Ordinary Differential Equations with
SCILAB

By

Gilberto E. Urroz, Ph.D., P.E.

Distributed by

[InioClearinghouse.com

©2001 Gilberto E. Urroz
All Rights Reserved

A "zip" file containing all of the programs in this document (and other
SCILAB documents at InfoClearinghouse.com) can be downloaded at
the following site:

http://www.engineering.usu.edu/cee/faculty/qurro/Software Calculato
rs/Scilab Docs/ScilabBookFunctions.zip

The author's SCILAB web page can be accessed at:

http://www.engineering.usu.edu/cee/faculty/qurro/Scilab.html

Please report any errors in this document to: gurro@cc.usu.edu

Download at InfoClearinghouse.com 1 © 2001 Gilberto E. Urroz

http://www.engineering.usu.edu/cee/faculty/gurro/Software_Calculators/Scilab_Docs/ScilabBookFunctions.zip
http://www.engineering.usu.edu/cee/faculty/gurro/Software_Calculators/Scilab_Docs/ScilabBookFunctions.zip
http://www.engineering.usu.edu/cee/faculty/gurro/Scilab.html
mailto:gurro@cc.usu.edu

ORDINARY DIFFERENTIAL EQUATIONS

Introduction to differential equations

Definitions
Ordinary and partia differential equations
Order and degree of an equation
Linear and non-linear equations
Constant or variable coefficients
Homogeneous and non-homogeneous equations

Solutions
General and particular solutions
Verifying solutions using SCILAB
Initial conditions and boundary conditions

Symbolic solutionsto ordinary differential equations
Solution techniques for first-order, linear ODEs with constant coefficients
Integrating factors for first-order, linear ODEs with variable coefficients
Exact differential equations
Solutions of homogeneous linear equations of any order with constant coefficients
Obtaining the particular solution for a second-order, linear ODE with constant coefficients

Applications of ODEs| : analysis of damped and undamped free oscillations
Undamped motion
Damped motion
Initial conditions for damped oscillatory motion
Creating phase portraits of oscillatory motion

Applications of ODEs |1 : analysis of damped and undamped for ced oscillations
Applications of ODEs|11: Oscillationsin electric circuits

Finite differences and numerical solutions
Finite differences
Finite difference formulas based on Taylor series expansions
Forward, backward and centered finite difference approximations to the first derivative
Forward, backward and centered finite difference approximations to the second derivative
Solution of afirst-order ODE using finite differences - Euler forward method
A function to implement Euler’s first-order method
Finite difference formulas using indexed variables
Solution of afirst-order ODE using finite differences - an implicit method
Explicit versusimplicit methods
Outline of explicit solution for a second-order ODE
Outline of the implicit solution for a second-order ODE

Systems of ordinary differential equations
Systems of ordinary differential equations using matrices
Systems of linear homogeneous ODES - solution using matrices
Systems of linear nonhomogeneous ODES - solution using matrices
Converting second-order linear equations to a system of equations

SCILAB functionsfor the numerical solutions of initial value problems (1VP)

o o011 01Oo1TO Eo

0~~~

27

29
29
31
32
33
33
35
39
40
42
42
43

45
49
50

52

Download at InfoClearinghouse.com 2 © 2001 Gilberto E. Urroz

Applications of numerical solutionsto IVPs
Systems of ODEs from mechanical systems
System of ODEs from Electric Circuits
Solving a fourth-order equation
The Van der Pol equation
The Réssler flow

Solutionsto boundary value problems (BVPs)
The shooting method
A function to implement the shooting method
Outline of the implicit solution for a second-order BVP
Function bvode for the solution of boundary value problems
Function bvode applied to a third-order boundary val ue problem
Application of bvode to a third-order problem with one interior fixed point
Application of bvode to a fourth-order problem with two interior fixed points

Boundary value problems with eigenvalues
Numerical solution to a boundary value problem with eigenvalues
A function for calculating eigenvalues for a boundary value problem

Exercises

Download at InfoClearinghouse.com 3

65
65
68
72
74
77

79
80
80
83
84
88
89
91

93
93
95

97

© 2001 Gilberto E. Urroz

Ordinary Differential Equations

The chapter starts with a review of concepts of differential equations and symbolic solution
techniques that can be applied using SCILAB. Since SCILAB is not a symbolic environment, its
applications to symbolic solutions of ordinary differential equations (ODEs) is limited.
However, SCILAB can be used to calculate intermediate numerical steps in the solutions. The
strength of SCILAB in solving ODEs is in its numerical applications. Thus, the chapter also
includes a number of numerical solutions to ODEs through user-programmed and pre-
programmed SCILAB functions.

Introduction to differential equations

Differential equations are equations involving derivatives of a function. Because many physical
guantities are given in terms of rates of change of a certain quantity with respect to one or
more independent quantities, derivatives appear frequently in the statement of physical laws.
For example, the flux of heat, g [J/m?], in a one-dimensional direction is given by

q = -kET/dx),

where T[K or °C] is the temperature, x [m] is positions, and k [J/(m K) or J/(m oC)]. This
equation can be considered as a differential equation if q and k are known, and we are trying
to solve for the temperature as a function of x, i.e., T =T(x). The equation of conservation of
energy for heat transfer in one-dimension, where there are no sources or sink of heat, requires
that the rate of change of the heat flux across an area perpendicular to the x-axis be zero,
i.e., dg/dx = 0,or,

d O dT 0O
— k —~= 0.
dxa_ de

If k is a constant, i.e., not a function of x, then, the equation of conservation of energy
reduces to
d*T/dx’ = 0.

The last two expressions are also differential equations. The solution for these equations will
be a function T = T(X) representing the temperature.

Download at InfoClearinghouse.com 4 © 2001 Gilberto E. Urroz

Definitions

The following definitions allow us to classify equations, thus providing general guidelines for
obtaining solutions.

Ordinary and partial differential equations

When the dependent variable is a function of a single independent variable, as in the cases
presented above, the differential equation is said to be an ordinary differential equation
(ODE). If the dependent variable is a function of more than one variable, a differential
equation involving derivatives of this dependent variable is said to be a partial differential
equation (PDE). An example of a partial differential equation would be the time-dependent
would be the Laplace’s equation for the stream function, Y(x,y,z), of a three-dimensional,
inviscid flow:

FYIoR® + FWldy* + FYlox? = 0.

