-a)/(n-1). 
 
The recurrent equation for solving for y is given by  
 

yi+1 = yi + ∆x⋅g(xi,yi),    
 
for i = 1,2, ..., n-1.   Because the method solves yi+1 = f(xi,yi, ∆x), i.e., one value of the 
dependent variable at a time, the method is said to be an explicit method. 
 
The following example illustrates the application of the Euler first-order method to the solution 
of the differential equation dy/dx = g(x,y) = x + y using SCILAB.  First, we define function 
g(x,y): 
 
-->deff('[Df]=g(x,y)','Df=x+y') 
  
We solve the equation in the range of values of x from x0 = 0 to xn = 2.0 with an increment Dx = 
0.1.  The initial condition is y0 = 1.0 for x0 = 0: 
 
-->x0 = 0; y0 = 1; Dx = 0.1; xn = 2.0; 
 
The following commands generate a vector of values of x, a vector y of the same length of x, 
initialized with zeros, and determines the value of n as the length of vector y (or x): 
  
-->x=[x0:Dx:xn]; y = zeros(x); n = length(y); 
  
The following for…end loop takes care of calculating the values of yi for i = 2,3, …, n: 
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-->for j = 1:n-1 
-->    y(j+1) = y(j) + Dx*g(x(j),y(j)); 
-->end; 
  
To produce a plot of the results we determine the minimum and maximum values of y: 
 
-->ymin = min(y), ymax = max(y) 
 ymin  = 
  
    0.   
 ymax  = 
  
    3.7274999   
  
The plot is generated by using: 
 
-->plot2d(x,y,1,'011',' ',[0 0 2 4]) 
  
-->plot2d(x,y,-9,'011',' ',[0 0 2 4]) 
  
-->xtitle('Euler solution dy/dx = x + y, Dx = 0.1','x','y(x)') 
  
 

 
 A function to implement Euler’s first-order method 
 
The following function, Euler1, implements the calculation steps outlined in the previous 
example.   The function detects if there is overflowing introduced in the solution and stops the 
calculation at that point providing the current results.   
 
function [x,y] = Euler1(x0,y0,xn,Dx,g) 
 
//Euler 1st order method solving ODE 
//  dy/dx = g(x,y), with initial  
//conditions y=y0 at x = x0.  The  
//solution is obtained for x = [x0:Dx:xn] 
//and returned in y 
 
ymaxAllowed = 1e+100; 
 
x = [x0:Dx:xn]; y = zeros(x); n = length(y); y(1) = y0; 
 
for j = 1:n-1 
 y(j+1) = y(j) + Dx*g(x(j),y(j)); 
 if y(j+1) > ymaxAllowed then 
           disp('Euler 1 - WARNING: underflow or overflow'); 
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    disp('Solution sought in the following range:'); 
           disp([x0 Dx xn]); 
    disp('Solution evaluated in the following range:'); 
    disp([x0 Dx x(j)]); 
           n = j; x = x(1,1:n); y = y(1,1:n); 
    break; 
 end; 
end; 
 
//End function Euler1 
 
 
Next, we use function Euler1 to solve the differential equation from the previous example, 
namely, dy/dx = g(x,y) = x+y, for different values of the x increment, ∆x = 0.5, 0.2, 0.1, and 
0.05, with the same initial conditions and range of values of x as before: 
 
-->getf('Euler1') 
  
-->deff('[Df]=g(x,y)','Df = x+y') 
  
-->[x1,y1]=Euler1(0,1,2,0.5,g); 
 
-->[x2,y2]=Euler1(0,1,2,0.2,g); 
  
-->[x3,y3]=Euler1(0,1,2,0.1,g); 
  
-->[x4,y4]=Euler1(0,1,2,0.05,g); 
 
 
The exact solution for this equation is y(x) = -x - 1 + 2ex.   Set of values of the exact solution 
are calculated as follows: 
  
-->xx = [0:0.1:2]; yy = -xx-1+2.*exp(xx); 
  
To plot the exact and numerical solutions we first determine the minimum and maximum 
values of y: 
  
-->ymax = max([y1 y2 y3 y4 y5 yy]) 
 ymax  = 11.778112   
  
-->ymin = min([y1 y2 y3 y4 y5 yy]) 
 ymin  = 1.   
  
The plot of the solutions is produced through the use of the following calls to function plot2d: 
 
-->plot2d(xx,yy,1,'011',' ',[0 0 2 12]) 
-->plot2d(x1,y1,-1,'011',' ',[0 0 2 12]) 
-->plot2d(x2,y2,-2,'011',' ',[0 0 2 12]) 
-->plot2d(x3,y3,-3,'011',' ',[0 0 2 12]) 
-->plot2d(x4,y4,-4,'011',' ',[0 0 2 12]) 
-->xtitle('Euler 1st order - dy/dx = x+y','x','y(x)') 
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A second example of application of function Euler1 is shown next for the differential equation 
dy/dx = xy + 1, with initial condition x0 = 0, y0 = 1, in the range 0 < x < 2, with ∆x = 0.5, 0.2, 
0.1, 0.05, and 0.01.   The SCILAB commands used are exactly the same as before except for the 
definition of function g(x,y) and the title of the plot.   The function g(x,y) = xy+1 is defined as: 
  
-->deff('[Df]=g(x,y)','Df=x*y+1') 
Warning :redefining function: g                        
  
Numerical solutions to the differential equation for the different values of ∆x are obtained 
from: 
  
-->[x1,y1]=Euler1(0,1,2,0.5,g); 
  
-->[x2,y2]=Euler1(0,1,2,0.2,g); 
  
-->[x3,y3]=Euler1(0,1,2,0.1,g); 
  
-->[x4,y4]=Euler1(0,1,2,0.05,g); 
  
-->[x5,y5]=Euler1(0,1,2,0.01,g); 
 
Next, we determine the minimum and maximum values of y: 
  
-->ymin = min([y1 y2 y3 y4 y5 yy]) 
 ymin  = 1.   
  
-->ymax = max([y1 y2 y3 y4 y5 yy]) 
 ymax  = 15.872217   
  
We define a plot rectangle as: 
 
-->rect = [0 0 2 16] 
 rect  = 
  
!   0.    0.    2.    16. ! 
  
The plot of the numerical solution is accomplished through: 
  
-->plot2d(x1,y1,-1,'011',' ',rect)  
-->plot2d(x2,y2,-2,'011',' ',rect)  
-->plot2d(x3,y3,-3,'011',' ',rect)  
-->plot2d(x4,y4,-4,'011',' ',rect)  
-->xtitle('Euler 1st order - dy/dx = x*y+1','x','y(x)') 
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 The following example solves the differential equation dy/dx = g(x,y) = x + sin(xy) in the 
interval 0< x < 6.5, with initial conditions x0 = 0, y0 = 1, for  ∆x = 0.5, 0.2, 0.1, 0.05, and 0.01.   
The steps are the same as in the two previous example: 
  
-->deff('[Df]=g(x,y)','Df=x+sin(x*y)') 
Warning :redefining function: g                        
  
  
-->[x1,y1]=Euler1(0,1,6.5,0.5,g); 
  
-->[x2,y2]=Euler1(0,1,6.5,0.2,g); 
  
-->[x3,y3]=Euler1(0,1,6.5,0.1,g); 
  
-->[x4,y4]=Euler1(0,1,6.5,0.05,g); 
  
-->ymin = min([y1 y2 y3 y4 y5 yy]) 
 ymin  =  1.   
  
-->ymax = max([y1 y2 y3 y4 y5 yy]) 
 ymax  = 22.628614   
  
-->rect = [0 0 7 25] 
 
 rect  = 
!   0.    0.    7.    25. ! 
  
  
-->plot2d(x1,y1,-1,'011',' ',rect) 
-->plot2d(x2,y2,-2,'011',' ',rect) 
-->plot2d(x3,y3,-3,'011',' ',rect) 
-->plot2d(x4,y4,-9,'011',' ',rect) 
-->xtitle('Euler 1st order - dy/dx = x+sin(x*y)','x','y(x)') 
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Finite difference formulas using indexed variables 
 
In the presentation of the Euler forward method, above, we demonstrated how you can get, 
from the general formula for the first derivative,  
 
 

dy/dx = [y(x+h)-y(x)]/h, 
 

 
the recurrence formula for the explicit solution, namely,  
 
 

yi+1 = yi + ∆x⋅g(xi,yi), 
 

 
for i = 1,2,..., n-1.   This suggest re-writing the formula for the derivative as, 
 
 

dy/dx = (yi+1-yi)/∆x + O(∆x). 
 
 
Using this sub-index notation, we can summarize the forward, centered, and backward 
approximations for the first and second derivatives as shown below: 
 
 
 
First Derivative 
FORWARD:                    dy/dx = (yi+1−yi)/∆x+O(∆x). 
 
CENTERED:                  dy/dx = (yi+1−yi-1)/(2⋅∆x)+O(∆x2). 
  
BACKWARD:                dy/dx = (yi−yi-1)/∆x+O(∆x). 
 
 
Second Derivative 
FORWARD:                    d2y/dx2 = (yi+2−2⋅yi+1+yi)/(∆x2)+O(∆x). 
 
CENTERED:                  d2y/dx2 = (yi+1−2⋅yi+yi-1)/(∆x2)+O(∆x2). 
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BACKWARD:                d2y/dx2 = (yi−2⋅yi-1+yi-2)/(∆x2)+O(∆x). 
 
 
 

Solution of a first-order ODE using finite differences - an implicit 
method 
 
Consider again the ordinary differential equation, dy/dx = g(x,y), subject to the boundary 
condition, y(x1) = y1.   This time, however, we use the centered difference approximation for 
dy/dx, i.e.  

dy/dx = (y(x+h)-y(x-h))/(2*h). 
 
With this approximation the ODE becomes,  
 

(y(x+h)-y(x-h))/(2*h) = g(x,y). 
 
In terms of sub-indexed variables, this latter equation can be written as: 
 

yi-1+2⋅∆x⋅g(xi,yi)-yi+1 = 0, ( i = 2,3, ..., n-1 ) 
 
where the substitutions y(x) = yi,y(x+h) = yi+1,y(x-h) = yi-1, and h = ∆x, have been used. 
 
If the function g(x,y) is linear in y, then the equations described above consist of a set of (n-2) 
equations. For example, if n = 5, we have 3 equations: 
 

y1+2⋅∆x ⋅g(x2,y2)-y3 = 0 
y2+2⋅∆x ⋅g(x3,y3)-y4 = 0 
y3+2⋅∆x ⋅g(x4,y4)-y5 = 0 

 
Since y1 is known (it is the initial condition), there are still 4 unknowns, y2, y3, y4, and y5.  We 
need to find a fourth equation to obtain a solution.  We could use, for example, the forward 
difference equation applied to i = 1, i.e.,  
 

(y2-y1)/∆x = g(x1,y1), 
or 

y2-∆x ⋅g(x1,y1)-y1= 0. 
 
The values of xi, and n (or ∆x), can be obtained as in the Euler forward (explicit) solution. 
 
 
Example 1 --   Solve the ODE  

dy/dx  = y sin(x), 
 
with initial conditions y(0) = 1, in the interval 0 < x < 5.  Use ∆x = 0.5, or n = (5-0)/0.5 + 1 = 11. 
 
Exact solution:  the exact is  y(x) = exp(-cos(x))/(cosh(1)-sinh(1)). 
 
Numerical solution:   Using a centered difference formula for dy/dx, i.e.,  
 

dy/dx = (yi+1−yi-1)/(2⋅∆x), 
 
into the ODE, we get  (yi+1−yi-1)/(2⋅∆x) = yi sin(xi), which results in the (n-2) implicit equations: 
 

yi-1 + 2⋅∆x⋅sin(xi)⋅yi − yi+1 = 0, (i = 2, 3, …, n-1). 
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We already know that   

y1 = 1 
 
(initial condition), thus we have (n-1) unknowns left.  We still need to come up with an 
additional equation, which could be obtained by using a forward difference formula for i = 1, 
i.e.,  
 

dy/dx|x= 1 = (y2-y1)/∆x = -y1 sin(x1), 
or   

(1+∆x sin(x1))⋅y1 - ⋅y2 = 0. 
 
These equations can be written in the form of a matrix equation, for example, for n = 5: 

 
where y0 represents the initial condition for y.   [Note: The data requires n = 11.  The example 
for n = 5 is  presented above to provide a sense of the algorithm to fill out the matrix of data].   
The matricial equation can be written as A⋅⋅⋅⋅y = b.  Matrix A and column vector b can be defined 
using SCILAB, as indicated below, and the solution found by using left-division.   First, we enter 
the basic data for the problem: 
 
-->x0=0;xn=5;Dx=0.5;y0=1;x=[x0:Dx:xn];n=(xn-x0)/Dx+1 
 n  = 11.   
 
Next, we fill the main diagonal, and the two diagonals below the main diagonal in matrix A 
using: 
 
-->A=zeros(n,n); A(1,1) = 1; for j =2:n, A(j,j)=-1; end;   
 
-->A(2,1) = 1+Dx*sin(x(1)); for j = 3:n, A(j,j-1)=2*Dx*sin(x(j-1)); end; 
//second diagonal 
  
-->for j = 3:n, A(j,j-2) = 1; end;        //Third diagonal 
 
The right-hand side vector is defined as: 
  
-->b = zeros(n,1); b(1) = 1;              //Right-hand side vector 
 
The implicit solution is obtained from: 
  
-->y = A\b;                              //Solving for y 
  
To compare the implicit solution we calculate also the explicit solution obtained through the 
Euler first-order solution: 
  
-->deff('[z]=ff(x,y)','z=y*sin(x)')     
-->getf(‘Euler1’)                  
-->[xx,yy]=Euler1(x0,y0,xn,Dx,ff); 
 
To produce data reproducing the exact solution we use: 
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-->deff('[y]=fE(x)','y=exp(-cos(x))/(cosh(1)-sinh(1))') 
-->xE = [0:0.05:5]; yE = fE(xE); 
 
The following commands will generate the plot showing the exact, implicit, and explicit 
solution in the same set of axes: 
  
-->plot2d(xE',yE',1,'011',' ', [0 0 5 8]) 
-->plot2d(x',y,-1,'011',' ',[0 0 5 8]) 
-->plot2d(xx',yy',-9,'011',' ',[0 0 5 8]) 
-->xtitle('+ Implicit    o  Explicit','x','y') 
 
 

 
 
 
 
 

Explicit versus implicit methods 
 
The idea behind the explicit method is to be able to obtain values such as   
 

y i+1  = f(xi, yi), yi+2 = f(xi,xi+1,y i,yi+1), etc. 
 
In other words, your solution proceeds by solving explicitly for a new unknown value in the 
solution array, given all previous values in the array.   On the other hand, implicit methods 
imply the simultaneous solution of n linear algebraic equations that provide, at once, the 
elements of the solution array.     With this distinction in mind between explicit and implicit 
methods, we outline explicit and implicit solutions for second-order, linear ODEs. 
 
 

Outline of explicit solution for a second-order ODE   
 
For example, to solve the ODE   

d2y/dx2+y = 0, 
 
in the x-interval (0,20) subject to y(0) = 1, dy/dx = 1 at y = 0. Use ∆x = 0.1. 
 
First, we discretize the differential equation using the finite difference approximation   
 

d2y/dx2 = (yi+2-2⋅yi+1+yi)/(∆x2) , 
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which results in 
(yi+2-2⋅yi+1+yi)/(∆x2)+yi = 0. 

 
An explicit solution can be obtained from the recurrence equation: 
 

yi+2 = 2⋅yi+1-(1+∆x2)⋅yi,  i = 1, 2, ..., n-2;. 
 