Order and degree of an equation
The order of a differential equation is the order of the highest-order derivative involved in the
equation. Thus, the ODE

dy/dx +3xy =0

is a first-order equation, while Laplace’s equation (shown above) is a second-order equation.

The degree of a differential equation is the highest power to which the highest-order derivative
is raised. Therefore, the equation

(d®y/dtd)2+(d?y/dx?)°-xy = €%,
is a third order, second-degree ODE, while the equation
oy/ ot = clpy/ ox),

is a first-order, first-degree PDE.

Linear and non-linear equations

An equation in which the dependent variable and all its pertinent derivatives are of the first
degree is referred to as a linear differential equation. Otherwise, the equation is said to be
non-linear. Examples of linear differential equations are:

d’x/dt? + BAx/dt) + w,® = A sin ax t,
and
AC/ 3t + ulloC/ dx) = DIIPC/ x?).

Download at InfoClearinghouse.com 5 © 2001 Gilberto E. Urroz

Constant or variable coefficients

The following equation:
d*y/dt®+ m(dy/dx?)?-5§ = €%,

where all the coefficients accompanying the dependent variable and its derivative are
constant, would be classified as a third order, linear ODE with constant coefficients. Instead,
the equation

&C/at? - u(x,t)[{aC/x) = 0,

would be classified as a second-order, linear PDE with variable coefficients.

Homogeneous and non-homogeneous equations

Typically, differential equations are arranged so that all the terms involving the dependent
variable are placed on the left-hand side of the equation leaving only constant terms or terms
involving the independent variable(s) only in the right-hand side. When arranged in this
fashion, a differential equation that has a zero right-hand side is referred to as a homogeneous
equation. Examples of homogeneous equations are:

d?x/dt? + BiEx/dt) + w, = 0,
and
(x-1){dy/dx) + 26N = 0.

On the other hand, if the right-hand side of the equation, after placing the terms involving the
dependent variable and its derivatives on the left-hand side, is non-zero, the equation is said
to be non-homogeneous. Non-homogeneous versions of the last two equations are:

d’x/dt? + BIdx/dt) + w,X = A8 V7,
and
(x-1)[{dy/dx) + 2Ry = x?-2x.

Solutions

A solution to a differential equation is a function of the independent variable(s) that, when
replaced in the equation, produces an expression that can be reduced, through algebraic
manipulation, to the form 0 = 0. For example, the function
y = sin X,
is a solution to the equation
d’y/dx? +y =0,

because when we replace y into the equation we have

-sin X +sinx =0,

Download at InfoClearinghouse.com 6 © 2001 Gilberto E. Urroz

or, 0=0, for all values of x. This follows from the fact that dy/dx = cos(x), and d?y/dx* =
-sin(x).

General and particular solutions

A general solution is one involving integration constants so that any choice of those constants
represents a solution to the differential equation. For example, the function

x=CE",
is a general solution to the equation
dx/dt + x = 0,
because, substituting C@™ for x in the equation produces

-ClEe* +Clet=0.

A particular solution is a solution corresponding to a specific value of the integration
constants. For example, the function

y = X2/2
is a particular solution to the equation,
dy/dx - x = 0.
A general solution for this equation would be
y=x°/2 +C,
where C is an arbitrary integration constant.

Given the solution of the homogeneous equation, y,(x), the solution of the corresponding non-
homogeneous equation, y(x), can be written as

Y(X) = yn(X) + yp(x),

where yp(x) is a particular solution to the ODE.

Verifying solutions using SCILAB

Since SCILAB is not a symbolic environment it is not suitable for the verification of solutions
other than polynomial solutions. As indicated in Chapter 8, SCILAB provides function derivat
to calculate derivatives of polynomials. If we have a function that can be expressed as a
polynomial, we can use function derivat to check if that function satisfies a particular
differential equation as illustrated in the example below:

Check that the function y(x) = x>-2x+4 is a solution to the differential equation, d’/dx* - 6x = 0
using SCILAB:

-->x = poly(0,"x"); y = x"3-2*x+4;

-->derivat (derivat(y))-6*x
ans =

0

Download at InfoClearinghouse.com 7 © 2001 Gilberto E. Urroz

Initial conditions and boundary conditions

To determine the specific value of the constant(s) of integration, we need to provide values of
the solution, or of one or more of its derivatives, at specific points. These values are referred
to as the conditions of the solution. For example, we could specify that the solution to the
equation

d’y/dt?+y = 0,
must satisfy the conditions
y(O) = _5!

dy/dt=-1att=5.

and

Initial conditions are provided at a single value of the independent variable so that after
evaluating those conditions at that point all the integration constants are uniquely specified.
In general, first order differential equations include one integration constant, requiring only
one condition to be evaluated to uniquely determine the solution. Thus, this type of equations
needs only one initial condition. The term “initial condition” is used because many first order
equations involve a derivative with respect to time, and the condition given to specify the
solution is typically the value of the function at time equal to zero, i.e., an initial value of the
function. Boundary conditions, on the other hand, are provided at more then one value of the
independent variable(s). The term “boundary conditions” is used because the function is
evaluated at the “boundaries™ of the solution domain in order to specify the solution.

An example of initial conditions used in a solution will be to solve the equation
d?u/dt? + 2(du/dt) = 0,

given
u(0) = 1, du/dt] o = -1.

An example of boundary conditions used in a solution will be to solve the equation

d?y/dx*+y = A sin x,

using
y(0) = A/2, and y(1) = -A/2.

In general, the solution of a n-th order ODE requires n conditions.

Symbolic solutions to ordinary differential equations

By symbolic solutions we understand those solutions that can be expressed as a closed-form
function of the independent variable. Because solution of first-order differential equations
imply integrating the derivative involved in the equation, many of the techniques used for
solving first-order ODEs follow from integration techniques. Details of some techniques used for
solving ordinary differential equations follow.

Download at InfoClearinghouse.com 8 © 2001 Gilberto E. Urroz

Solution techniques for first-order, linear ODEs with constant
coefficients

A first order equation is an equation of the form

alfdy/dx)"™+ by™ = f(x),
where a, b, n and m are, in general, real numbers. Some specific techniques for linear
equations, i.e., when n =m =1, follow. This catalog of solutions for linear ODEs is intended as

a review of the techniques. Numerical solutions using SCILAB will be presented in a later
chapter.

M Equations of the form: dy/dx = f(x) -- Direct integration

An equation of the form dy/dx = f(x) can be re-written as
dy= f(x)dx,
and a general solution found by direct integration,
Jdy =/f(x)dx,

y = [f(x)dx+C.

or

If an initial condition y(X,) = Y,, is given, then the integration can be calculated as

fyyo dy = I:) f (x)dx,

or,

Y=Y, :J'XXO f (X)dx.

If the function f(x) is a polynomial, we can use the SCILAB user-defined function intpoly to
produce the indefinite integral. Consider the example in which dy/dx = f(x) = x> + x + 2.
The solution, with the help of SCILAB, is calculated as:

-%>f = poly([2,1,0,3],"'x"," coeff")
3
2 +x + 3x
-->getf(‘intpoly’)
-->fInt = intpoly(f)
Indefinite integral - Add integration constant
fint =

2 4
2x + .bx + .75x

Download at InfoClearinghouse.com 9 © 2001 Gilberto E. Urroz

Thus, the general solution is :

y(X) = 2x+0.5*x?*+0.75*x* + C

M Equations of the form: dy/dx = g(y) -- Inversion and direct integration

Equations of the form dy/dx = g(y), can be re-written as

dy/g(y) = dx.
Thus, an indefinite integral will be given by
Jdy/g(y) = fdx,
Jdy/g(y) =x +C.
From the latter expression, the dependent variable y may be solved for. A similar

approach is followed when using a definite integral, i.e., one with initial condition y(x,) =
Yo. The integration in this case reads:

or

M Equations of the form: dy/dx = f(x)g(y) -- Separation of variables

Equations of the form dy/dx = f(x)g(y), can be separated into

dy/g(y) = dx/g(x),

and then integrated using indefinite integrals for general solutions, or definite integrals
with initial conditions for particular solutions.

Equations of the form: dy/dx = g(y/x)

Using the change of variable

u=y/x,
we have
y = UlX,
dy = uldx + x@u,
then

(udx + x@u)/dx = g(u),
uldx +x[@du = g(u)@dx,

[9(u)-u] @x = xMdu,

Download at InfoClearinghouse.com 10 © 2001 Gilberto E. Urroz

from which the variables x and u can be separated as
du/[g(u)-u] = dx/x.

After integration, we replace
u=y/x

back in the result, and isolate, if possible, y(x).

M Equations of the form: afdy/dx)+ b = f(x) -- Integrating factors

The expression
alfdy/dx)+ b = f(x)

constitutes the most general form of a first-order, linear, ordinary differential equation.
The equation can be re-written as

dy/dx + (b/a) & = (1/a) H(x),
You can prove that, by multiplying both sides of this form of the equation by a function,

IF(x) = exp(bX/a),

known as an integrating factor, the equation becomes:

d (X 1 (X
— % @xpBb— Hiy(x) Ez = @xpEP— B]f (x).
dx Oa [a Oa [0

This equation can be easily integrated to read:

_ bx B
y(x) = exp@- - EE% qexp%glf (x)+ CE

In terms of the integrating factor, this solution will be:

y(x) = (I/1F(x))[(1/a) [IF(x) H(x) @x + C].

Integrating factors for first-order, linear ODEs with variable
coefficients

An equation with variable coefficients such as
Ki(x)(dy/dx) + Ka(x)y(x) = Ks(X),

can be reduced to the form,

Download at InfoClearinghouse.com 11 © 2001 Gilberto E. Urroz

dy/dx + g(x)y(x) = f(x),

by dividing the entire equation by K;(x). The latter equation can be solved by multiplying both
sides of the equation by the integrating factor

IF(X) = exp(fg(x)dx).

After identifying the integrating factor, IF(x), the solution procedure is very similar to the case
of a first-order, constant-coefficient ODEs, i.e.,

y(x) = (L/FI(X) [JFI(x) d(x) @x + C].
Exact differential equations

An expression of the form,
F(x,y)@dx + G(x,y)dy = 0,

Is said to be an exact differential equation in two dimensions, if the components F(x,y) and
G(x,y) satisfy the conditions
OF/ 0y = G/ ox.
In such case, it is possible to find a function u(x,y), such that
F(x,y) = ou/ox, G(x,y) = du/dy.
The equation, u(x,y) = C, where C is a constant, will represent a solution to the exact

differential equation:
F(x,y)dx + G(x,y)@dy = 0.

Solutions of homogeneous linear equations of any order with
constant coefficients

Consider the linear, constant-coefficient, homogeneous ODE of order n:
d®y/dx®™ + b . Qy™Y 7dxD) + .+ bp(0?y/dx?) + by [(Hdy/dx) + by = 0.

where the coefficients by, b, ..., by.1, are constant. We can use the operator D® = d ®/dx®,
to re-write the equation as

Dy + b . D™V y + ..+ b,D% + b, Dy + b0 = f(X).
Treating the operators D®, (k = n, n-1, ..., 1), as algebraic terms, the equation is re-written as
D™ + b 1D + +b,D%+ byD + by] & = 0.

The idea is that the linear combination of the operators, shown above in square brackets, is
applied to the function y(x), in a similar manner as algebraic terms would be multiplied to it.

Associated with the latter expression is a polynomial known as the characteristic equation of
the ODE, and written as

AN+ b A"+ L+ by A+ by + by = 0.

Download at InfoClearinghouse.com 12 © 2001 Gilberto E. Urroz

Suppose that the characteristic equation has n independent roots, then the general solution of
the linear, constant-coefficient, homogeneous ODE of order n given earlier is

y= Cole* + CoE") + ... + Cra 81" + CoE.