This equation is based on the two previous values of yi, therefore, to get started we need the 
values y = y1, and y = y2.  The value y1 is provided in the initial condition, y(0) = 1, i.e.,  
   

y1 = 1. 
 
The value of y2 can be obtained from the second initial condition, dy/dx = 1, by replacing the 
derivative with the finite difference approximation:     
 

dy/dx = (y2 - y1)/∆x, 
which results in      

(y2 - y1)/ ∆x = 1, 
or          

y2 = y1+ ∆x. 
 
The x-domain is discretized in a similar fashion as in the previous examples for first derivatives, 
i.e., by making x1 = a, and xn = b, and computing the values of xi, i = 2,3, ... n, with 
 

xi = x1 +(i-1)⋅∆x = a+(i-1)⋅∆x, 
where,                                     

n = (xn-x1)/∆x+1 = (b-a)/∆x+1. 
 
The implementation of the solution for this example is left as an exercise for the reader. 
 

Outline of the implicit solution for a second-order ODE  
 
We use the same problem from the previous section: solve the ODE   
 

d2y/dx2+y = 0, 
 
in the x-interval (0,20) subject to y(0) = 1, dy/dx = 1 at x = 0. Use ∆x = 0.1. 
 
We discretize the differential equation using the finite difference approximation   
 

d2y/dx2 = (yi+2-2⋅yi+1+yi)/(∆x2) , 
which results in 

(yi+1-2*yi+yi-1)/(∆x2)+yi = 0. 
 
From this result we get the following implicit equations: 
 

yi-1-(2-∆x2)⋅yi+yi+1 = 0, 
    
for i = 2,3, ..., n-1.   There are a total of (n-2) equations.  Since we have n unknowns, i.e., y1, 
y2, ...,yn, we need two more equations to solve a system of linear equations.  The remaining 
equations are provided by the two initial conditions: 
 
From the initial condition, y(0) = 1, we can write y1 = 1.   For the second initial condition, 
dy/dx = 1,  at x = 0, we will use a forward difference, i.e.,  
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dy/dx = (y2 - y1)/ ∆x, 

or          
y2 - y1 = ∆x. 

 
The x-domain is discretized in a similar fashion as in the previous examples.   The n equations 
resulting from discretizing the domain can be written as a matrix equation similar to that of 
Example 1.  Solution to the matrix equation can be accomplished, for example, through the use 
of left-division for matrices.  The implementation of the solution for this example is left as an 
exercise for the reader. 
 
SCILAB provides a number of functions for the numerical solution of differential equations.  
These functions are designed to operate on single differential equations (i.e., similar to the 
examples presented so far), as well as on systems of differential equations.   Therefore, before 
presenting the SCILAB functions for solving ordinary differential equations, we present some 
concepts related to systems of such equations. 
 

SSyysstteemmss  ooff  oorrddiinnaarryy  ddiiffffeerreennttiiaall  eeqquuaattiioonnss  
 
To introduce the idea of systems of differential equations we will limit the coverage of the 
subject to first-order, linear equations with constant coefficients.   A system of ordinary 
differential equations consists of a set of two or more equations with an equal number of 
unknown functions, ( )y1 x , ( )y2 x , etc.  As an example consider the following homogeneous 
system: 

 =  +  − 
dy1

dx 3 y1 2 y2 0 ,   =  −  + 
dy2

dx y1 y2 0 . 

 
In a homogeneous system the right-hand sides of the equations are zero.    The following 
example represents a non-homogeneous system of ordinary differential equations: 
 

 =  +  − 
dy1

dx
2 y1 5 y2 ( )sin x ,   =  −  + 

dy2

dx
4 y1 3 y2 eeee x . 

 

Systems of ordinary differential equations using matrices 
 
A homogeneous system of ODEs can be written as a single matrix differential equation by using 
vector functions and a matrix of coefficients as illustrated in the following example.  First, we 
re-write the homogeneous system presented above to read: 
 

 = 
dy1

dx
−  + 3 y1 2 y2 , 

 

 = 
dy2

dx
 − y1 y2 . 

 
Then, we define the vector function f(x) = [y1(x) y2(x)]T, and the matrix A = [-3 2; 1 -1], and 
write the differential equation: 
 

d
dx  f(x) = A f(x). 

 
This result is equivalent to writting: 
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The non-homogeneous system presented earlier can be re-written as 
 

 = 
dy1

dx −  +  − 2 y1 5 y2 ( )sin x , 

 

 = 
dy2

dx
 −  + 4 y1 3 y2 eeee x . 

 
For this system we will use the same vector function f(x) defined earlier, but change the 
matrix A to A = [-2 5; 4 -3].   We also need to define a new vector function, g(x) = [-sin(x) 
exp(x)]T.   With these definitions, we can re-write the non-homogeneous system as: 
 

d
dx  f(x) = A f(x)+ g(x), 

or 
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Systems of linear homogeneous ODEs - solution using matrices 
 
Consider the system of linear nonhomogeneous ODEs with constant coefficients given by: 
 

dy1/dx = y1+y3, dy2/dx = y1+y2-y3, dy3/dx = 5y1+y2+y3. 
 
In matricial form, this can be written as: 
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or,                                                                               

d
dx  f(x) = A f(x). 

 
We can use the eigenvalues and eigenvectors of matrix A to obtain the solution to the system 
of homogeneous equations by following this procedure: 
 
1. Determine eigenvalues of the nxn matrix A. Call these eigenvalues λ 1 , λ 2 ,..., λ n . 
 
2. Determine the eigenvectors of the nxn matrix A.  Call these eigenvectors 
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          x1 = [ x11 , x12 ,..., x ,1 n ], x2 = [ x21 , x22 ,..., x ,2 n ], .... xn = [ x ,n 1 , x ,n 2 ,..., x ,n n ]. 

 
3. The general solutions to the system are put together as follows: 
 

( )y1 x  = x11 B1 exp( λ 1 x)+ x21 B2 exp( λ 2 x)+.. x ,1 n Bn exp( λ n x), 
 

( )y2 x  = x21 B1 exp( λ 1 x)+ x22 B2 exp( λ 2 x)+.. x ,2 n Bn exp( λ n x), 
. 
. 
. 
 

( )yn x  = x ,n 1 B1 exp( λ 1 x)+ x ,n 2 B2 exp( λ 2 x)+.. x ,n n Bn exp( λ n x). 
 
i.e.,    

( )yk x  = ∑
 = j 1

n

x ,k j Bj eeee
( )λj x

, k = 1,2,..., n 

 
These general solutions include n  unknown constants, B1 , B2 , ..., Bn .   We will need n  

initial conditions to solve for the n  constants to uniquely determine the solution to the 
system.   
 
For the system under consideration, the solution steps can be translated into SCILAB 
instructions as shown below.   To obtain eigenvalues and eigenvectors we use the user-defined 
function eigenvectors defined in Chapter 5. 
 
-->A = [1,0,1;1,1,-1;5,1,1] 
 A  = 
  
!   1.    0.    1. ! 
!   1.    1.  - 1. ! 
!   5.    1.    1. ! 
 
-->getf(‘eigenvectors’) 
 
  
-->[x,lambda] = eigenvectors(A) 
 lambda  = 
 
!   3.1149075  -  .8608059     .7458983 ! 
 x  = 
  
!    .4170021  -  .3827458  -  .1983289 ! 
! -  .2198294     .5884340     .9788391 ! 
!    .8819208     .7122156     .0503957 ! 
 
The solutions are, therefore,  
 

y1(x) =   0.4170021B1e
3.1149x

 -0.3827458 B2e -0.8608059x -0.198328 B3e
0.7458983x, 

y2(x) = - 0.219829 B1e
3.1149x

 + 0.5884340B2e -0.8608059x +  0.9788391 B3e
0.7458983x, 

y3(x) =    0.8819208B1e
3.1149x

 + 0.7122156 B2e -0.8608059x + 0.0503957B3e
0.7458983x. 

 
 
Substituting the following initial conditions:  = ( )y1 0 1 ,  = ( )y2 0 2 , and  = ( )y3 0 3 , produce a 
system of linear equations: 
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0.4170021B1 -0.3827458 B2 -0.198328 B3  =  1 
- 0.219829 B1+ 0.5884340B2 +  0.9788391 B3 = 2 
0.8819208B1 + 0.7122156 B2 + 0.0503957B3 = 3 

 
which can be solved using left-division as follows: 
 
-->AA=x;bb=[1;2;3] 
 bb  = 
  
!   1. ! 
!   2. ! 
!   3. ! 
  
-->B=AA\bb 
 B  = 
  
!   3.5181246 ! 
! -  .3600066 ! 
!   3.049763  ! 
  
 
The results are B1 = 3.5181246, B2 = -0.3600066, and B3 = 3.049763.   
  
To determine the coefficients in the solutions we can use: 
 
-->C=AA.*[B B B] 
 
 C  = 
  
!   1.4670652  - 1.3465474  -  .6977459 ! 
!    .0791400  -  .2118401  -  .3523886 ! 
!   2.6896495    2.1720889     .153695  ! 
 
Thus, the solutions are: 
 

y1(x) =   1.4670652e3.1149x
 - 1.3465474e -0.8608059x -0.6977459e0.7458983x, 

y1(x) = 0.0791400e3.1149x
 -0.2118401e -0.8608059x -0.3523886e0.7458983x, 

y1(x) = 2.6896495e3.1149x
 + 2.1720889e -0.8608059x + 0.153695e0.7458983x. 

These solutions can be shown graphically by defining the following three functions: 
 
-->deff('[y]=y1(x)',['y=0';'for j=1:3';'y=y+C(1,j)*exp(lambda(j)*x)';'end']) 
  
-->deff('[y]=y2(x)',['y=0';'for j=1:3';'y=y+C(2,j)*exp(lambda(j)*x)';'end']) 
  
-->deff('[y]=y3(x)',['y=0';'for j=1:3';'y=y+C(3,j)*exp(lambda(j)*x)';'end']) 
 
A plot of the solution is shown next: 
 
-->xx=[0:0.1:1];yy1=real(y1(xx));yy2=real(y2(xx));yy3=real(y3(xx)); 
 
-->xset('window',1);xset('mark',[-1 -2 -3],1); 
  
-->plot2d([xx' xx' xx'],[yy1' yy2' yy3'],[-1,-2,-3],'011',' ',[0 -20 1 80]) 
  
-->plot2d([xx' xx' xx'],[yy1' yy2' yy3'],[1,2,3],'011',' ',[0 -20 1 80]) 
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The solution to the non-homogeneous system, 
d
dx  f(x) = A f(x), can be accomplished in a 

straightforward manner by using the equation,  
 

f(x) = exp(Ax)b, 
 
where b is a vector containing the initial conditions, i.e., 
 

b = [y1(0) y2(0) … yn(0)]T
. 

 
and the expression exp(At) is a matrix defined as: 
 

exp(At) =   I + At + 
1
!2  A2 t2 +...  = ,

!
1

1
∑
∞

=

+
k

kk tA
k

I   

 
where I is the identity matrix, A2  = AA, A3 = A2 A, ...  To evaluate the expression exp(Ax), 
SCILAB provides function expm.    
 
The solution to the linear system under consideration, using the equation, f(x) = exp(Ax)b, can 
be obtained as follows using SCILAB (matrix A is the same matrix of coefficients of the ODE 
system defined earlier): 
  
-->deff('[y] = fm(t)','y=real(expm(A*t)*bb)')                      
  
A plot of the solution using this matrix approach is produced with the following SCILAB 
statements: 
  
-->xx=[0:0.1:1]; n = length(xx) 
 n  = 11.   
  
-->ym=[];for j=1:n, ym=[ym fm(xx(j))]; end; 
 
-->plot2d([xx',xx',xx'],[ym(1,:)',ym(2,:)',ym(3,:)'],[1,2,3]) 
  
-->xtitle('Solution to system of ODEs','x','y(x)') 
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Systems of linear nonhomogeneous ODEs - solution using matrices 
 
Consider the system of linear nonhomogeneous ordinary differential equations with constant 
coefficients given by 
 

 = 
dy1

dx  + y1 y3 + eeee x ,  = 
dy2

dx  − y2 y3 + ( )sin x , and  = 
dy3

dx  +  + 5 y1 y2 y3 + ( )cos x  

 
This system can be written as a matricial differential equation as: 
 

 = 
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In general, a nonhomogeneous system can be written in matricial form as 
 

d
dx  f(x) = A f(x) + g(x). 

 
For the case under consideration, we have: 
 

 := A












1 0 1
0 1 -1
5 1 1

 

 := g












eeee x

( )sin x
( )cos x

 

 
A solution to the system of ODEs is given by 
 

f(x) = Φ (x)C + Φ (x) d⌠
⌡
 ( )Φ x

( )-1
( )g x x , 
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where Φ(x) = exp(Ax) is known as a fundamental matrix of the system, Φ(x)(-1) 

 is the inverse 
matrix of Φ(x), and C is a vector of constants, i.e.,  C = [C1 C2 … Cn]. 
 
Unlike the homogeneous case, the presence of the integral in the solution f(x) complicates the 
calculation or programming of the solution using SCILAB.  The reader is referred to symbolic 
packages such as Maple or Mathematica to obtain such solutions.  Numerical solutions, 
however, are possible with SCILAB, as will be demonstrated in subsequent sections of this 
book. 
 
 

Converting second-order linear equations to a system of equations 
 

A second-order linear ODE of the form   =  +  + 
d2 y
dx2

b dy
dx c y ( )r x , can be transformed into a 

linear system of equations by introducing the relationship,  = ( )u x
dy
dx , so that  = 

d2 y
dx2

du
dx , thus, 

the equation reduces to  =  +  + 
du
dx b u c y ( )r x , or  = 

du
dx −  −  + b u c y ( )r x .  The resulting system of 

equations is: 
          

 = 
du
dx

−  −  + b u c y ( )r x , 

 = 
dy
dx

u . 

 
 
Which can be written in matricial form as df/dx = A f(x)+g(x), with 
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For example, the solution to the second order differential equation 
 
 

 =  +  − 
d2 y
dx2

5 dy
dx 3 y x , 

 
 
can be obtained by solving the equivalent first-order linear system: 
 
 

 = 
du
dx

−  +  + 5 u 3 y x , 

 

 = 
dy
dx

u . 
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The procedure outlined above to transform a second order linear equation can be used to 
convert a linear equation of order n  into a system of first-order linear equations.   For 
example, if the original ODE is written as: 
 
 

 + 
dn y
dxn a  − n 1

d
( ) − n 1

y

dx
( ) − n 1  + ...  + a2

d2 y
dx2  + 

a1 dy
dx  + a0 y = ( )r x , 

 
we can re-write it as  
 

 = 
dn y
dxn −a  − n 1

d
( ) − n 1

y

dx
( ) − n 1  - ...  - a2

d2 y
dx2  - 

a1 dy
dx - a0 y  + ( )r x , 

 
and transform it into a system of n first-order linear equations given by: 
 

 = 
du  − n 1

dx −a  − n 1 u  − n 1  - a  − n 2 u  − n 2 - ...  - a2 u2  - a1 u1 - a0 y  + ( )r x , 

 

 = 
du  − n 2

dx
u  − n 1 ,   = 

du  − n 3

dx
u  − n 2 , ...,  = 

du1

dx
u2 ,  = 

dy
dx

u1 , 

 
 
or, in matricial form, 
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For example, to transform the following fourth-order (n=4) linear ODE 
 

 =  +  −  +  + 
d4 y
dx4

3 d3 y
dx3

2 d2 y
dx2

5 dy
dx y 0 , 

 

subjected to  = y 1 ,  = 
dy
dx

-1 ,  = 
d2 y
dx2 0 ,  = 

d3 y
dx3 -1 , at   = x 0 , into a first-order linear system, we 

would write: 
 

du3/dx = -3u3(x)+2u2(x)-5u1(x)-y(x)+x2/2, du2/dx = u3(x), du1/dx = u2(x), and dy/dx = u1(x), 
 

or 
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with v(x) = [u3(x);u2(x);u1(x); y(x)]T, A = [-3,2,-5,-1;1,0,0,0;0,1,0,0;0,0,1,0]; and g(x) = [x2/;0; 
0; 0]T,  the system of differential equations is written as dv/dx = Av+g(x).  The initial 
conditions are y(0) = 1, u1(0) = dy/dx = -1, u2(0) = du1/dx = d2y/dx2 = 0, u3(0) = du2/dx = 
d2u1/dx2 = d3y/dx3 = -1, or   u0 = [ -1;0;-1;1].  
 