If out of the n roots there is one that has multiplicity m, then the m terms corresponding to
this root A in the solution, will be

Cay 8™ + Cpy [XB™ + Cppy OEE™ + ..+ Cpy K™ 8™

Example 1 - Determine the general solution to the homogeneous equation
d®y/dx3-4 0%y /dx?)-11 (dy/dx)+304 = 0.
In terms of the D operator, this ODE can be written as
[D*-4[D*11D +30]y = 0.
The characteristic equation corresponding to this ODE is
A-4°-11X +30 = 0.
To obtain solutions to this equation in SCILAB use:

-->lam = poly(0,"'lamn)
lam = |l am

-->p = |am3-4*| am2- 11*| am+30

p =
2 3
30 - 11llam- 4lam + |am
-->roots(p)
ans =
! 2. !
- 3.1
! 5 1

Thus, a general solution to the ODE under consideration is

y = CB8% + Cy e + Cy@>.
Example 2 - Determine the general solution to the homogeneous ODE:
d*y/dx*-7 (03y/dx®)+18 [(t%y/dx?)-20 (tly/dx)+8 4 = 0.
In terms of the D operator, this ODE can be written as:
[D*-7D3+18/D%-20D+8]y = 0.
Thus, the characteristic equation is

M-T[A3+18[A2-20(A +8 = 0.

Download at InfoClearinghouse.com 13 © 2001 Gilberto E. Urroz

To obtain the solution of this equation using SCILAB try the following commands:

-->p = | an4- 7*1 ant3+18*| am*2- 20*| am+8
p =
2 3 4
8 - 20lam + 18lam - 7lam+ | am

-->roots(p)
ans =

NN e

Since root A = 2 has multiplicity of 3, the solution becomes:

y(X) = C1e* + e2(C, + Cax + Cpxd).

Obtaining the particular solution for a second-order, linear ODE
with constant coefficients

Thus, how do we come up with a particular solution, y,, to complete the solution to a non-
homogeneous equation, y = yuty,, given the solution to the homogeneous equation, y,? In this
section we present a general method to obtain y, for second-order, linear ODEs with constant
coefficients. The reason why we choose second-order equations is not only because they are
the simpler equations to solve (not including first-order equations, which were discussed in
great detail in an earlier section), but also because they are useful to model a number of real-
life situations. Typical systems modeled by second-order ODEs are the damped and undamped
oscillatory behavior in spring-mass and electric circuit systems.

The general expression for a second-order, linear, non-homogeneous ODE with constant
coefficients is
d?y/dx? + b, [{dy/dx) + by = h(X).
The first step is to obtain the solution to the homogeneous equation
d?y/dx? + b, [(dy/dx) + by = 0,
by using the solutions to the characteristic equation
A2+b1m+b0=0.
Consider the case in which the solutions to the characteristic equation are real numbers. The

solutions to this quadratic equation can be two different values of A, say A; and A,, in which
case the homogeneous solution is written as

Yn(X) = C1lekp(A;x) + Colekp(A,Lx),

or a single solution of multiplicity 2, say Aq, in which case we write

Yh(X) = (C1+Co) exp(Aolx).

Download at InfoClearinghouse.com 14 © 2001 Gilberto E. Urroz

If the two solutions to the quadratic (characteristic) equation are complex numbers, they must
be complex conjugates of each other as required by the fundamental theorem of algebra. In
this case we can write

Ay =a+fi, and A, =a-fi,
where o and B are real numbers. Thus, the solution C,/ekp(A.x) + C,ekp(A.[x), becomes

C1 P 4 C, @ P> = C @™ @7 + C,@87 g P = e"*[C,[Bos Px + if0,Bin Px + C,00s Px - i[0,6in
Bx) = e"*[[{C,+C;)os Px + i[C,-C,)5in PBx] = e *[(Kydos Bx + Ko5in Bx),

where
Ky = (C1#Cy), and K, = if{Cy-Cy).

Thus, for the case of two complex solutions to the characteristic equation, the homogeneous
solution is a sinusoidal function whose amplitude grows (a>0) or decreases (a<0) with x:

Yn(X) = e”*[(Ky[Cos Bx + K,i5in fx).

If the solutions are imaginary numbers, i.e., if a = 0 in the previous result, the homogeneous
solution is a pure sinusoidal function:

Yh(X) = K1 dos Bx + K,[5in Bx.

To obtain the particular solution, y,(x), that will produce the overall solution of the non-
homogeneous ODE, y(X) = yn(X) +Yo(X), follow this rule that refers to the sub-sequent table of
functions:

& If h(x), in the general non-homogeneous ODE, is given by one of the functions in the
first column of the table shown below, choose for y,(x) a linear combination of h(x) and its
linearly independent derivatives, as shown in the second column of the table.

M If h(x) is the sum of some of the functions shown in column 1 of the table below,
choose for y,(x) the sum of the functions in the corresponding lines.

M If a term in h(x) is a solution of the homogeneous equation corresponding to the ODE
under consideration, modify your choice of y,(x) by multiplying the appropriate line of
column 2 by x or x*, depending on whether the root of the characteristic equation (column
3) is simple or double.

Term in h(x) Choice for yp(x) Root of char. egn.
c@™ Coe™ a, real
cX"(n=0,1,..) | CAX"+ Co ™ + ... + C1X + C, 0

cl8Sin Bx C;[8Sin Bx + C,[8Sin Bx i3, imaginary
clBos Bx C.[8in Bx + C,[Sin Bx i, imaginary

Once the particular solution is set up by following the rule above, the undetermined
coefficients in y,(x) can be determined by substituting yp(x) into the ODE.

Example 1 - Obtain the general solution to the non-homogeneous, second-order, linear ODE:

Download at InfoClearinghouse.com 15 © 2001 Gilberto E. Urroz

d?y/dx? - 5[(dy/dx) +64 = x°.

The characteristic equation of the homogeneous equation is

A5 +6 = 0,
or
(A-3)[A-2) = 0,
with solutions
A=2,and A =3.

Thus, the homogeneous solution is
ya(X) = Ky 8 + K, 6%

Since the right-hand side of the non-homogeneous equation is

h(x) = X,
from the table above we select
Yp(X) = Cox*+Cyx+Cy.

To obtain the values of Cy, Cy, and C,, replace the solution y,(x) into the ODE. The derivatives
are, dy,/dx = 2C,x+C,, and d’y,/dx* = 2C,, which replaced into the equation produce

2C, -5(2Cx+Cy) + 6(Cx*+Cyx+Co) = X2,
or
BCx% + (6C1-10C,)X + (6Co-5C1+2C,) = X2

Comparing the coefficients of the terms x?, x*, and x°, in both sides of the resulting equation
allows us to write the following system of linear equations:

6C, =1
6C1 - 10C2 =0
6C0-5C1+ 2C2 =0
A solution, using SCILAB, produces:

-->A =1[0,0,6;0,6,-10;6,-5,2], b = [1;0;0]

A =
! 0. 0. 6. !
! 0. 6. - 10. !
! 6 - 5. 2. !
b =
! 1.1
! 0. !
! 0. !
-->C = Ab
C =
! . 1759259 |
! 2777778 |
! . 1666667 !

The solution is:

Download at InfoClearinghouse.com 16 © 2001 Gilberto E. Urroz

Co =0.1759259, C; = 0.2777778, and C, = 0.1666667
Thus, Yp(X) = 0.1666667x°+0.2777778x+0.1759259,
and the general equation to the non-homogeneous equation becomes:

Y(X) = Yn()+Yp(x) = KiB% + K,[8% + 0.1666667x*+0.2777778x+0.1759259.

Applications of ODEs I : analysis of damped and
undamped free oscillations

Consider the mass-spring system shown in the figure below. The mass is removed from its
equilibrium position (x = 0) and released at a position x = X, at t=0. At the moment of its
release the body was moving with a speed v = v,. The diagram shows the body of mass m being

acted upon by the restoring force of the spring, Fs = - kX, and by a viscous damping force, Fv =

- BiI= - B [{dx/dt).

—y a=dwidt = dwidt?
—F v = dxfdt

x —H

]

Newton’s second law, when applied in the x-direction to the mass m is written as:
—*x - B (dx/dt) =m (d’x/dt?),
which results in the second-order, linear, ordinary differential equation:

d>/dt? + (B/m) [([Hx/dt)+(k/m) X = 0.
Undamped motion

Let us first consider the case in which the motion is undamped, i.e., b = 0. The equation in
this case reduces to

d’x/dt? +(k/m) X = 0.
The corresponding characteristic equation is
A%+ (k/m) = 0,
with solutions,

A= 2il (k/m) = il

This result suggest a solution of the form

Download at InfoClearinghouse.com 17 © 2001 Gilberto E. Urroz

X(t) = C; cos apt + C, sin- ant.

Alternatively, by taking
Ci=Acos ¢ and C, = - Asin ¢,
the solution can be written as
X(t) = Alcos(wpt + ¢).

The quantity
w, = V(k/m)

is known as the natural angular frequency of the harmonic motion that results when no viscous
damping is present. The frequency of the oscillation can be calculated from

f=2m/0y=1/T,

where T is the period of the oscillation (i.e., the time that the mass takes to return to a pre-
defined position in the motion). The quantity ¢ is known as the angular phase of the
oscillation, and A is known as the amplitude.

The velocity of the motion is given by

v = dx/dt = -a, A sin(wt + @),
and its acceleration, is
a = dv/dt = -’ [B cos(wpt +),

The initial conditions, x(0) = x,, v(0) = v,, can be used to evaluate the constants A and f, as
follows:
Xo = X(0) = A cos ¢,

and
Vo = V(0) = -, [A sin .
Thus,
tan @= - Vo/ (@ Xo), OF = tan™(-vo/ (w, Xo)),
and

A= [xoF + (Vo wr) T

Damped motion
If damping occurs (3#0), the characteristic equation becomes
A+ (B/M)A + w? =0,
whose solutions are
A= -(B/im)+ Vv ([B/2M)*-w’) = - a £V (a*-w?),
where
a = S/(2m).

The nature of the solution will depend on the relative size of the coefficients a and w,, as
follows:

M If a < w, then v (a*w?) = ild,, where

w; = (w,’-a?)

Download at InfoClearinghouse.com 18 © 2001 Gilberto E. Urroz

is real, and the solutions of the characteristic equation are
AL = -a+ ildy, and A, = -a- il
The solution to the ODE, therefore, is written as
X(t) = e (C, cos wit + C,50in wit) = A& dos(wit +@).

The parameter

@ = (w’-0%) = VI(K/m)*-(B/(2m))?] = (4Kk*-F)/(2m),
represents the damped angular frequency of the oscillation, and ¢, represents the
corresponding angular phase. A, is the amplitude of the oscillation at t = 0. If we define
a variable amplitude,

A(t) = A, B,
then the solution to the ODE, also known as the signal, can be written as
X(t) = A(t)Cos(wit +@).

Please notice that this solution is very similar to the case of an undamped oscillation,
except for the fact that in a damped oscillation the amplitude decreases with time. The

amplitude decreases, or decays, with time because the parameter a = /(2m) is positive.
Therefore, the function exp(-at) decreases with time.

M If a = w, then the characteristic equation produces the solution A = -a, with
multiplicity 2, in which case the solution becomes

X(t) = e (Cy + C,f).
This solution represents a linear function of t subjected to a decay factor, exp(-at).

B if a>w, then v (a”-w?) = K is real, and K < a, the solutions of the characteristic
equation become
A =-a+ K=-cq, and A, = -a-K = - ¢y,
both negative. Therefore, the resulting signal can be written as:
X(t) = Clﬁxp(—clt) + Czﬁxp(-CZt).
Notice that the last two cases, namely, o = w, and a > w,, produce signals that decay with
time. These cases correspond to harmonic motions that are said to be over-damped, i.e., the
viscous damping is large enough to quickly damp out any oscillation after the body of mass m is
released.
Initial conditions for damped oscillatory motion
The expression for the position of a damped oscillatory motion is given by
x(t) = A& dos(wit +@),

while the velocity, v(t) = dx/dt, is given by

v(t) = -Ay €™ acos(at+@) + @ sin(wt+@)).

Download at InfoClearinghouse.com 19 © 2001 Gilberto E. Urroz

Given the initial conditions x(ty) = X, and v(ty) = vo, we can form a system of two non-linear
equations in the unknowns A, and ¢, namely,

f1(A0, @) = A8 Bos(wity + @) - Xo,
f2(A0, @) = -Ag (o cos(witor@r) + w sin(wite+@)) - Vo.