 
 
 
 
 
 
 

SSCCIILLAABB  ffuunnccttiioonnss  ffoorr  tthhee  nnuummeerriiccaall  ssoolluuttiioonnss  ooff  iinniittiiaall  
vvaalluuee  pprroobblleemmss  ((IIVVPP))  
 
SCILAB provides function ode for the solution of initial value problems, i.e., those subject to 
initial, rather than boundary, conditions.    
 
 

Function ode 
 
The simplest call to function ode is  
 
 

y=ode(y0,x0,x,f) 
 
 
where the point (x0,y0) represents the initial conditions for the differential equation  
 
 

dy/dx = f(x,y), 
 
 

and x is a vector of values of the independent variable x. 
 
 
The function f can be a single function f(x,y) or a vector of functions,  
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In the latter case, y is also a vector representing the variables y = [y1 y2 … yn]
T. 

 
The first example shows the solution to the differential equation dy/dx = xy, in the range 
0<x<2, with initial conditions y(0) = 1. 
 
-->deff('[z]=f(x,y)','z=x.*y') 
                      
-->x0 = 0; y0 = 1; Dx = 0.1; xn = 2; x = [x0:Dx:xn]; 
  
-->y = ode(y0,x0,x,f); 
  
-->plot(x,y,'x','y','ode solution to dy/dx = x*y') 
 

 
 
In the second example, we solve the differential equation du/dt = u sin(t), in the range 0<t<10, 
with initial condition u(0) = 5. 
 
->deff('[w]=g(t,u)','w=u.*sin(t)') 
              
-->t0=0;Dt=0.1;tn=1;u0=5;t=[t0:Dt:tn]; 
  
-->u = ode(u0,t0,t,g); 
 
-->plot(t,u,'t','u','ode solution to du/dt = u*sin(t)') 
 

 
 
The next example uses a system of two differential equations, namely,  
 

dy1/dx = y2 + x 
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dy2/dx = -y1 
 
with initial conditions y1=1, y2 = 2, for x0 = 0. 
 
-->deff('[w]=f(x,y)',['y1=y(2)+x','y2=-y(1)','w = [y1;y2]']) 
 
-->x0 = 0; Dx = 0.1; xn = 2; y0 = [1;2]; 
  
-->x = [x0:Dx:xn]; y = ode(y0,x0,x,f); 
  
-->min(y),max(y) 
 ans  = - 2.8322936   
 ans  =   2.999147   
  
-->plot2d([x',x'],[y(1,:)', y(2,:)'],[1,-1],'111','y1@y2',[0 -3 2 4]) 
  
-->xtitle('ode solution for two functions','x','y') 
 

 
Numerical methods used in function ode 
 
Function ode uses as default the numerical method known as the Adams method.  In general, 
Adams methods for solving the differential equation dy/dx = f(x,y) basically consist in obtaining 
yk+1 = y(xk+1) through the fitting of a polynomial that interpolates f(x,y) at selected points (xj,yj) 
of the solution.   The k-th order Adams-Bashforth method is an explicit method that uses the 
current point (xn,yn) and k-1 points for the solution.   The k-th order Adams-Moulton method is 
an implicit method using points (xn+1,yn+1), (xn,yn) and  k-2 previously calculated points.  Adams 
methods are also known as predictor-corrector methods because their solution involves an 
initial predictor step, which is then modified in a corrector step that improves the solution.    
 
Function ode can be called with an additional argument that specifies the numerical method to 
be used for a solution.   This argument becomes the first argument in the call to function ode.   
The function call, if such optional argument is used, is 
 

[y] =  ode([type],y0,t0,t,f) 
 
where type is one of the following character string: "adams", "stiff", "rk", "rkf", "fix", "discrete", 
or "roots".  The meaning of each of these options is presented next: 
 
"adams":  Default value.  Uses the Adams predictor-corrector method for the solution. 
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"stiff":  This option invokes the use of a Backward Differentiation Formula (BDF) for the 

solution of stiff ordinary differential equations.  
 
"rk":   Invokes an adaptive, 4-th order, Runge-Kutta method. 
 
"rkf":  Invokes a Fehlberg's Runge-Kutta method of order 4 and 5 (RKF45).  
 
"fix":  Same solver as "rkf", a simpler user interface.  
 
"root":    ODE solver with root finding capabilities.   
 
"discrete":  Discrete time simulation.  
 
The type options “root” and “discrete” do not represent different methods for solving ordinary 
differential equations.  Instead, they represent enhanced abilities for function ode for root 
finding and combining discrete and continuous systems.   The applications of these options will 
be presented later.    
 
 
Adams-Bashforth methods 
 
These methods involve explicit functions for yn+1 in terms of k points in the solution.  The 
equations describing the Adams-Bashforth methods of orders 1 through 5 are shown below.  In 
these equations the term fn represents f(xn,yn) and ∆x is the increment in the independent 
variable x: 
 
yn+1  = yn + ∆x⋅fn     (same as Euler 1st order method) 
yn+1  = yn + (∆x /2)(3fn-fn-1) 
yn+1  = yn + (∆x /12)(23fn-16fn-1+5fn-2) 
yn+1  = yn + (∆x /24)(55fn-59fn-1+37fn-2-9fn-3) 
yn+1  = yn + (∆x /720)(1901fn-2774fn-1+2616fn-2-1274fn-3+251fn-4) 
 
 
Adams-Moulton methods 
 
The following equations represent the Adams-Moulton methods of orders 1 through 5.  These 
are implicit methods, in which the term fn+1 = f(xn+1,yn+1): 
 
yn+1  = yn + ∆x⋅fn+1      
yn+1  = yn + (∆x /2)(fn+1-fn) 
yn+1  = yn + (∆x /12)(fn+1 + 8fn-fn-1) 
yn+1  = yn + (∆x /24)(9fn+1+ 19fn-5fn-1+fn-2) 
yn+1  = yn + (∆x /720)(251fn+1+ 646fn-264fn-1+106fn-2-19fn-3+251) 
 
 
Adams-Bashforth-Moulton methods 
 
The Adams-Bashforth-Moulton predictor-corrector method uses one of the Adams-Bashforth 
formulas to produce a first approximation for the solution (a predictor value), followed by an 
evaluation of the function f(xn+1,yn+1) = fn+1, which is used in an Adams-Moulton formula to 
produce a better approximation to the solution (a corrector value).  Depending on the order of 
the formula used for the predictor part of the algorithm, we need one or more values of the 
solution to get the algorithm started.  The Runge-Kutta method, described below, can be used 
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to generate those few initial data values necessary to get the Adams-Bashforth-Moulton 
procedure started. 
 
 
Runge-Kutta methods 
 
The general approach for the Runge-Kutta methods consists of the following equations 
 

k1 = ∆x f(xn,yn) 
k2 = ∆x f(xn+αh,yn+βk1) 

yn+1 = yn + αk1 + βk2 
 
where the values of the parameters α and β are selected from Taylor series expansions 
representing different orders of the approximation.   For example, for an error of order ∆x3, 
the Runge-Kutta method is given by 
 

k1 = ∆x f(xn,yn) 
k2 = ∆x f(xn+ h,yn+k1) 
yn+1 = yn + (k1 + k2)/2. 

 
A fourth-order Runge-Kutta method is given by the formulas 
 

k1 = ∆x f(xn,yn) 
k2 = ∆x f(xn+ ∆x /2,yn+k1/2) 
k3 = ∆x f(xn+ ∆x /2,yn+k2/2) 

k4  = ∆x f(xn+ ∆x, yn + k3) 
yn+1 = yn + (k1 + 2k2 + 2k3 +k4)/6. 

 
 
A fourth-fifth order Runge-Kutta method produces a fourth order and a fifth order estimate 
(yn+1,zn+1) of the function through the following algorithm: 
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Examples of function ode with different numerical methods 
 
In this first example we solve the differential equation dy/dx = (x+1)e-0.01y

 in the range 0<x<5, 
with initial condition y(0) = 0 using different methods within function ode: 
 
-->deff('[z]=f(x,y)','z = (x+1).*exp(-0.01.*y)') 
 
-->x0=0;Dx=0.1;xn=5.0;y0=0;x=[x0:Dx:xn]; 
 
-->y1 = ode('adams',y0,x0,x,f); 
  
-->y2 = ode('rk',y0,x0,x,f); 
  
-->y3 = ode('rkf',y0,x0,x,f); 
  
-->min([y1 y2 y3]),max([y1 y2 y3]) 
 ans  = 0.   
 ans  = 16.126815   
  
-->plot2d([x',x',x'],[y1',y2',y3'],[-1,-2,-3],'111',... 
-->'Adams method@Runge-Kutta 4th order@Runge-Kutta 4-5th order',... 
-->[0 0 5 20]) 
  
-->xtitle('dy/dx = (x+1)*exp(-0.01*y)','x','y') 
  

 
                   
 In the following example we solve the system of equations 
 

dy1/dx = - y1, dy2/dx = y2 
 
in the range 0<x<5, with initial conditions y1(0) = -1, y2(0) = 1: 
  
-->deff('[z]=f(x,y)',['z1=-y(1)','z2=y(2)','z=[z1;z2]']) 
-->x0=0;Dx=0.1;xn=5.0;y0=[-1;1];x=[x0:Dx:xn]; 
-->y1 = ode('adams',y0,x0,x,f);  
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-->y2 = ode('rk',y0,x0,x,f); 
-->y3 = ode('rkf',y0,x0,x,f);                  
  
-->min(y1), max(y1) 
 ans  =   - 1.   
 ans  =   148.4132   
  
-->plot2d([x',x',x'],[y1(1,:)',y2(1,:)',y3(1,:)'],[-1,-2,-3],'111',... 
-->'Adams method@Runge-Kutta 4th order@Runge-Kutta 4-5th order',... 
-->[0 -1 5 0]) 
  
-->xtitle('System of equations - y(1)','x','y') 
 

 
  
-->plot2d([x',x',x'],[y1(2,:)',y2(2,:)',y3(2,:)'],[-1,-2,-3],'111',... 
-->'Adams method@Runge-Kutta 4th order@Runge-Kutta 4-5th order',... 
-->[0 -1 5 150]) 
 

 
 
 
 

Stiff ordinary differential equations 
 
There are a number of definitions of a stiff matrix (see, for example, Hoffman, J.D., 1992, 
“Numerical Methods for Engineers and Scientists,” McGraw-Hill, Inc., New York) based on their 
requirements for stability or on the presence of a rapidly decaying transient.   The concept of 
stability in the numerical solution of an ordinary differential equation involves the analysis of 
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the error inherent in the numerical method.   If a small error introduced in the first step of the 
numerical solution remains constant or decays as solution steps accumulate, the solution is said 
to be stable.  If, on the other hand, a small error involved in the first step of the solution 
increases without bound as the solution steps accumulate the solution is said to be unstable. 
 
Thus, based on the numerical solution of an ordinary differential equation, a stiff equation is 
defined as one which requires a step size so small for stability that round-off errors (inherent in 
computer calculations) become significant.  Alternatively, a stiff equation is one that contains 
some transient component that decays rapidly compared to the main transient component.   
 
As an example, consider the ordinary differential equation dy/dx = f(x,y) = -1000(y-x)+2001, 
whose exact solution is y(x) = -exp(-1000x)+x+2.   The solution is composed of two parts, y1(x) = 
-exp(-1000x), and y2(x) = x+2, which vary at significantly different rates as x varies.   The first 
component, y1(x), goes quickly to zero, while the second component, y2(x), produces a simple 
linear solution.   Component y1(x) is only significant for very small values of x.   The following 
two graphs illustrate the behavior of the solution y(x) for small and relatively large values of x. 
 
 
-->deff('[y]=f(x)','y=-exp(-1000.*x)+x+2') 
 
-->plot(xs,ys,'x','y','solution for small values of x') 
 
 
 

 
 
 
 
-->xl=[0:0.001:1]; yl=f(xl); 
 
-->plot(xl,yl,'x','y','solution for larger values of x') 
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To determine the effect that the increment in the independent variable, ∆x, has on the 
solution, we attempt solutions using function Euler1 that implements Euler’s first-order 
method using values of ∆x = 0.0005, 0.0010, 0.0020, 0.0025.  We then plot the solution to 
compare the results for different values of ∆x.  
 
-->deff('[dydx]=g(x,y)','dydx=-1000.*(y-x)+2001') 
-->getf('Euler1') 
-->Dx=0.0005;x0=0;xn=0.01;y0=1;[x1,y1]=Euler1(x0,y0,xn,Dx,g); 
-->Dx=0.0010;x0=0;xn=0.01;y0=1;[x2,y2]=Euler1(x0,y0,xn,Dx,g);  
-->Dx=0.0020;x0=0;xn=0.01;y0=1;[x3,y3]=Euler1(x0,y0,xn,Dx,g); 
-->Dx=0.0025;x0=0;xn=0.01;y0=1;[x4,y4]=Euler1(x0,y0,xn,Dx,g); 
  
-->min([y1 y2 y3 y4]), max([y1 y2 y3 y4]) 
 ans  = - 3.0525   
 ans  =   5.3825   
  
-->rect = [0 -4 0.01 6]; 
-->plot2d(x1,y1,-1,'011',' ',rect) 
-->plot2d(x2,y2,-2,'011',' ',rect) 
-->plot2d(x3,y3,-3,'011',' ',rect) 
-->plot2d(x4,y4,-4,'011',' ',rect) 
-->plot2d(x1,y1,1,'011',' ',rect) 
-->plot2d(x2,y2,2,'011',' ',rect) 
-->plot2d(x3,y3,3,'011',' ',rect) 
-->plot2d(x4,y4,4,'011',' ',rect) 
-->plot(xl,yl,'x','y','solution for larger values of x') 
-->xtitle('Stiff equation numerical solution Euler 1st order','x','y') 

 
The points indicated by the crosses and asterisks correspond to the values of ∆x = 0.0005 and 
0.0010.  The values indicated by the crosses enclosed in circles correspond to ∆x = 0.0020, and 
the dark diamond marks correspond to ∆x = 0.0025.  The result indicates that ∆x must be of 
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size 0.0010 or smaller to ensure stability.   This is a characteristic of a stiff ordinary 
differential equation since a very small step ∆x is required for stability. 
 
Function ode allows the use of the argument ‘stiff’ to change the numerical method for the 
solution to a Backward Differentiation Formula (BDF) for its solution.  The following SCILAB 
commands demonstrate the use of function ode with the argument ‘stiff’ for the solution of the 
differential equation under consideration.  The graph thus produced shows that the solutions 
are stable for the four values of ∆x used. 
 
-->deff('[dydx]=g(x,y)','dydx=-1000.*(y-x)+2001') 
  
-->Dx=0.0005;x0=0;xn=0.01;y0=1;x1=[x0:Dx:xn];y1=ode('stiff',y0,x0,x1,g); 
  
-->Dx=0.0010;x0=0;xn=0.01;y0=1;x2=[x0:Dx:xn];y2=ode('stiff',y0,x0,x2,g); 
  
-->Dx=0.0020;x0=0;xn=0.01;y0=1;x3=[x0:Dx:xn];y3=ode('stiff',y0,x0,x3,g); 
  
-->Dx=0.0025;x0=0;xn=0.01;y0=1;x4=[x0:Dx:xn];y4=ode('stiff',y0,x0,x4,g); 
  
-->min([y1 y2 y3 y4]), max([y1 y2 y3 y4]) 
 ans  = 1.   
 ans  = 2.0099544   
  
-->rect = [0 0 0.01 2.5]; 
 
-->plot2d(x1,y1,-1,'011',' ',rect) 
-->plot2d(x2,y2,-2,'011',' ',rect) 
-->plot2d(x3,y3,-3,'011',' ',rect) 
-->plot2d(x4,y4,-4,'011',' ',rect) 
  
-->xtitle('Stiff equation - ode function with option stiff','x','y') 
 

 
 
 
 
 
 

Function ode with root finding option 
 
Function ode can be invoked with the first argument ‘root’ if the solution of the ordinary 
differential equation dy/dx = f(x,y) is subject to the constraint g(x,y) = 0.   The solution is 
calculated for a range of values of x (a vector) and stopped when the constraint g(x,y)=0 is 
satisfied.   For example, suppose that we are solving the differential equation dy/dx = f(x,y) = 
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x sin(y), with initial conditions y(0) = 1, subjected to the constraint g(x,y) = x + y - 5 = 0, in the 
range 0 < x < 10.  We will obtain the solution by using: 
 
-->deff('[dydx]=f(x,y)','dydx = x*sin(y)') 
  
-->deff('[w]=g(x,y)','w = x+y-5') 
  
-->y0=1;x0=0;x=[0:0.1:10]; 
  
-->[y,rd]=ode('root',y0,x0,x,f,1,g); 
 
We can check that the solution was stopped before reaching the maximum value of x by 
checking the lengths of the vectors x and y: 
  
-->length(x), length(y) 
 ans  =  101.  
  
 ans  =   23.   
  
Vector rd contains information on the point where the calculation was stopped. 
 
-->rd 
rd  = 
 
!  2.1889184     1. ! 
 
To plot the results of the recent call to function ode we create a new vector of x values, xx: 
 
-->xx = x(1:23); 
  
-->plot(xx,y,'x','y','ode function with root option') 
 

 
 
 
The following plot shows the truncated solution altogether with the solution for the full x range 
(0,10): 
  
-->yf = ode(y0,x0,x,f); 
  
-->plot(x,yf,'x','y','ode function solution') 
  
-->plot2d(xx,y,-9,'011',' ',[0 1 10 3.4]) 
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Discrete solutions with function ode  
 
Function ode provides the option ”discrete” for the solution of a differential equation dy/dx = 
f(x,y) based on a set of discrete (integer) indices kvect, that starts with k0.    The initial 
condition is y(k0) = y0.  The simplest call to the function is 
 

[y] = ode(‘discrete’,y0,k0,kvect,f). 
 
When using this option, the solution is calculated recursively by using yk+1=f(k,yk), for k=1,2,… 
 
As an example, we solve the differential equation dy/dx = x2-1, in a discrete domain 
k=1,2,…,20, with y(1) = 2.5: 
 
-->deff('[dydx]=f(x,y)','dydx=x.^2-1') 
  
-->k0 = 1; kvect = [1:1:20];  y0 = 2.5; 
  
-->y = ode('discrete',y0,k0,kvect,f); 
 
The following plot shows the results of y as function of k: 
  
-->plot(kvect,y,'k','y','ode function with option discrete') 
 
 



 

Download at InfoClearinghouse.com  64                                      © 2001 Gilberto E. Urroz  

 
 
 

 
Changing ODE numerical solution parameters with odeoptions 
 
Function ode uses a number of parameters which can be redefined through the use of the 
function odeoptions().  When this command is used, SCILAB generates an input form where the 
parameters of the numerical methods for ordinary differential equations can be modified.  
Application of the function odeoptions() can be used to modify the global variable 
%ODEOPTIONS.  This variable is a vector containing the following information: 
 

[itask,tcrit,h0,hmax,hmin,jactyp,mxstep,maxordn,maxords,ixpr,ml,mu] 
 
where the different elements are described as follows: 
 
itask - identifies the task required from the numerical method.  Possible values of itask are: 
 
   1 : normal computation at specified times 
   2 : computation at mesh points (given in first row of output of ode) 
   3 : calculate one step at one internal mesh point and return 
   4 : normal computation without overshooting tcrit (see below) 
   5 : one step, without passing tcrit (see below), and return 
 
  tcrit - this value applies when itask = 4 or 5, representing a critical value of the independent 
variable t. 
 
  h0 - represents the first step in the independent variable tried in the numerical solutions 
when adaptive methods are used. 
 
 hmax - maximum step size 
 
 hmin - minimum step size 
 
jactype - Jacobian type.  This option can be used when additional derivatives (a Jacobian) are  

  provided for the solution.  Possible values of this option are: 
 
   0 : functional iterations, no Jacobian used ("adams" or "stiff" only) 
   1 : user-supplied full Jacobian 
   2 : internally generated full Jacobian 
   3 : internally generated diagonal Jacobian ("adams" or "stiff" only) 
   4 : user-supplied banded Jacobian (see ml and mu below) 
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   5 : internally generated banded Jacobian (see ml and mu below) 
 
  mxstep - Maximum number of iterations allowed. 
 
  maxordn - Maximum non-stiff order allowed for the numerical method (maximum allowed is  

      12). 
 
  maxords - Maximum stiff order allowed, at most 5-th order. 
 
  ixpr - print level, either 0 or 1. 
 
  ml,mu - see description below: 
    

If jactype = 4 or 5, ml and mu are the lower and upper half-bandwidths of the banded 
Jacobian.   The band includes those terms of the Jacobian, Jij, with i-ml <= j <= ny-1. 
 
If jactype = 4 the Jacobian function must return a matrix J which has (ml+mu+1) rows 
and ny columns (where ny is the number of elements of y in dy/dt =f(t,y)), such that 
the first column of J is made of mu zeros followed by ∂f1/∂y1, ∂f2/∂y1, ∂f3/∂y1, ... (1+ml 
possibly non-zero entries).  Column 2 of J is made of mu-1 zeros followed by ∂f1/∂x2, 
∂f2/∂x2, etc 

   
 
The default value of the global variable %ODEOPTIONS is  [1,0,0,%inf,0,2,500,12,5,0,-1,-1], 
i.e., itask = 1, tcrit = 0, h0 = 0, hmax = , hmin = 0,  jactype = 2, mxstep = 500, maxordn = 12, 
maxords = 5, ixpr = 0, ml = -1, mu = -1. 
 
 
 

AApppplliiccaattiioonnss  ooff  nnuummeerriiccaall  ssoolluuttiioonnss  ttoo  IIVVPPss  
 
This section presents the solution to initial value problems (IVPs) some of which are obtained 
from the physical sciences, e.g., mechanical systems, electric circuits, etc. 
 
 

Systems of ODEs from mechanical systems 
 
Systems of ODEs can obtained from the analysis of two linked particles in oscillatory motion or 
from the analysis of electric circuits.  For example, the figure below shows two particles, P1  

and P2 , linked by three springs.  The figure at the top represents the system in their state of 
equilibrium, while the one at the bottom shows the system at any generic point at time t>0.   
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The displacement of particle P1  with respect to its equilibrium position is given by ( )x1 t , 

while that of particle P2  is given by ( )x2 t .  The magnitude of the force applied by a spring on 
an attached particle is given by Hooke's law, 
 

 = F − ( )k  − L L0 , 
 
where k  is the spring constant, L  is the stretched length of the spring, and L0  is the 

unstretched length of the spring.   The force that spring A, with constant kA , applies on 

particle P1 is given by 
 

FA  = kA ( ) +  − LA x1 LA  = kA x1 , 
 
while that applied by spring B on particle P1  is  
 

FB  = kB ( ) +  +  −  +  −  −  − LA LB LC LA x1 LC x2 LB  = kB ( ) − x1 x2  
 
For the position illustrated in the Figure above, both forces will act in the negative direction of 
x1 , thus, writting Newton's second law for particle P1  of mass m1 results in: 

 = −  − FA FB m1 a1 ,           or             = −  − kA x1 kB ( ) − x1 x2 m1

d2 x1

dt 2  

 
Similarly, for particle P2 , of mass m2 , with the magnitude of the force applied by spring C 
given by  
 

FC  = kC ( ) −  − LC x2 LC = kC x2 , 
 
we can write 

 =  − FB FC m2 a2 ,     or        − ( )kB  − x1 x2 kC x2  = m2

d2 x2

dt 2  

 
The resulting system of equations can be written as: 
 

d2 x1

dt 2  = −
 + kA kB

m1
 x1 +

kB

m1
 x2 ,     and     

d2 x2

dt 2  = 
kB

m2
  x1  - 

 + kB kC

m2
 x2 . 
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These two second-order equations can generate a system of four first order equations if we 
define x3 = dx1/dt, and x4

  = dx2/dt.  The resulting system is: 
 
 

dx1/dt = x3 

 
dx2/dt = x4 

 
dx3/dt = -(kA+kB)x1/m1 + kBx2/m1 

 
dx4/dt = kBx1/m2 - (kB+kC)x2/m2 

 
 
or, using vectors, dx/dt = f(t,x), where x = [x1 x2 x3 x4]

T, and 
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Suppose we use the following values  kA = 20 N/m, kB = 40 N/m, kC = 50 N/m, m1 = 2 kg, m2 = 5 
kg, and given the initial conditions x1 = 0.5 m, x2 = 0.2 m, x3 = dx1/dt = -0.1 m/s, x4 = dx2/dt = 
0.1 m/s, at t = 0, we will solve the system of equations in the interval 0 < t  < 100 s, using a 
time increment of ∆t = 0.1.  This is the SCILAB solution: 
 
First, we define the function f from dy/dt = f(t,y) and enter the values of the parameters: 
  
 
-->deff('[ff]=f(t,x)','ff=[x(3);x(4);-(kA+kB).*x(1)/m1+kB.*x(2)/m1;... 
-->kB.*x(1)/m2-(kB+kC).*x(2)/m2]') 
 
-->kA = 20; kB = 40; kC = 50; m1 = 2; m2 = 5; 
  
 
Next, we calculate the parameters for the solution and the solution itself: 
 
 
-->t0=0;Dt=0.1;tn=10;x0=[0.5;0.2;-0.1;0.1];t=[t0:Dt:tn]; 
 
-->x = ode(x0,t0,t,f); 
 
 
To produce a plot of the positions x1(t) and x2(t) we use: 
 
  
-->plot2d([t',t'],[x(1,:)',x(2,:)'],[1,9],'111','x1@x2 ',[0 -1 10 1]) 
 
-->xtitle('Two particle oscillation','t(s)','x1(m) & x2(m)') 
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The corresponding velocities, v1(t) and v2(t), are plotted by using: 
  
-->plot2d([t',t'],[x(3,:)',x(4,:)'],[1,9],'111','v1@v2 ',[0 -2.5 10 2.5]) 
-->xtitle('Two particle oscillation','t(s)','v1(m/s) & v2(m/s)') 

 
 
 

System of ODEs from Electric Circuits 
 
A second application of systems of ordinary differential equations can be obtained from 
electric circuits.  Consider the circuit shown in the figure below.  The circuit consists of two 
loops each with a capacitor, an inductor, and a voltage source.  The two loops share the 
resistor R.  The electrical current circulating in the left-hand side loop is referred to as ( )I1 t  
and it is assumed to be positive in the counterclockwise direction.  A similar electric current, 

( )I2 t , circulates in the right-hand side loop.  The voltages ( )E1 t  and ( )E2 t  are positive in the 
sense indicated by the arrow.   The equations for the voltage across individual components are: 
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•  Resistor,    VR  = R I  

•  Capacitor,  = VC
q
C  

•  Inductor,    = VL
L dI
dt  

 
where V = voltage (volts), R = resistance (ohms), I = electric current (amperes), q = electric 
charge (coulombs), C = capacitance (farads), L = inductance (henrys), t = time (seconds).    By 

definition,  = I
dq
dt  . 

 

 
 
 
For the purpose of writing the governing equations we use Kirchoff law of conservation of 
voltage in a closed loop in a circuit with voltages across resistors, capacitors, and inductors 
decreasing in the direction of circulation of the current.   Thus, for loops number 1 and 2, we 
would write, respectively: 
 

 =  −  −  − E1

q1

C1

L1 ( )dI1 t
dt

R ( ) − I1 I2 0 ,       

and     
 

 =  −  −  − E2 R ( ) − I2 I1

L2 dI2

dt
q2

C2
0 . 

 

Introducing the definition of the electric currents in the equations,   = I1

dq1

dt , and  = I2

dq2

dt , 

and rearranging terms we get a system of four first-order differential equations: 
 

    = 
dI1

dt −  +  −  + 
R I1

L1

R I2

L1

q1

L1 C1

E1

L1
  ,    = 

dq1

dt
I1 ,    = 

dI2

dt  −  −  + 
R I1

L2

R I2

L2

q2

L2 C2

E2

L2
 ,   = 

dq2

dt
I2 . 

 
These four equations can be transformed into a system of differential equations dy/dt = f(t,y), 
with y = [y1 y2 y3 y4]

T = [q1 q2 I1 I2]
T, and  
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Suppose that we use the values R = 1800 ohms, L1 = 500 henrys, L2 = 800 henrys, C1 = 0.005 
farads, C2 = 0.010 farads, E1 = E2 = 0, with initial conditions q1 = 100 coulombs, q2  = I1 = I2 = 0, 
the following two example illustrate how to produce the solution for the charges q1(t), q2(t), 
and the currents I1(t), I2(t). 
 
The first example uses constant voltages E1 and E2.  First we define the system function f(t,y) 
and the parameters of the circuit: 
  
-->deff('[dydt]=f(t,y)','dydt = [y(3);y(4);... 
-->-R*y(3)/L1+R*y(4)/L1-y(1)/(L1*C1)+E1/L1;... 
--> R*y(3)/L2-R*y(4)/L2-y(2)/(L2*C2)+E2/L2]') 
  
-->R=1800;L1=500;L2=800;C1=0.005;C2=0.010;E1=0;E2=0; 
  
Next, we define the parameters of the solution and calculate the solution using function ode: 
 
-->t0 = 0; Dt = 0.1; tn = 10; t = [t0:Dt:tn];y0 = [100;0;0;0]; 
-->y = ode(y0,t0,t,f); 
  
To produce plots of electric charge we use: 
 
-->min([y(1,:) y(2,:)]), max([y(1,:) y(2,:)]) 
 ans  = - 117.01482, ans  =   100.   
-->plot2d([t',t'],[y(1,:)',y(2,:)'],[1,9],'111','q1@q2',[0 -120 100 120]) 
-->xtitle('Electric charge ODE solution','t(s)','q1,q2(coulomb)') 

 
A plot of electric current follows: 
  
-->min([y(3,:) y(4,:)]), max([y(3,:) y(4,:)]) 
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 ans  = - 32.655809   
 ans  =   31.88677   
  
-->plot2d([t',t'],[y(3,:)',y(4,:)'],[1,9],'111','I1@I2',[0 -40 100 40]) 
-->xtitle('Electric current ODE solution','t(s)','I1,I2(ampere)') 
 

 
 
In the following example we introduce sinusoidal driving voltages, E1(t) and E2(t): 
  
-->deff('[EE1]=E1(t)','EE1=12*cos(120*%pi*t)') 
  
-->deff('[EE2]=E2(t)','EE2= 6*cos( 60*%pi*t)') 
  
Next, we redefine the function f(t,y) to include E1(t) and E2(t): 
 
-->deff('[dydt]=f(t,y)','dydt = [y(3);y(4);... 
-->-R*y(3)/L1+R*y(4)/L1-y(1)/(L1*C1)+E1(t)/L1;... 
--> R*y(3)/L2-R*y(4)/L2-y(2)/(L2*C2)+E2(t)/L2]') 
The parameters for the solution will be now: 
  
-->t0 = 0; Dt = 0.1; tn = 50; t = [t0:Dt:tn]; 
 
Because the system function f(t,y) is now complicated by the presence of time-dependent 
voltages E1(t) and E2(t), function ode will take a few minutes to complete the solution.   
  