With appropriate values of the parameters a, w, ty, Xo, and vy, we can use SCILAB function
fsolve to obtain the values of Ay and ¢y, as illustrated in an upcoming example.

Before presenting the example, however, we will write out the expression for the acceleration
so that we can use it in producing the graphics of the example:

a(t) = Ag e ™o of cos(wt+@) + 2a @ sin(wt+@) - @’ cos(wt+a)).

Example 1 - Damped oscillatory motion: Plot position, velocity, and acceleration
corresponding to the following parameters: m = 1 kg, = 0.1IN&/m, k = 0.5 N/m. To
determine the constants A, and ¢, use initial conditions, Xo = 1.5 m, and vy = -5.0 m/s. With
these values,

w, = (k/m)*¥? = (0.5N/1kgm)*>? = (0.5 s2) ¥? = 0.7071 st = 0.7071 rad/s,
and

a = B/(2m) =0.1 N/ (2x1 kgmh) = 0.05 s=0.05 rad/s.
Since, a < w,, the resulting signal is that of a damped oscillation with
w; = >w,?-a?) = v(0.7071-0.05) = 0.705%ad /s.

To solve for the constants A, and ¢ with SCILAB, we first define the set of non-linear equations
to be solved. In the function thus defined Aq is represented by s(1) and ¢ is represented by

s(2):

-->deff (" [FF]=f(s)',['fl=s(1)*exp(-a*t0)*cos(w *t0+s(2))-x0";...
-->'f2 -s(1)*exp(-a*t0)*(a*cos(W *t0+s(2))+W *si n(W *t0+s(2)))-vO0'; ..
-->FF = [f1;f2]'])

Next, we enter the known values, and select a first guess for the solution sO:

-->Ww0 = 0.7071; a = 0.05; W =0.7053; x0 = 1.5, vO =-5.0; tO

I
L

-->s0 = [5; %i/ 3]
sO =

! 5. !
! 1. 0471976 !

The solution for s(1) = Ag and s(2) = ¢ is obtained by using:

-->fsol ve(sO,f)
ans =

Download at InfoClearinghouse.com 20 © 2001 Gilberto E. Urroz

! 7.1421364 !
! 1. 3591997 !

Thus, Ag =7.1221364 and ¢ = 1.3591997, and the position x(t) is given by

X(t) = A, exp(-0.05t) cos(0.7053t - ¢1).

Expressions for the position x(t), velocity v(t), and acceleration a(t) for this motion can be
entered into SCILAB by defining the following functions:

-->A0 = 7.1421364; phil = 1.3591997,

-->deff (' [xs]=x(t)","'xs

AO0. *exp(-a.*t).*cos(wW .*t+phil)")

-->deff (' [vs]=v(t)',...
-->'vs =-A0. *exp(-a.*t).*(a.*cos(wW .*t+phil)+wl.*sin(w .*t+phil))"')

-->deff (' [acc]=aa(t)"', ...

-->"acc=A0. *exp(-a.*t).*(an2. *cos(w . *t +phi 1) +. . .
-->2.*a. *Wl . *sin(w . *t +phi 1) -wW *2. *cos(wW . *t +phi 1)) ')

To plot the signals x(t), v(t), and a(t) in the t-interval (0,30) use the following SCILAB
commands:

-->tt =[0:0.1:30]; xx = x(tt); vv = v(tt); -->aaa = aa(tt);

-->plot2d([tt',tt",tt"],[xx',vv' ,aaa'],[2,3,4]," 111", ...
-->'"position@el ocity@ecceleration',[0 -10 30 10])

-->xtitle(' Danped oscillatory notion', '"t', 'x,v,a')

Download at InfoClearinghouse.com 21 © 2001 Gilberto E. Urroz

The results are shown in the following graph:

Daroped ascillators motion
xTa
10.00

667 _]

3.33_|

/ /\\ / /\\\//\\\—f

-3.33_|
=667 _|

-10.00

T | T | T | T | T | T | T | T
0.on 375 7.50 1125 15.00 18.75 1250 2625 30000
position

velocity
acceleration

Notice the oscillatory nature of the three functions, as well as their amplitudes’ decay with
time as expected.

Creating phase portraits of oscillatory motion

A phase portrait for oscillatory, or any kind of, motion is a plot involving the dependent
variable and one of its derivatives, or two derivatives of the dependent variable. For example,
a plot of velocity, v(t), versus position, x(t), represents a phase portrait. Other phase portraits
would be a(t) vs. x(t), and a(t) vs. v(t).

Example 1. Plot the time-dependent plots and phase portraits for the signal obtained in
Example 1 in the previous section. To plot these phase portraits we generate data on position,
velocity, and acceleration as function of time t in the interval [0,90], as follows:

-->tt = [0:0.1:90]; xx = x(tt); vv = v(tt); aaa = aa(tt);
The phase portraits are generated as follows:

-->xset (" wi ndow , 1); pl ot (xx',vv')
-->xtitle('v-vs-x phase portrait','x',"'v'")

Download at InfoClearinghouse.com 22 © 2001 Gilberto E. Urroz

& -5 -Hphase portrait

-t

-7 -5 -3 -1 1 3 h 7

-->xset (' wi ndow , 2); pl ot (xx', aaa')
-->xtitle("a-vs-x phase portrait','x',"a')

a-vs-xphaseportrait

-3

7 -5 -3 -1 1 3 5 7

-->xset (' wi ndow , 3); plot(vv',aaa')

-->xtitle('a-vs-v phase portrait','v',"a")

Download at InfoClearinghouse.com 23 © 2001 Gilberto E. Urroz

a-vs-wphaseportrait

The three phase portraits show orbits spiraling inwards towards the center of the picture, i.e.,
towards (0,0). This is because the amplitude of the variables included in the phase portrait
decreases at about the same rate with time.

Applications of ODEs II : analysis of damped and
undamped forced oscillations

Earlier we presented the analysis of damped and undamped free oscillations, meaning that,
once the particle subjected to oscillatory motion is released, all forces acting on it (the
restoring force of the spring, and the damping force from the dashpot) are internal to the
system. If the particle is continuously subjected to an external force (an excitation), then the
type of oscillations thus generated are termed forced oscillations. Of interest are excitations
that are themselves oscillatory. The simplest case will be an external force,

Fe(t) = F, cos wit.