-->y = ode(y0,t0,t,f); 
  
 
To produce a plot of electric charges use:   
  
 
-->min([y(1,:) y(2,:)]), max([y(1,:) y(2,:)]) 
 ans  = - 154.45894   
 ans  =   200.   
  
-->plot2d([t',t'],[y(1,:)',y(2,:)'],[1,9],'111','q1@q2',[0 -200 50 200]) 
  
-->xtitle('Electric charge ODE solution - CASE 2','t(s)','q1,q2(coulomb)') 
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For a plot of the electric currents use: 
  
 
-->min([y(3,:) y(4,:)]), max([y(3,:) y(4,:)]) 
 ans  = - 65.0047   
 ans  =   61.126823   
  
 
-->plot2d([t',t'],[y(3,:)',y(4,:)'],[1,9],'111','I1@I2',[0 -70 50 70]) 
-->xtitle('Electric current ODE solution - CASE 2','t(s)','I1,I2(ampere)') 
 

 
 
 
Solving a fourth-order equation 
 
Consider the fourth-order linear equation presented in an earlier section 
 

 =  +  −  +  + 
d4 y
dx4

3 d3 y
dx3

2 d2 y
dx2

5 dy
dx y 0 , 

 

subjected to  = y 1 ,  = 
dy
dx

-1 ,  = 
d2 y
dx2 0 ,  = 

d3 y
dx3 -1 , at   = x 0 .   To solve this equation we 

transform the fourth-order equation into a first-order system of linear equations: 
 

du3/dx = -3u3(x)+2u2(x)-5u1(x)-y(x)+x2/2,  
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du2/dx = u3(x),  
du1/dx = u2(x), 
dy/dx = u1(x), 

 
or 
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the system of differential equations is written as  
 

dv/dx = Av+g(x). 
 
The initial conditions are y(0) = 1, u1(0) = dy/dx = -1, u2(0) = du1/dx = d2y/dx2 = 0, u3(0) = 
du2/dx = d2u1/dx2 = d3y/dx3 = -1,  
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To implement the solution using SCILAB we first define the function f(x,v) and the parameters 
for the solution 
 
-->deff('[dvdx]=f(x,v)','dvdx=A*[v(1);v(2);v(3);v(4)]+[x^2;0;0;0]') 
-->A = [-3,2,-5,-1;1,0,0,0;0,1,0,0;0,0,1,0]; 
 
-->v0 = [-1;0;-1;1];t0=0;Dt=0.1;tn=10;t=[t0:Dt:tn]; 
 
The numerical solution to the system of differential equations is obtained through: 
  
-->v = ode(v0,t0,t,f); 
 
To produce a plot of the solution y(t) we use: 
  
-->min(v(4,:)),max(v(4,:)) 
 ans  =  - 3.903516   
 ans  = 137.7293   
  
-->plot(t,v(4,:),'t','y(t)','Solution to 4th order equation') 
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The Van der Pol equation 
 
The Van der Pol equation results from the analysis of the Van der Pol oscillator circuit shown in 
the figure below. 
 

 
 
Application of Kirchoff’s laws to this circuit results in the following equations: 
 

C(dE/dt)=I1, RI2 + L(dI2/dt) = E + E0, I3 = f(E), I0 = I1 + I2 + I3 
 
This set of four equations can be reduced to two differential equations 
 

C(dE/dt) = I0 - I2 - f(E) 
L(dI2/dt) = E + E0 - RI2 

 
If we eliminate the resistor from the circuit (R=0), the two differential equations can be 
combined into a single second order differential equation 
 

C(d2E/dt2) + f’(E)(dE/dt) + (E+E0)/L = dIo/dt. 
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The function f(E) represents the response of the tunnel diode to the voltage E, and can be  
taken to be the third-order polynomial 
 

f(E) = KE(E2/3 - (E1+E2)E/2 + E1E2). 
 
Tuning the voltage source E so that E0 = -(E1+E2)/2, we can write  
 

f(E) = KE(E2/3 + E0E/2 + E1E2). 
 
If we define E = (E2-E1)y/2 + (E1+E2)/2 = (E2-E1)y/2 + E0, and scale the time so that τ = t(LC)1/2, 
we can transform the governing equation into the Van der Pol equation 
 

d2y/dτ2 + κ(y2-1)(dy/dτ) + y = 0, 
 
where κ = K((E2-E1)/2)2 (L/C)1/2 and dI0/dt = 0.  
 
The Van der Pol equation, being a second-order equation, can be transformed into a set of two 
first-order equations, by using dy/dτ = u1(τ), and y = u2(τ).  The system of equations is 
 

du1/dτ = -κ(u2
2-1)u1 - u2 

du2/dτ = u1 
or,  

du/dt = f(τ,u), 
with  
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The Van der Pol equation is solved next using SCILAB’s function ode.  The initial conditions 
used are u1(τ) = du2/dτ = dy/dτ = 2, u2(τ) = y = 1 at τ = 0.  The solution is obtained for the range 
0 < τ < 100, and for values of κ = 0.01 and κ = 4.0.   First, we define the function f(τ,u): 
 
-->deff('[ff]=f(t,u)','ff=[-k*(u(2)^2-1)*u(1)-u(2);u(1)]') 
-->u0=[1;2];t0=0;Dt=0.1;tn=100.0;t=[t0:Dt:tn]; 
 
The solution for k = 0.01 is found first: 
  
-->k=0.01;u1=ode(u0,t0,t,f); 
 
To produce plots of the function we determine the maximum and minimum values of u: 
 
-->min(u1),max(u1) 
 ans  =  - 2.2268766   
 ans  =    2.231914    
 
First, we plot the signals u2(τ) = y, and u1(τ) = dy/dτ against τ: 
  
-->plot2d([t' t'],[u1(2,:)' u1(1,:)'],[1,-1],'111','y@dy/dt',[0 -3 100 3]) 
-->xtitle('Van der Pol equation - k = 0.01','t','y,dy/dt') 
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The phase portrait dy/dτ vs. y is shown next: 
 
-->plot(u1(1,:),u1(2,:),'y','dy/dt','Van der Pol equation - k = 0.01') 
 

 
 
The solution to the Van der Pol equation for κ = 4, and the corresponding plots are obtained 
with the following SCILAB commands: 
  
-->k=4.00;u2=ode(u0,t0,t,f); 
  
-->plot(t,u2(2,:),'t','y','Van der Pol equation - k = 4')  //Signal y vs. t 
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-->plot(u2(1,:),u2(2,:),'y','dy/dt','Van der Pol equation - k = 4')  //Phase 
portrait 
 

 
 
 

The Rössler flow 
 
In the analysis of chaotic dynamical systems, a three-dimensional flow is described by a set of 
three ordinary differential equations involving three variables x(t), y(t), and z(t).   The Rössler 
flow is given by the equations (see Bergé et al., 1984, “Order within Chaos - Towards a 
deterministic approach to turbulence,” John Wiley & Sons, New York): 
 

dx/dt = - y - z 
dy/dt =   x + ay 

dz/dt = b + xz - cz 
 
To solve this system using SCILAB function ode we re-write the system as 
 

du/dt = f(t,u) 
 
with 
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In the following exercise we solve for the Rössler flow using a = b = 0.2, c = 5.7, in the interval 
0 < t < 200, with initial conditions x(0) = y(0) = z(0) = 1.  We use a time increment ∆t = 0.1.   
The solution starts by defining the function f(t,u) and the parameters of the flow and of the 
solution: 
 
-->deff('[w]=f(t,u)','w=[-u(2)-u(3);u(1)+a*u(2);b+u(1)*u(3)-c*u(3)]') 
-->a=0.2; b=0.2; c=5.7; t0=0; Dt=0.1; tn=200; t=[t0:Dt:tn]; u0=[1;1;1]; 
 
The solution is stored in variable u from: 
 -->u=ode(u0,t0,t,f); 
 
The following are plots of the signals x(t), y(t), and z(t) resulting from the solution:  
-->plot(t,u(1,:),'t','x','Rossler flow') 
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-->plot(t,u(2,:),'t','y','Rossler flow') 
 

 
-->plot(t,u(3,:),'t','z','Rossler flow') 
 

 
The behavior of the signals is, in general, aperiodic or chaotic.  Phase portraits of signals may 
provide additional information regarding strange attractors resulting from the solution.  A 
phase portrait of signal y vs. x follows: 
  
-->plot(u(1,:),u(2,:),'x','y','Rossler flow') 
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A phase portrait of the rate of change in x, dx/dt, vs. x, is obtained next.  First, we determine 
the length of vector x = u(1,:), and use function mtlb_diff (see Chapter …) to estimate the 
derivative dx/dt.  The next step is to produce a vector xx consisting of the data in u(1,:) but 
reduced by one to make it of the same length as dx.   The phase portrait is shown below: 
  
-->n=length(u(1,:)) 
 n  = 2001.    
-->dx = mtlb_diff(u(1,:))/Dt; 
-->xx=u(1,1:n-1); 
-->plot(xx,dx,'x','dx/dt','Rossler Flow') 
 

 

SSoolluuttiioonnss  ttoo  bboouunnddaarryy  vvaalluuee  pprroobblleemmss  ((BBVVPPss))  
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Boundary value problems consist of ordinary differential equations with conditions provided at 
different values of the independent variable.  Unlike initial boundary problems, which can be 
solved using the same numerical solution after transforming the differential equation into a 
system of first-order differential equations with appropriate initial conditions, boundary value 
problems are not suitable for solution through a single numerical method.  In this section, we 
explore some approaches to the solution of boundary value problems. 
 
 

The shooting method 
 
The simplest type of boundary value problems consists of a second order differential equation, 
d2y/dx2 = g(x,y,dy/dx) subject to the boundary conditions y(x0) = y0 and y(x1) = y1.  The figure 
below illustrate three possible solutions to the initial value problem represented by the same 
differential equation, namely, d2y/dx2 = g(x,y,dy/dx), subject to the initial condition y(x0) = y0, 
and different initial derivative conditions.   There is one value of dy/dx at x = x0 that produces 
the solution that satisfies the second boundary condition y(x1) = y1.  The solution to the 
boundary value problem will be curve (II) in the figure. 
 

 
 

The so-called “shooting” method consists in solving the initial value problem d2y/dx2 = 
g(x,y,dy/dx), subject to the initial condition y(x0) = y0, dy/dx|x = x0 =  y’(x0) = y0’, for different 
values of y0’, and obtaining the corresponding boundary values y1 = y(x1).   As a result we get a 
set of data values { [(y0’)1,(y1)1], [(y0’)2,(y1)2], …, [(y0’)n,(y1)n] }  from which we can interpolate 
the value of y0’ corresponding to the given value of y1.  The solution to the boundary value 
problem, thus, becomes the solution to a number of initial value problems followed by an 
interpolation.   Once the proper value of y0’ is determined, the initial value problem is solved 
one last time. 
A function to implement the shooting method 
 
The following SCILAB user-defined function, shooting, produces the solution to a second-order 
boundary value problem given the boundary conditions y(x0) = y0 and y(x1) = y1.  The second-
order differential equation d2y/dx2 = g(x,y,dy/dx) is transformed into a first-order system of 
two ordinary differential equations of the form du/dx = f(x,u), with u1 = y(x), u2 = du1/dx = 
dy/dx, and 
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The general call to the function is 
 

[u, table, y0p] = shooting(yb,yp,x,f) 
 
The boundary conditions are passed on to the function as a vector yb = [y0 y1].  The solution is 
obtained on a range represented by vector x.  We also need to provide a vector of values of the 
derivative y0’, referred to as yp.  The function returns the values of u as a 2×n matrix, where 
the first row is the function y(x) and the second row is the derivative dy/dx corresponding to 
the values of x.   The function shooting also returns variable table which is a table of values of 
y0’ and the corresponding values of y(x1) that were used to interpolate the initial condition for 
the derivative at x = x0 for the final solution.  The first row in the table are the values of y0’, 
while the second row in the table are the values of y(x1).   In addition to matrices u and table, 
function shooting returns also the derivative boundary condition, y0p = dy/dx|x=x0, interpolated 
from the shooting method.  
 
A listing of the function is shown next: 
 
function [y,xyTable,yderiv] = shooting(yb,yp,x,f) 
 
//Shooting method for a second order 
//boundary value problem 
//yb = [y0 y1] -> boundary conditions 
//x = a vector showing the range of x 
//f = function defining ODE, i.e., 
//    dy/dx = f(x,y), y = [y(1);y(2)]. 
//yp = vector with range of dy/dx at x=x0 
//xyTable = table for interpolating derivatives 
//yderiv  = derivative boundary condition 
 
n  = length(yp); 
m  = length(x); 
y1 = zeros(yp); 
 
for j = 1:n 
 y0    = [yb(1);yp(j)]; 
 yy    = ode(y0,x(1),x,f); 
 y1(j) = yy(1,m); 
end; 
 
xyTable = [y1;yp]; 
yderiv  = interpln(xyTable,yb(2)); 
y0      = [yb(1);yderiv]; 
y       = ode(y0,x(1),x,f); 
 
Consider the case of the second order boundary value problem defined by the ordinary 
differential equation 
 

d2y/dx2 + dy/dx + y = sin(3x), 
 
subject to the boundary conditions y(0) = 1, y(5) = -1.   We re-cast the ODE into the following 
first-order system,  
 

du/dx = f(x,u), 
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with  
 

u1 = y(x), u2 = du1/dx = dy/dx, 
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The boundary conditions are now, u1(0) = 1, u1(5) = -1.    The solution to this boundary value 
problem with SCILAB is accomplished as follows: 
 
-->deff('[w]=f(x,u)','w=[u(2);sin(3*x)-u(1)-u(2)]') 
 
-->yb=[1,-1];x0=0;Dx=0.1;xn=5;x=[x0:Dx:xn];yp=[-10:1:10]; 
  
-->[u,tabl,y0p]=shooting(yb,yp,x,f); 
 
 
The plot of the solution is produced by using: 
  
-->plot(x,u(1,:),'x','y','shooting method solution 2nd order BVP') 
 

 

 
 
 
To illustrate the shooting method applied to the second-order boundary value problem 
presented above, we produce numerical solutions to the corresponding second-order ordinary 
differential equation using initial conditions y(0) = 1 and different derivative boundary 
conditions to produce the following graph.  The solution to the boundary value problem with 
boundary conditions y(0) = 1 and y(5) = -1 is discontinuous curve in the graph. 
 
 
-->yp0 = [3,6,9,12,15];    //Different values of dy/dx at x = 0 
  
-->um = zeros(5,m);        //Calculate different solutions         
  
-->for k =1:5 
-->    y0 = [1;yp0(k)]; 
-->    uu = ode(y0,x0,x,f); 
-->    um(k,:) = uu(1,:); 
-->end; 
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-->plot2d([x',x',x',x',x'],[um(1,:)',um(2,:)',um(3,:)',um(4,:)',um(5,:)'],... 
-->[1,2,3,4,5],'111','y0p=3@y0p=6@y0p=9@y0p=12@y0p=15',... 
-->[0 -5 5 10]) 
  
-->plot2d(x',u(1,:)',-1,'011',' ',[0 -5 5 10]) 
  
-->xtitle('Boundary value solution - shooting method','x','y') 
 

 
 
 

 

Outline of the implicit solution for a second-order BVP 
 
In this section we present the outline for an implicit, finite-difference based solution to the 
second order boundary value problem  
 

d2y/dx2+y = 0, 
 
in the x-interval (0,5) subject to y(0) = 1, and y(5) = 0. Use ∆x = 0.1. 
 