The differential equation for the mass-spring-dashpot system, including the excitation, F¢(t), is
now written as:

d?x/dt? + (B/m) [(Bx/dt)+(k/m) X = (Fo/m)[chs wit]

Let’s assume that the values of the parameters m, b, and k are such that the solution of the
homogeneous equation is

Xn(t) = A, le * [cbs(cw, F+¢).

Also, because the term cos wt shows up in the right-hand side term, the table for selecting the
particular solution (shown earlier in this chapter), suggest that we try

Xp(t) = C; cos wt + C; sin wi.

Download at InfoClearinghouse.com 24 © 2001 Gilberto E. Urroz

Because this particular solution must satisfy the governing ODE, we can write
d?x,/dt? + (B/m) [(Hx,/dt)+(k/m) &, = (F,/m)[cbs wlt]
The values of C, and C,, using wy’ = k/m, are:

F,m(w? - w?)
wZ‘BZ + mZ(wg _w2)2 '

1

- Fowp
wZBZ +m2(w§ _w2)2 '

2

The particular solution can be written now as

X (t)=F dn(a)j - w?) [bos(w @) + wp Ein(w @)
p 0 w2[32+m2(a)§—a)2)2 :

Suppose that we want to write this solution as
Xp(t) = Ap cos (wt + @) = A, cos wk cos @, - Ap sin wt sin @,
by comparing the last two expressions we find that

Ay cos @ = Fom(aw*-af)/[of BH+m? (w,*-af) 7],

and
Ap sin @, = - Fowf/[Pf+m? (a’-af) %],
from which,
Ay = F/[FB+m? (w,-af) %],
and

tan @, = - w/(Mm(w’-)).
Thus, the particular solution can be written as:
I:O
\/0)2[32 + mz(wg _wz)z

X, () = [Cos(w(t + @,).

To analyze the behavior of this particular solution, first we study the case in which no damping
is present, i.e., 3 =0. In such case, ¢, = 0, and the particular solution becomes

F F
X, (t) =——>—<-[Goswd = M [Coswd = A, (w) [Cosw .
m(w; — w?) 1-(w/ w,)

For this case, the amplitude of the oscillation, A,(w), becomes infinity as w = w,. This
condition is known as resonance. Thus resonant conditions will occur if the exciting force has
the same frequency as the natural frequency of the system. In practice, the amplitude of the

Download at InfoClearinghouse.com 25 © 2001 Gilberto E. Urroz

undamped oscillations grows without bound until the system is severely damaged or destroyed.
This is important for analyzing building response to earthquakes. Every building has a natural
frequency of vibration. If a building is subjected for a long period of time to an earthquake
with a frequency similar or equal to its natural frequency, the building may suffer severe
damages as consequence of the earthquake.

If damping is present, then the amplitude of the oscillation is given by
Fo

\/wzﬁz + mz(wg _wz)z

A (w) =

which has a maximum

2mk,

pamiar 7

B* = 2m* (w,*-w").

A (w) =

when

Since the general solution of the damped equation,

Xn(t) = Aol ™ lebs (e, B+ ¢),

decreases with time, it will eventually become negligible when compared to the particular
solution. Thus, it is said that the general solution represents the transient (temporary)
response of the system to the exciting force, F¢(t). The particular solution, which turns out to
be a sinusoidal wave, represents the steady-state response of the system.

The following is a graph showing the amplitude, Ay(w), as function of the angular frequency, w,
for a particular set of values of the parameters, namely, Fo = 25 N, k = 100 N/m, m = 1.0 kg,
which gives w, = 3.162277 rad/s. The graph is obtained using SCILAB as shown below. First,
we define the function for A,(w), and the constant parameters:

-->def f (" [AA]=Ap(om) ', "' AA=FO0./sqgrt(om "2. *b. "2+m "2, *(wW0. *2-om "2)."2)")

-->F0 = 25; k = 10; m=1.0; w0 = sqgrt(k/im
wo = 3.1622777

Next, we define a vector bb containing 5 different values of the damping parameter 3, and a
vector om containing values of win the range (0,6). The lengths of vectors bb and om are the
values n and m, respectively:

-->pb = [1.0, 5.0, 10.0, 50.0, 100.0]; om = [0:0.1:6];
-->n = |l ength(bb); m= length(on);

The next step is to create a matrix Amp (Amplitudes) with m rows and n columns whose
elements will contain the values Amp;; = Ap(om;,bb;). The following commands show how to
load matrix Amp:

->Amp = zeros(mn);

-->for j = 1:n

Download at InfoClearinghouse.com 26 © 2001 Gilberto E. Urroz

--> b =bb(j); Amp(:,j) = Ap(onm);

-->end;

To produce the plot showing curves of Ay(w) for different values of S is produced by using:
-->plot2d([om ,om ,om,om,on], ...

-->[Anp(:, 1), Amp(:, 2), Amp(:, 3), Amp(:, 4), Anp(:,5)], ...

-->[1:1:5],"' 111", ' b=1@=5@=10@=50@=100',[0 0 6 1.8])

-->xtitle(" Anplitude of forced oscillation' ,"w,'A(w")

Arnplitudeof forced oscillation
Alw)

-
w

[- S e o sy
p S (=3 oo =1 [E o =3

=
[N

=
=3

The plot shows that as the value of 3 decreases the amplitude reaches a maximum near the
value of w =cw. If there were no damping, i.e., B 2 0, then Ay(w) = o at that point,
indicating the condition of resonance.

Applications of ODEs Ill: Oscillations in electric
circuits

Electric circuits involving resistors, capacitors, and inductors are often times characterized by
an oscillatory behavior represented by electric current | through the circuit. Consider a simple
series RLC circuit as shown in the figure below.