We discretize the differential equation using the finite difference approximation   
 

d2y/dx2 = (yi+2-2⋅yi+1+yi)/(∆x2) , 
which results in 

(yi+1-2*yi+yi-1)/(∆x2)+yi = 0. 
 
From this result we get the following implicit equations: 
 

yi-1-(2-∆x2)⋅yi+yi+1 = 0, 
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for i = 2,3, ..., n-1.   There are a total of (n-2) equations, corresponding to the (n-2) unknowns 
y2, y3, ...,yn-2, yn-1 [y1 = y(0) and yn = y(5)].  Therefore, the resulting set of linear algebraic 
equations has a unique solution.  The implementation of the solution for this example is left as 
an exercise for the reader. 
 
 

Function bvode for the solution of boundary value problems 
 
SCILAB provides function bvode for the numerical solution of boundary value problems.   The 
function works on a general boundary value problem, which, as indicated earlier, requires a lot 
of detailed information in its set up.  The problem solved through function bvode consists of 
the boundary value problem: 
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For example, the second-order differential equation 
 

d2y/dx2 + 5(dy/dx) + y = cos(x), 
is re-written as 

d2y/dx2 = cos(x) - y - 5(dy/dx), 
 
or, with, u1 = y(x), u2 = dy/dx, as 
 

d2y/dx2 = f(x,u) = cos(x) - u1 -5u2. 
 

 
External SCILAB functions used with bvode 
 
Using SCILAB, the function f(x,u) can be defined, for example, as 
 
deff(‘[ff] = f(x,u)’,’ff=cos(x)-u(1)-5*u(2)’) 
 
The general boundary value problem  dm*y/dxm* = f(x,u) is solved in the interval [xL,xR], with 
the boundary conditions provided through a function g(i,u) = 0, so that g(i,u) = ui - bcj, with ui = 
di-1y/dxi-1, and bcj being the corresponding boundary condition at point x = ζj.  The values of ζj, 
j = 1,2, …, m*, are provided in vector ζ(zeta), and they are either xL or xR, i.e., the location of 
the boundaries for the problem.   
 
For example, if the equation is of order 2 (m*=2), and the boundary conditions are y(xL) = y0 
and y(xR) = y1, we will write the vector zeta as ζ = [xL,xR], or ζ1 = xL, ζ2 = xR, and g(1,u) = u1 - 
y0, g(2,u) = u2 - y1.   The latter results are equivalent to u1(ζ1) = y(xL) = y0 and u2(xR) = y(xR) = 
y1. 
 
As a second example, assume that the equation to be solved is of order 3 (m*=3) subject to 
boundary conditions y(xL) = y0, dy/dx|x=xL = y0’, and y(xR) = y1.  The vector zeta is written as ζ 
= [xL,xL,xR], and the function g(i,u) given by g(1,u) = u1 - y0, g(2,u) = u2 - y0’, g(3,u) = u1 - y1.   
If instead, the boundary conditions are y(xL) = y0, and y(xR) = y1, dy/dx|x=xR = y1’,  the vector 
zeta is written as ζ = [xL,xR,xR], and function g(i,u) given by g(1,u) = u1 - y0, g(2,u) = u1 - y1,  
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g(3,u) = u2 - y1’.  Another possibility is that two of the boundary conditions are derivatives, 
e.g., y(xL) = y0, dy/dx|x=xL = y0’, and dy/dx|x=xR = y1’.  In this case we would have  ζ = 
[xL,xL,xR], and g(1,u) = u1 - y0, g(2,u) = u2 - y0’,  g(3,u) = u2 - y1’.   Thus, there is a one-to-one 
relationship between the elements of vector zeta and values of function g(i,u) representing 
boundary conditions of the problem.    
  
Function bvode requires that we pass also derivatives of the functions f(x,u) and g(x,u).  Let’s 
refer to the functions that calculate those derivatives as df(x,u) and dg(i,u).  Function df 
represents a vector [df1, df2, …, dfm*] with dfi = df(x,u)/dui, while function dg represents a 
vector whose elements are dgij = dgi/duj for a fixed value of i.  Referring to the second-order 
boundary value problem described earlier, namely, d2y/dx2 = f(x,u) = cos(x) - u1 -5u2, subject 
to the boundary conditions y(1) = 0.5 and y’(2) = -1.5, we would define the zeta vector as ζ = 
[1,2], with g1 = g(1,u) = u1 - 0.5, and g2 = g(2,u) = u2 + 1.5.   The derivative functions would be 
df1 = ∂f/∂u1 = -1, df2 = ∂f/∂u2 = -5, dg11 = ∂g1/∂u1 = 1.0, dg12 = ∂g1/∂u2 = 0.0, dg21 = ∂g2/∂u1 = 0, 
dg22 = ∂g2/∂u2 = 1.0.  Using SCILAB, we will define the functions f(x,u), g(i,u), df(x,u), dg(i,u) 
as follows: 
 
   deff('[ff]  = f(x,u) ','ff=cos(x)-u(1)-5*u(2)'); 
   deff('[dff] = df(x,u)','dff = [-1,-5]'); 
   deff('[gg]  = g(i,u) ',['gg=[u(1)-1,u(2)+1]','gg=gg(i)']); 
   deff('[dgg] = dg(i,u)',['dgg = [1,0;0,1]';'dgg=dgg(i,:)']); 
 
Notice that functions f(x,u) and g(x,u) return a single value, while functions df(x,u) and dg(x,u) 
return vectors. 
 
The user may also define a function that provides initial guesses of the solution.  The general 
call for this function is  
 
[u0,du0] = guess(x) 
 
where x is a vector, e.g., x = [xL:Dx:xR], with Dx = increment in x.   Function guess provides 
initial guesses for the solution u0 = [(u1)0; (u2)0; …;(um*)0] and for the derivative of the solution, 
du0 = [(du1/dx)0, (du2/dx)0, …, (dum*/dx)0].   Typically, this function is not used in the solution, 
i.e., no initial guesses of the solution and its derivative are provided, and the function guess 
can simply be defined as 
 
deff(‘[u0,du0] = guess(x)’ , [‘u0= 0’, ‘du0 =0’]) 
 
 
General call to function bvode 
 
The general call to the function bvode is as follows: 
 
[u] = =bvode(x,n,m,xL,xR,zeta,ipar,ltol,tol,fixpnt,f,df,g,dg,guess) 
 
where x is a vector of values of the independent variable, x = [xL:DX:xR]; n is the number of 
differential equations to be solved (n = 1 for the case under consideration); m is a vector whose 
elements indicate the order each of the equations being solved (m =[m*] in this case);  xL and 
xR are the extremes of the interval where the solution is sought; zeta is the vector specifying 
the location of the boundary conditions (examples of how to put together vector zeta were 
presented earlier); ipar is a vector of 11 solution parameters whose components are described 
below; ltol and tol are vectors specifying the number of the component of u and the tolerance 
for the solution of those components; fixpnt indicates the number of fixed points in the 
interval [xL, xR] other than the extremes (typically, fixpnt = 0); f, df, g, dg, and guess are 
external SCILAB functions described earlier. 
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Description of elements of vector ipar 
 
Next, we describe the elements of vector ipar, showing typical values for the solution of simple 
boundary value problems.  For a more detailed description of these parameters, use  
 
--> help bvode 
 

•  ipar(1)  determines whether the boundary value problem is linear (ipar(1) = 0) or non-
linear (ipar(1) = 1). 

 
•  ipar(2) determines the number of collocation points per subinterval.  Typically, ipar(2) 

= 0. 
 

•  ipar(3)   = number of subintervals in the initial mesh.  Typically, ipar(3) = 0, in which 
case the number of subintervals is set to 5. 

 
•  ipar(4)   = number of solution and derivative tolerances, with 0 < ipar(4) ≤ m*. 

 
•  ipar(5), ipar(6)   = dimensions of workspaces (vectors).  Select a relatively large 

number for those parameters, say 10000 or 15000. 
 

•  ipar(7) determines the type of output produced by the function bvode.  With ipar(7) = -
1, bvode produces a full diagnostic printout, with ipar(7) = 0 bvode produces selected 
printout, and with ipar(7) = 1 bvode produces no printout. 

 
•  ipar(8) controls the type of mesh used in the solution.  If ipar(8) = 0 bvode generates a 

uniform initial mesh.   
 

•  ipar(9)  is used to indicate whether or not initial guesses for the solution are provided.  
For example, if ipar(9) = 0, bvode understands that no initial guess for the solution is 
provided. 

 
•  ipar(10) offers options for breaking out of function bvode in case convergence problems 

are detected.   For regular problems use ipar(10) = 0.  
 

•  ipar(11)  = number of fixed points in the mesh other than xL and xR. This number is the 
same as the dimension of fixpnt.  Typically, ipar(11) = 0. 

 
For the solution of the second-order boundary value problem described earlier in this section, 
the vector ipar can be put together as: 
 
ipar=0*ones(1,11) 
ipar(3)=1;ipar(4)=2;ipar(5)=10000;ipar(6)=2000;ipar(7)=1 
 
 
Application of function bvode to a second order boundary value problem 
 
The problem to be solved is the one that has been described above, namely, 
 

d2y/dx2 = f(x,u) = cos(x) - u1 -5u2, 
 
subject to the boundary conditions  
 

y(1) = 0.5 and y’(2) = -1.5. 
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The parameters n and m in the call to function bvode for this problem are n = 1 and m = [2].  
Also, fixpnt = 0.  Functions f,df,g,dg, and guess for this problem were defined earlier. We also 
defined the vectors zeta and ipar.   The boundaries are located at xL = 1 and xR = 2.  Using an 
x-increment Dx = 0.1, we can define the solution points as x = [xL:Dx:xR].   There is a couple of 
arguments, namely, ltol and tol that need to be defined.   Vector ltol indicates the indices of u 
for which a tolerance for convergence will be defined.   For this case we can take ltol = [1,2] 
to define convergence tolerance for both the first and second components of u.  The tolerances 
are relatively small numbers, say, tol = [1e-10, 1e-10].   
 
Having defined all the arguments for function bvode we put all the steps leading to the 
function call together in the following SCILAB script: 
 
//Script for 2nd order boundary value problem solution with bvode 
 
   deff('[ff]  = f(x,u) ','ff=cos(x)-u(1)-5*u(2)'); 
   deff('[dff] = df(x,u)','dff = [-1,-5]'); 
   deff('[gg]  = g(i,u) ',['gg=[u(1)-1,u(2)+1]','gg=gg(i)']); 
   deff('[dgg] = dg(i,u)',['dgg = [1,0;0,1]';'dgg=dgg(i,:)']); 
   deff('[u0,du0] = guess(x)' , ['u0= 0', 'du0 =0']); 
 
   n=1;m=[2];fixpnt=0;xL=0;xR=2;Dx=0.1; 
   x = [xL:Dx:xR]; 
   zeta=[xL,xR]; 
 
   ipar=zeros(1,11); 
   ipar(3)=1;ipar(4)=2;ipar(5)=10000;ipar(6)=2000;ipar(7)=1; 
 
   ltol=[1,2]; 
   tol=[1.e-5,1.e-5]; 
 
   u=bvode(x,n,m,xL,xR,zeta,ipar,ltol,tol,fixpnt,f,df,g,dg,guess); 
    
   xset('window',1)  
   plot(x,u(1,:),'x','y(x)','BVODE 2nd order solution') 
 
   xset('window',2)  
   plot(x,u(2,:),'x','dy/dx','BVODE 2nd order solution') 
 
 
Placing this script in file bvp2 within the SCILAB working directory, it can be executed through: 
 
-->exec(‘bvp2’) 
 
The resulting plot shows the solution for y(x) and dy/dx versus x: 
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Function bvode applied to a third-order boundary value problem 
 
Consider the third-order ordinary differential equation 
 

x2(d3y/dx3) + (1-x)(d2y/dx2) -3(dy/dx) + y = x+1 
 
subject to the boundary conditions, y(0) = 2.5, y(10) = 4.5, dy/dx|x=10 = -1.  To solve this 
problem using function bvode we first re-cast the differential equation as 
 

d3y/dx3 = f(x,u) = (x+1-(1-x)u3 -3u2 + u1)/x2
 

 
with u1 = y(x), u2 = dy/dx, u3 = d2y/dx2, and u = [u1;u2;u3].   The boundary condition functions 
will be g1 = g(1,u) = u1 - 2.5, g2 = g(2,u) = u1 - 4.5, and g3 = g(3,u) = u2 + 1.  The derivative 
functions will be df = [1/x2, -3/x2, (1-x)], and dg = [1,0,0;1,0,0;0,1,0].   The zeta vector is zeta 
= [0,10,10].  Also, n = 1, m = [3], fixpnt = 0.    
 
The following script solves the boundary value problem and produces graphs of the function 
y(x) and its first two derivatives: 
 
//Script for 3rd order boundary value problem solution with bvode 
   deff('[ff]  = f(x,u) ','ff=(x+1-(1-x)*u(3)-3*u(2)+u(1))/x^2'); 
   deff('[dff] = df(x,u)','dff = [1/x^2,-3/x^2,(1-x)/x^2]'); 
   deff('[gg]  = g(i,u) ',['gg=[u(1)-2.5,u(1)-4.5,u(2)+1]','gg=gg(i)']); 
   deff('[dgg] = dg(i,u)',['dgg = [1,0,0;1,0,0;0,1,0]';'dgg=dgg(i,:)']); 
   deff('[u0,du0] = guess(x)' , ['u0= 0', 'du0 =0']); 
   n=1;m=[3];fixpnt=0;xL=0;xR=10;Dx=0.1; 
   x = [xL:Dx:xR]; 
   zeta=[xL,xR,xR]; 
   ipar=zeros(1,11); 
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   ipar(3)=1;ipar(4)=3;ipar(5)=50000;ipar(6)=50000;ipar(7)=1; 
   ltol=[1,2,3]; 
   tol=[1.e-5,1.e-5,1e-5]; 
   u=bvode(x,n,m,xL,xR,zeta,ipar,ltol,tol,fixpnt,f,df,g,dg,guess); 
   xset('window',1);plot(x,u(1,:),'x','y(x)','BVODE 3rd order solution') 
   xset('window',2);plot(x,u(2,:),'x','dy/dx','BVODE 3rd order solution') 
   xset('window',3);plot(x,u(3,:),'x','d2y/dx2','BVODE 3rd order solution') 
 

 

 

 
 

Application of bvode to a third-order problem with one interior 
fixed point 
 
The following example solves the same third-order boundary value problem as before, except 
that now the boundary conditions are located at three different locations: y(0) = 2.5, y(5) = 
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4.5, y(10) = -1.   To account for boundary conditions at three different locations, it is necessary 
to change a few of the parameters in the script, including introducing xM = 5, and using fixpnt 
= [5],   zeta=[xL,xM,xR],   ltol=[1], and tol=[1.e-5].  Also, the option ipar(11)=1 is introduced. 
 
//Script for 3rd order boundary value problem solution with bvode 
//Case of three different boundary points 
   deff('[ff]  = f(x,u) ','ff=(x+1-(1-x)*u(3)-3*u(2)+u(1))/x^2'); 
   deff('[dff] = df(x,u)','dff = [1/x^2,-3/x^2,(1-x)/x^2]'); 
   deff('[gg]  = g(i,u) ',['gg=[u(1)-2.5,u(1)-4.5,u(1)+1]','gg=gg(i)']); 
   deff('[dgg] = dg(i,u)',['dgg = [1,0,0;1,0,0;1,0,0]';'dgg=dgg(i,:)']); 
   deff('[u0,du0] = guess(x)' , ['u0= 0', 'du0 =0']); 
   n=1;m=[3];fixpnt=[5];xL=0;xR=10;Dx=0.1;xM = 5; 
   x = [xL:Dx:xR]; 
   zeta=[xL,xM,xR]; 
   ipar=zeros(1,11); 
   ipar(3)=1;ipar(4)=1;ipar(5)=50000;ipar(6)=50000;ipar(7)=1;ipar(11)=1; 
   ltol=[1]; 
   tol=[1.e-5]; 
   u=bvode(x,n,m,xL,xR,zeta,ipar,ltol,tol,fixpnt,f,df,g,dg,guess);    
   xset('window',1)  
   plot(x,u(1,:),'x','y(x)','BVODE 3rd order solution') 
   xset('window',2)  
   plot(x,u(2,:),'x','dy/dx','BVODE 3rd order solution') 
   xset('window',3)  
   plot(x,u(3,:),'x','d2y/dx2','BVODE 3rd order solution') 
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Application of bvode to a fourth-order problem with two interior 
fixed points 
 
Consider the fourth-order ordinary differential equation 
 

x3(d4y/dx4) +6x2(d3y/dx3) +6x(d2y/dx2) = (x+1)1/2, 
 
subject to the boundary conditions y(1) = 1, dy/dx|x=1.2 = -2, d2y/dx2|x=1.7 = -0.5, d3y/dx3|x=7 = -
0.1.  With u1 = y, u2 = dy/dx, u3 = d2y/dx2, u4 = d3y/dx3, and u5 = d4y/dx4, the fourth-order 
system is written as 

d5y/dx5 = f(x,u) = (1-6x2u4 - 6xu3)/x3 + (x+1)1/2. 
 
The boundary conditions will be described by 
 

g1=g(1,u) = u1 - 1, g2=g(2,u) = u2 + 2, g3=g(3,u) = u3 + 0.5, g4=g(4,u) = u3 + 0.1. 
 
The derivatives of functions f and g are given by 
 

df1 = 0, df2 = 0, df3 = -6/x2, df4 = -6/x, 
 
and 
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The parameters fixptn and ipar(11) are redefined as fixptn = [1.2,1.7] and ipar(11) = 2.   Since 
we have four possible derivatives to deal with in the boundary conditions we want to redefine 
ltol and tol as ltol = [1,2,3,4] and tol=[1e-5,1e=5,1e-5,1e-5], respectively.  The value of ipar(4) 
is changed to ipar(4) = 4.  The value of m is changed to m = [4]. 
 
The following SCILAB script produces the solution for the problem just described. 
 
//Script for 4th order boundary value problem solution with bvode 
//Problem includes 2 interior points 
   deff('[ff]  = f(x,u) ','ff=(1-6*x**2*u(4)-6*x*u(3))/x**3+sqrt(x+1)'); 
   deff('[dff] = df(x,u)','dff = [0,0,-6/x**2,-6/x]'); 
   deff('[gg]  = g(i,u) ',['gg=[u(1)-1,u(2)+2,u(3)+0.5,u(4)+0.1]','gg=gg(i)']); 
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   deff('[dgg] = dg(i,u)',['dgg = [1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1]';... 
    'dgg=dgg(i,:)']); 
   deff('[u0,du0] = guess(x)' , ['u0= 0', 'du0 =0']); 
   n=1;m=[4];fixpnt=[1.3,1.7];xL=1;xR=2;Dx=0.1;x = [xL:Dx:xR]; 
   zeta=[1,1.3,1.7,2]; 
   ipar=zeros(1,11); 
   ipar(3)=1;ipar(4)=4;ipar(5)=20000;ipar(6)=20000;ipar(7)=1 
   ipar(11)=2; 
   ltol=[1,2,3,4] 
   tol=[1.e-11,1.e-11,1.e-11,1.e-11] 
   u=bvode(x,n,m,xL,xR,zeta,ipar,ltol,tol,fixpnt,f,df,g,dg,guess); 
   xset('window',1); plot(x,u(1,:),'x','y(x)','BVODE 4th order solution') 
   xset('window',2); plot(x,u(2,:),'x','dy/dx','BVODE 4th order solution') 
   xset('window',3); plot(x,u(3,:),'x','d2y/dx2','BVODE 4th order solution') 
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BBoouunnddaarryy  vvaalluuee  pprroobblleemmss  wwiitthh  eeiiggeennvvaalluueess  
 
Consider the boundary value problem 
 

,02

2

=+ y
dx

yd λ  

 
subject to y(0) = 0 and y(L) = 0, where λ is an unknown value.    Assuming that λ > 0, the 
solution is a sinusoidal wave, i.e.,  
 

y(x) = C1 sin(√λx) + C2 cos(√λx). 
 
Replacing the boundary condition y(0) = 0 produces 0 = C2, thus, the solution reduces to  
 

y(x) = C1 sin(√λx). 
 
The second boundary condition, namely, y(L) = 0, produces the eigenvalue equation 
 

0 = C1 sin(√λL). 
 
Since, in general, we want the constant C1  to be different from zero, the equation is satisfied 
if 

sin(√λL) = 0, 
 
i.e., if √λL = π, 2π, …   Thus, the problem has an infinite number of eigenvalues, λn = n2π2/L2, 
n=1,2,…  Associated with each eigenvalue is the eigenfunction sin(nπx/L).   The most general 
solution to the original boundary value problem is a linear combination of the eigenfunctions, 
i.e.,  

.sin)(
1

2

22

∑
∞

=






⋅=

n
n L

xnCxy π
 

 
Notice that the ordinary differential equation that defines the boundary value problem has a 
solution only for specific values of the constant λ.    
 
 

Numerical solution to a boundary value problem with eigenvalues 
 
Using finite difference approximations for the derivatives, it is sometimes possible to find a 
few eigenvalues of a boundary value problem such as the one described above.  Using, for 
example, a centered finite difference formula for the derivative d2y/dx2, i.e.,  
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into the differential equation 

,02

2

=+ y
dx

yd λ  

 
produces the following difference equation 
 

,2
11

)(
2

i
iii y

x
yyy

⋅−=
∆

+− +− λ  

 
for i=2,3,…,n-1.   Implied in the latter result is the fact that the range of values of x, i.e., 0 < x 
< L, is divided into n-1 increments of size ∆x = L/(n-1).  Thus, yi = y(xi), where xi = i⋅∆x.    Also, 
y1 = y(0) = 0, and yn = y(L) = 0.   
 
The problem involves n-2 unknowns y2,y3,…,yn-1, in n-2 equations.  For example, for L = 1, n = 
5, ∆x = 1/(5-1) = 0.25,  1/(∆x)2 = 16.  The general equation becomes 
 

,163216 11 iiii yyyy ⋅−=+−⋅ +− λ  
 
for i=2,3,4.  We have, therefore, the following three equations: 
 

16y1-32y2+16y3 = -λy2, 
16y2-32y3+16y4 = -λy3, 
16y3-32y4+16y5 = -λy4. 

 
 
 
 
 
 
With y1 = y5 = 0, the three equations result in 

 
-32y2+16y3        = -λy2, 
 16y2-32y3+16y4 = -λy3, 
         16y3-32y4 = -λy4. 

 
The resulting system of equations can be written in matricial form as 
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or, with 
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as,  

Ay = λy. 
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This is the classical eigenvalue problem which can be solved using SCILAB function spec or the 
user-defined function eigenvectors developed in Chapter 5.    
 
 

A function for calculating eigenvalues for a boundary value problem 
 
The following function, BVPeigen1, programs the solution to the boundary value problem 
described earlier, namely,  

,02

2

=+ y
dx

yd λ  

 
subject to y(0) = 0 and y(L) = 0, where λ is an unknown value.    The function call is 
 
[x,y,lam]  = BVPeigen1(L,n) 
 
where x is a vector containing the values xi, y is a matrix whose columns are the eigenvectors 
of the eigenvalue problem developed earlier (these eigenvectors are computed using function 
eigenvectors, developed in Chapter 5), and lam is a vector containing the n eigenvalues of the 
problem.  The arguments of the function are the domain length L and the number of points in 
the solution n.   The function also plots the eigenvectors for the first five eigenvalues found.  
These eigenvectors represent eigenfunctions yn(x).  A listing of the function follows: 
 
function [x,y,lam] = BVPeigen1(L,n) 
 
Dx = L/(n-1);  
x=[0:Dx:L];  
a = 1/Dx^2;  
k  = n-2;   
    
A = zeros(k,k); 
for j = 1:k 
    A(j,j) = 2*a; 
end; 
for j = 1:k-1 
    A(j,j+1) = -a; 
    A(j+1,j) = -a; 
end; 
 
getf('eigenvectors'); 
 
[yy,lam]=eigenvectors(A); 
//disp('yy');disp(yy); 
 
y = [zeros(1,k);yy;zeros(1,k)]; 
//disp('y');disp(y); 
 
 
xmin=min(x);xmax=max(x);ymin=min(y);ymax=max(y); 
rect = [xmin ymin xmax ymax]; 
xset('window',1);xset('mark',[-1:-1:-10],1); 
if k>=5 then 
   m = 5; 
else 
   m = k; 
end 
 
for j = 1:m 
    plot2d(x',y(:,j), j,'011',' ',rect); 
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    //plot2d(x',y(:,j),-j,'011',' ',rect); 
end; 
xtitle(‘Eigenfunctions for D2y+lam*y=0’,’x’,’y’) 
 
 
For example, for L  = 1 and n = 5, the following solution is obtained: 
 
-->getf('BVPeigen1') 
  
-->[x,y,lam]=BVPeigen1(1,5) 
  
 lam  = !   9.372583    32.    54.627417 ! 
 
  
y  = 
  
!   0.           0.           0.        ! 
!    .5        -  .7071068     .5       ! 
!    .7071068    3.140E-16  -  .7071068 ! 
!    .5           .7071068     .5       ! 
!   0.           0.           0.        ! 
 x  = 
  
!   0.     .25     .5     .75    1. !  
 
Notice that the first eigenvalue found is λ1 = 9.372583, close to the theoretical value of π2 = 
9.8696.  A plot of the eigenfunctions follows. 
 

 
 
To see the eigenfunctions in a more continuous fashion, we call function BVPeigen1 using n = 
50: 
 
-->[x,y,lam]=BVPeigen1(1,50); 
 
The first eigenvalue for n=50 is 9.866224, closer to the theoretical value of π2 = 9.8696 than 
the first eigenvalue found earlier for n=5.  The plot of the eigenfunctions for n=50 is shown 
below. 
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Notice that if the equation under consideration, d2y/dx2 + λy = 0, represents the equation of a 
vibrating string, the eigenfunctions represent what are referred to as the different modes of 
vibration of the string.  The eigenvalues represent the different natural angular frequencies of 
vibration of the string. 
 
 

EExxeerrcciisseess  
 
 
[1]. Determine the general solution to the following linear ordinary differential equations using 
the corresponding characteristic equation: 
 
(a) d3y/dx3 + 4(dy/dx) + 5y = 0.   (b) d2y/dx2 + 2(dy/dx)+y = 0. 
(c) d4y/dx4+ d2y/dx2 + dy/dx + 3y = 0  (d) d2y/dx2 - 3y = 0 
 
[2].  Obtain the particular solution to the following second order equations: 
 
(a) d2y/dx2 + 3(dy/dx) + y = 2e-x   (b) d2y/dx2 + 2y = 2x2 + x 
(c) d2y/dx2 + dy/dx = sin(2x)   (d) d2y/dx2 + y = cos x 
 
[3]. Plot the time variation of position, velocity, and acceleration of a damped mechanical 
oscillator for the following parameters: 
 

(a) m = 2 kg, β = 0.01 Ns/m, k = 2 N/m, x0 = 0.2 m, v0 = 1.2 m/s 
(b) m = 4 kg, β = 0.10 Ns/m, k = 2 N/m, x0 = 0.2 m, v0 = 1.2 m/s 
(c) m = 1 kg, β = 0.02 Ns/m, k = 2 N/m, x0 = 0.2 m, v0 = 1.2 m/s 
(d) m = 0.5 kg, β = 0.25 Ns/m, k = 2 N/m, x0 = 0.2 m, v0 = 1.2 m/s 

 
[4].  Plot v-vs-x, a-vs-x, and a-vs-v phase portraits of the motions described in problem [3]. 
 
[5].  The mechanical oscillators described in problem [3] are subjected, respectively, to the 
driving forces shown below.  In each case, plot the time variation of position, velocity, and 
acceleration of the resulting motions.  Also, plot the v-vs-x, a-vs-x, and a-vs-v phase portraits 
of the motions. 
 
(a) F0 = 2.5 N, ω  = 0.5 rad/s   (b) F0 = 10 N, ω  = 0.05 rad/s 
(c) F0 = 0.5 N, ω  = 1.5 rad/s   (d) F0 = 4 N, ω  = 0.25 rad/s 
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[6]. For the following functions approximate the derivative df/dx at x = a with (f(a+h)-f(a))/h 
using values of h = 0.1, 0.01, 0.001, 0.0001, 0.00001.  Plot the error involved in the numerical 
estimate of the derivative against the value of h. 
(a) f(x) = sin(2x), x = π    (b) f(x) = (x2+3x)/(x+1), x = 2 
(c) f(x) = 1/(1+x2), x = -1   (d) f(x) = tan(x), x = π/4 
 
[7].  Repeat problem [4] but using a centered difference, i.e., (f(a+h)-f(a-h))/(2h). 
 
[8]. Repeat problem [4] for the second derivative d2f/dx2  using the forward difference 
approximation (f(a+2h)-2f(a+h)+f(h))/h2. 
 
[9].  Repeat problem [4] for the second derivative d2f/dx2  using the centered difference 
approximation (f(a-h)-2f(a)+f(a+h))/h2. 
 
[10]. Given the ODE,  

dy/dx = y⋅sin(x), 
 
and the boundary condition,  

y(0) = 1, 
 

write a SCILAB function that uses the Euler method to obtain a numerical solution to this ODE 
in the interval 0 < x < 2.5.  Use ∆x =  0.25, 0.1, and 0.05.   The exact solution is given by  

 
y = 2/(cos x+1). 

 
Plot the numerical solution against the exact solution for comparison. 
 
[11]. Write a SCILAB function to produce an implicit solution for the first-order ODE from 
problem [10].  The exact solution is y(x) = 1/x. 
  
[12]. Write a SCILAB function to complete the explicit solution for the second-order ODE 
d2y/dx2 + y = 0.  An outline of the solution is presented elsewhere in this chapter.  The exact 
solution is y(x) = sin x + cos x. 
 
[13]. Write a SCILAB function to complete the implicit solution for the second-order ODE from 
problem [12].  The exact solution is y(x) = sin x+cos x. 
 
[14].  Use SCILAB function ode to solve the following ordinary differential equations 
numerically.  Plot the numerical results for the different values of ∆x.   
 

(a) dy/dx = xy + sin(x), y(0) = 1, a = 0, b = 1, ∆x = 0.2, 0.1, 0.05, 0.01 
(b) dy/dx = sin(x)cos(y), y(0) = 0, a = 0, b = π, ∆x = π /10, π /20, p/50, π /100 
(c) dy/dx = exp(xy), y(0) = 1, a = 0, b = 10, ∆x = 1, 0.5, 0.2, 0.1 
(d) dy/dx = x2 - sin(x), y(0) = 2, a = 0, b = 5, ∆x = 0.5, 0.25, 0.1, 0.05 

 
[15]. Solve the following systems of differential equations using matrices.  Plot the solutions 
against x. 
 

(a) dy1/dx = 2y1 - y2, dy2/dx = 2(y2-y1), y1(0) = 1, y2(0) = -1 
(b) dy1/dx = -5y1 + y2

 + x2, dy2/dx = -y1-y2
 - 5x, y1(0) = 0, y2(0) = 2 

(c) dy1/dx = 2y1 - y2, dy2/dx = 2y2-y1, dy3/dx = y3-y1,  y1(0) = 1, y2(0) = -1, y3(0) = 2 
(d) dy1/dx = 2y1 - y2

 + y3
 + x, dy2/dx = -y1+ 2y2

 -2x, dy3/dx = y3-y1,  y1(0) = 1, y2(0) = -1, y3(0) 
= 2 

 



 

Download at InfoClearinghouse.com  99                                      © 2001 Gilberto E. Urroz  

[16].  Solve the systems of differential equations of problem [15] using SCILAB function ode. 
Plot the solutions against x. 
 
[17]. Convert the following linear differential equations into systems of first-order ODEs and 
solve for y(x) using SCILAB function ode.  Plot the solution y(x): 
 

(a) d2y/dx2 + dy/dx + 2y = x, y(0) = 1, dy/dx = -1 at x = 0. 
(b) d3y/dx3 - 5(dy/dx) + y = 0, y(0) = 0, dy/dx = -1 and d2y/dx2 = 1 for x = 0 
(c) d3y/dx3 - (d2y/dx2) + y = x, y(0) = 0, dy/dx = -1 and d2y/dx2 = 1 for x = 0 
(d) d2y/dx2 + 2y = sin(x), y(0) = 1, dy/dx = -1 at x = 0. 

 
[18].  The figure below shows two particles P1 and P2, of mass m1 and m2, respectively, linked 
by three springs (kA, kB, kC).  The figure at the top represents the system in their state of 
equilibrium, while the one at the bottom shows the system at any generic point at time t>0.  
The displacement of particle P1 with respect to its equilibrium position is given by x1(t) while 
that of particle P2 is given by x2(t).  The corresponding velocities are v1 = dx1/dt and v2 = 
dx2/dt.   The magnitude of the forces applied by the springs on the particles are given by 
Hooke's law, F = k(L-L0), where L is the stretched length of the spring, L0 is the unstretched 
length of the spring, and k is the spring constant.  The particles are also provided by dashpots 
that produce a viscous damping force whose magnitude is given by F = βv, where b is a damping 
constant and v is the speed of the particle, i.e., F = β(dx/dt), where x = position of the 
particle. 
 
 

 
 
(a) Write down the differential equations describing the motion of the two linked particles 
including spring and damping forces as shown in the figure above. 
 
(b) Solve for x1(t) and x2(t) if m1 = 10 kg, m2 = 20 kg, kA = 80 N/m, kB = 120 N/m, kC = 100 N/m, 
β1 = 1 N⋅s/m, β2 = 5 N⋅s/m.  The initial conditions are given by x1(0) = 0.5 m, x2(0) = 0.25 m, 
v1(0) = 0, v2(0) = 1.0 m/s.  Plot the signals and the velocity versus time for 0 < t < 5 s. 
 
(c) Solve for x1(t) and x2(t) if m1 = 10 kg, m2 = 20 kg, kA = 80 N/m, kB = 120 N/m, kC = 100 N/m, 
β1 = 0, for values of β2 =0, 0.1, 0.5, 1, and  5 N⋅s/m.  The initial conditions are given by x1(0) = 
0.5 m, x2(0) = 0.25 m, v1(0) = 0, v2(0) = 1.0 m/s.  Plot the signals and the velocity versus time 
for 0 < t < 5 s for the different values of β2. 
 
(d)  Write the differential equations for x1(t) and x2(t) if an external force F1 = F0 sin(ω0t + φ0) 
is applied to particle P1 in addition to the spring and damping forces.   
 
(e) Using the conditions of part (a) of this problem solve for x1(t) and x2(t) for the case in which 
particle P1 is subject to the external force F1 = F0 sin(ω0t + φ0) with F0 = 20 N, ω0 = 2.5 rad/s, 



 

Download at InfoClearinghouse.com 100                                      © 2001 Gilberto E. Urroz  

and φ0 = 1.5 rad.  Plot the signals, velocity, and acceleration versus time for 0 < t < 5 s for the 
different values of β2. 
 
[19].  Consider the following two-loop electric circuit with R0 = 2500 ohms, R1 = 1500 ohms, R2

 = 
1000 ohms, L1 = 500 henrys, L2 = 800 henrys, C1 = 0.00006 farads, and C2 = 0.001 farads. 
 

 
 

(a) Write down the system of differential equations describing the electric charges 
q1(t) and q2(t) in the capacitors C1

 and C2, respectively, and the electric currents I1(t) 
and I2(t) in the loops when the switches are turned on. 

 
(b) For q1(0) = 0, q2(0) = 0, I1(0) = 0, I2(0) = 0, E1(t) = 0, E2(t) = 120 cos(30t) volts, 
determine the electric currents I1(t) and I2(t).  Plot the results for 0 < t < 120 s. 

 
(c) For q1(0) = 0, q2(0) = 0, I1(0) = 0.2 amperes, I2(0) = 0.1 amperes, E1(t) = 6 volts, 
E2(t) = 12 volts, determine the electric currents I1(t) and I2(t).  Plot the results for 0 < t 
< 120 s. 

 
(d) For q1(0) = 50 coulombs, q2(0) = 100 coulombs, I1(0) = 0, I2(0) = 0.12 amperes, 
E1(t) = 6 sin (10 t) volts, E2(t) = 12 cos(30t), determine the electric currents I1(t) and 
I2(t).  Plot the results for 0 < t < 120 s. 

 
(e) For q1(0) = 0, q2(0) = 0, I1(0) = 0, I2(0) = 0, E1(t) = E2(t) = 120 cos(120t), 
determine the electric currents I1(t) and I2(t).  Plot the results for 0 < t < 120 s. 

 
[20].  The Zeeman’s equations can be used to model the fluctuations on the length of the 
heart’s fibers as the heart pumps blood through the blood vessels of a human body: 
 

dx/dt = k(-y - x3/3 + rx) 
dy/dt = x/k, 

 
where x is a measure of the fiber length fluctuation, y is a measure of the electrical stimulus 
that produces the fiber fluctuations, and k and r are constants.  Solve the Zeeman’s equation 
for the following parameters: 
 
(a) k = 0.5, p = 1, x(0) = 0, y(0) = -1   (b) k = 0.5, p =5, x(0) = 0, y(0) = -1 
(c) k = 0.5, p = 10, x(0) = 0, y(0) = -1   (d) k = 0.5, p = 20, x(0) = 0, y(0) = -1 
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Plot the signals x vs. t, y vs. t, and the phase portrait x vs. y. 
 
 
[21].  The Lorenz equations are used to simulate the convection of a layer of fluid of infinite 
horizontal extent heated from below.  The model is a simplified version of the heating of the 
atmosphere.   The equations are obtained by expanding the terms for temperature and 
pressure involved in the problem with their Fourier series expansion and simplifying the 
expansion to the first three modes represented by the variables x, y, and z.  The resulting 
system of equations is  

dx/dt = σ(-x+y) 
dy/dt = rx - y - xz 

dz/dt = xy - bz 
 

where σ, r, and b are constants that result from combining physical parameters of the 
problem.  (For a detailed derivation refer to Berge, P., Y. Pomeau, and C. Vidal, 1984, “Order 
within Chaos - Towards a deterministic approach to turbulence,” John Wiley & Sons, New 
York).   
 
Solve the Lorenz equations for the following combination of parameters: 
 

(a) σ = 10, r =  25, b =  2.666, x0 = 1, y0 = 1, z0  = 1   
(b) σ = 10, r =  75, b =  2.666, x0 = 1, y0 = 1, z0  = 1  
(c) σ = 10, r =  25, b =  2.666, x0 = 1, y0 = 1, z0  = 1  
(d) σ = 10, r =  25, b =  2.666, x0 = 1, y0 = 1, z0  = 1  

 
Plot the signals x-vs-t, y-vs-t, z-vs-t, as well as the phase portraits x-vs-y, x-vs-z, and y-vs-z.   
 
[22].  The governing equation for a pendulum of length L is the second-order ODE,  
 

d2θ/dt2 + (g/L) θ = 0, 
 
where g is the acceleration of gravity, and θ is the angle measured from the vertical position of 
the string.    Solve the pendulum equation for the following conditions: 
 

(a) L = 1.2 m, g = 9.806 m/s2, θ0 = π/3, (dθ/dt)0 = -1  
(b) L = 3 ft, g = 32.2 ft/s2, θ0 = π/6, (dθ/dt)0 = 1 
(c) L = 2.0 m, g = 9.806 m/s2, θ0 = π/2, (dθ/dt)0 = -0.5        
(d) L = 6 ft, g = 32.2 ft/s2, θ0 = 3π/4, (dθ/dt)0 = -0.5 

 
Plot the signals θ-vs-t, and (dθ/dt)-vs-t.  Also, plot the phase portrait dθ/dt-vs- θ. 
 
[23].  Repeat the solutions of problem [22] if the pendulum is subjected to a periodic 
excitation so that the governing equation becomes 
 

d2θ/dt2 + (g/L) θ = (F0/(mL)) cos(ωt+φ). 
 

The values to use for each of the cases in problem [22] are as follows: 
 

(a) F0 = 2.5 N, m = 0.2 kg, ω = π/2 rad/s, φ = π/3 
(b) F0 = 0.5 N, m = 0.8 kg, ω = 1.0 rad/s, φ = 0 
(c) F0 = 1.5 N, m = 1.2 kg, ω = 0.1 rad/s, φ = 2π/3 
(d) F0 = 3.0 N, m = 0.1 kg, ω = 0.05 rad/s, φ = -π/3 

 
[24]. Solve the following boundary value problem using the shooting method. 
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(a) d2y/dx2 + 3(dy/dx) + 2y = sin(2x), y(0) = 1, y(1) = 0 
(b) d2y/dx2 - 3y = 1 + x, y(0) = -1, dy/dx|x = 1 = -0.5 
(c) d2y/dx2 + dy/dx = ln(x), dy/dx|x = 0 = 0, y(1) = 1 
(d) d2y/dx2 - dy/dx - y = 2 sin(x), y(1) = -2, y(2) = 3 

 
[25]. Solve the boundary value ODEs of problem [24] by using an implicit solution with finite 
differences. 
 
[26]. Solve the boundary value ODEs of problem [24] by using function bvode. 
 
[27]. Solve the following boundary value ODEs using function bvode: 
 

(a) d3y/dx3 + y = 1 + x2, y(0) = 1, y(1) = 2, y(3) = -1 
(b) d3y/dx3 + d2y/dx2 = x, y(0) = 1, dy/dx|x=1 = -1, y(2) = 0 
(c) d2y/dx2 - dy/dx = e-x/2, dy/dx|x=0 = -1, y(1) = 2 
(d) d3y/dx3 + dy/dx = -1 + x, y(0) = 1, dy/dx|x=2 = -1, d2y/dx2|x=2 = 1 
 

[28].  Determine the first n eigenvalues of the problem d2y/dx2 + λy = 0, subject to y(0) = 0, 
y(L) = 0, for the following combinations of values of n and L: 
  
(a) n = 10, L =10    (b) n = 20, L = 5          
(c) n = 15, L = 1     (d) n = 30, L = 100 
 
[29]. For the differential equation  
 

x2(d2y/dx2)+x(dy/dx)'+(1+λ)y=0, y(1) = y(2) = 0, 
 
use centered-difference approximations for the derivatives to perform an implicit numerical 
solution.   Obtain the first 10 eigenvalues of the problem.   Plot the corresponding 
eigenfunctions. 
 
[30].  Solve the following system of equations  
 

dx/dt = -y(x2+y2), 
 

dy/dt = x(x2+y2), 
 
for the initial conditions x(0) = 2, y(0) = 1.  Plot the signals x-vs-t and y-vs-t, as well as the 
phase portraits x-vs-y, (dx/dt)-vs-x, (dy/dt)-vs-y, and (dy/dt)-vs-(dx/dt). 
 
[31].  The following system of equations is known as a set of coupled logistic equations and can 
be used to model the behavior of two linked populations x1(t) and x2(t): 
 

dx1/dt = kx1(1 - (x1+x2)/N), 
 

dx2/dt = kx2(1 - (x1+x2)/N). 
 
Solve the system for the following combination of parameters and initial conditions: 
 
(a) k = 1, N = 1, (x1)0 = 1, (x2)0 = 1  (b) k = 0.5, N = 5, (x1)0 = 0, (x2)0 = -1 
(c) k = 2.5, N = 10, (x1)0 = -2, (x2)0 = 0  (d) k = 12, N = 25, (x1)0 = 1, (x2)0 = 1 
 
[32].  The governing equation for gradually varied flow in an open channel is given by 
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where S0 is the slope of the channel bed, i.e., the rate of change of bed elevation, z, with 
distance, x, along the channel bed (S0 = -dz/dx), Sf is the slope of the energy head, i.e., the 
rate of change of the total energy head, H (energy per unit weight), with x (Sf = -dH/dx), and F 
is a dimensionless quantity known as the Froude number.   The energy head, H, is the sum of 
the bed elevation z, the water depth y, and the velocity head (kinetic energy per unit weight) 
V2/(2g), i.e.,  

H = z + y + V2/2g, 
 
where V is the flow velocity in the cross section (V = Q/A, Q = flow discharge, A = cross-
sectional area).    The energy slope is calculated by using Manning’s equation with 
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where n is the Manning coefficient (a measure of the channel bed roughness), Cu is a constant 
that depends on the system of units used (Cu = 1.0 for the S.I., Cu = 1.486 for the English 
system), and P is the wetted perimeter of the cross-section (part of the channel cross-sectional 
perimeter in contact with the water). 
 
The Froude number squared is calculated from 
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where T is the top-width of the cross-section (i.e., the length of the free surface at the cross 
section). 
 
For a trapezoidal section of bottom width b, side slope z, and depth y, the area, wetted 
perimeter, and top width are given by 

A = (b+zy)y 
P = b + 2y(1+z2)1/2 

T = b + 2zy 
 

For a trapezoidal cross-section open channel with b = 2.5 ft, z = 1, S0 = 0.00001, g = 32.2 ft/s2, 
Cu = 1.486, n = 0.012, Q = 5.0 ft3/s, and with initial conditions y = 2.5 ft at x = 10000 ft, plot 
the solution y(x) between x = 0 and x = 10000 ft.    
 
Notes on problem [32]: 
(1).  A plot of the solution y-vs-x is called the water surface profile or a backwater curve.  
Backwater curves are created whenever there is a so-called control point in the channel.   For 
example, the depth of 2.5 ft at position x = 10000 ft, used as initial conditions in this problem, 
could be created by a small sill placed across the channel at that position. 
 
(2).  At points where the energy slope, Sf, is the same as the bed slope, S0, i.e., Sf = S0, then 
dy/dx = 0.  At those points the flow is said to have reached uniform conditions (uniform flow) 
and the constant depth thus achieved is referred to as the normal depth, yn.   You can check 
that for the conditions of the present problem yn = 2.311973 ft by solving for y from the 
Manning’s equation (Sf(y) = S0). 
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(3).  At a point where the Froude number is equal to 1, the flow is said to be critical.    The 
corresponding depth is referred to as the critical depth, yc.   You can check that for the 
conditions of the present problem yc = 0.4673298 ft by solving for y from the equation defining 
the Froude number squared, i.e., F2(y) = 1. 
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