Download at InfoClearinghouse.com 27 © 2001 Gilberto E. Urroz

In the figure, E(t) stands for the time-dependent voltage (volts), I(t) is the electric current
through the circuit once the switch is set to ON (amperes), R is the equivalent resistance of the
circuit (ohms), L is the equivalent inductance of the circuit (henrys), and C is the equivalent
capacitance (farads). The electric current, I(t), is the rate of change of electric charge with
respect to time, i.e., I(t) = dg/dt, where g = electric charge (coulombs), and t is time (sec).
The properties of resistors, capacitors, and inductors are such that if V represents the voltage
across one of those components the following relationships hold:

M Resistors, Vg = RI0= R(Hg/dt)
M capacitors, Ve =q/C
3 Inductors, V, = L@I/dt) = Lid%g/dt?)

To put together a differential equation for this circuit we use Kirchoff’s law of voltages around
the series circuit: Vg +V_ + Ve = E(1), i.e.,

R{tg/dt) + L{d%g/dt?) + q/C = E(t).

Alternatively, we can take the derivative of this equation with respect to t and write the
equation in terms of the current, | = dg/dt, as follows:

RIAIZdt) + L{dA/dt?) + (1/C)0= dE/dt.
Thus, we can either solve the equation in terms of the electric charge, q(t), re-written as:
(d’gq/dt?) + (R/L)[(Hg/dt) + g/(LC) = E(t)/L,
or, in terms of the electric current, I(t), re-written as:
(d417dt?) + (R/L)[(dI/dt) + 1/(LC) = (1/L)(dE/dt).

To simplify the solution we introduce the constants w,? = 1/(LC) and 8 = R/(2L), and solve the
equation in terms of the electric charge, q(t), i.e.,

(d°g/dt?) + 2[BHg/dt) + w,’[q = E(t)/L.

Download at InfoClearinghouse.com 28 © 2001 Gilberto E. Urroz

Solution to the homogeneous equation
Consider first, the homogeneous case, i.e., E(t) = 0, which is the situation that would occur is

the capacitor is charged and the voltage source is by-passed. The resulting governing equation
is

(d°g/dt?) + 2/BLdg/dt) + w’iq = 0,

which is the same as the case of free oscillations with damping for a spring-mass-dashpot
system.

If the constant value

is real, the solution is a damped oscillation, i.e.,

q(t) = Qoe_ﬁ[cos(m,t + ¢).

If wy is not real, then the solution is a combination of exponential functions, i.e.,
qt)=Ce ™ +C,e™

Since the governing equation for q(t) in an RLC circuit is the same as the governing equation
for the position of a particle in a mass-spring-dashpot system, we can borrow many of the
results obtained in the previous two sections to analyze RLC circuits. Some applications are
presented in the exercise section.

Finite differences and numerical solutions

To solve differential equations numerically we can replace the derivatives in the equation with
finite difference approximations on a discretized domain. This results in a number of algebraic
equations that can be solved one at a time (explicit methods) or simultaneously (implicit
methods) to obtain values of the dependent function y; corresponding to values of the
independent function x; in the discretized domain.

Finite differences
A finite difference is a technique by which derivatives of functions are approximated by
differences in the values of the function between a given value of the independent variable,
say Xo, and a small increment (xo+h). For example, from the definition of derivative,

df/dx = lim p_o (f(x+h)-f(x))/h,

we can approximate the value of df/dx by using the finite difference approximation

(f(x+h)-f(x))/h
with a small value of h.

The following table shows approximations to the derivative of the function

f(x) = exp(-x) sin (x*/2),

Download at InfoClearinghouse.com 29 © 2001 Gilberto E. Urroz

at x = 2, using finite differences. The actual value of the derivative is -0.23569874791. The
third column in the table shows the error in evaluating the derivative, i.e., the difference
between the numerical derivative Af/Ax and the actual value.

Af/AX

error

0.1

0.01

0.001

0.0001
0.00001
0.000001
0.0000001
0.00000001
0.000000001

-0.244160077
-0.236684829
-0.235798686
-0.235708734
-0.235699726
-0.235698825
-0.235698734
-0.235698724
-0.235698752

0.00846132909
0.00098608109
0.00009993809
0.00000998609
0.00000097809
0.00000007709
0.00000001391
0.00000002391
0.00000000409

This exercise illustrates the fact

that,

as h-0,

the value of the finite difference

approximation, (f(x+h)-f(x))/h, approaches that of the derivative, df/dx, at the point of

interest.

A plot of the error as a function of h also reveals the fact that the error is proportional to the

value of the x-increment h.

with SCILAB out of the data in the table.

-->h =

[1e-1, 1le- 2, 1le- 3, 1e-4, 1le-5, 1le-6, 1le- 7, 1le- 8, 1e-9] ;

The following plots, using different ranges of h, are produced

-->er = [0.00846132909, 0. 00098608109, 0. 00009993809, 0. 00000998609, . .

-->
--> 0. 00000000409] ;
-->xset ('mark', -9, 2)

-->plot2d(h,er,1,"'011","
-->plot2d(h,er,-9,'011","
-->xtitle(" error vs.

0.010 2XE0Y

",[0 0 0.1 0.01])
",[0 0 0.1 0.01])
X-increment','h', " error")

BEYOENS. X -incrernent

0. 00000097809, 0. 00000007709, 0. 00000001391, 0. 00000002391, . ..

0.00%
0.00s
0.007¥
0.006
0.005
.00
0003
.00z
o.oni
0.000

0.00 001 0.0z 0oz

Download at InfoClearinghouse.com

0.04

0.05

30

0.0

0.07

0.0z 0.0

0.10

© 2001 Gilberto E. Urroz

0.0010
0.0009
0.000:2
0.0007
0.0006
0.0005
0.0004
0.0002
0.0002
0.0001
0.0000

1e-004
Qe 005
Be-005
Te-005
e -005
Se =005
de-005
Se-005
2e-005
1e-005
Oe+000

errOE s, X—incrernent
EXY0L

h
0.000 I IZI.E:IZII I I:I.IZ:IZIE I IZI.IZIII:IB I III.IIIIEI4 I IZI.IZ:I:IS I IZI.E:IZIIS I I:I.IZ:IZI'F I IZI.IZIII:IS I III.IIIIIZIQ I 0.010
—_— EXFOENS. X —inceernent
. h
0.0000 I I:I.IZIII:IIZII I I:I.IZIII:II:IE . III.IIIIIZIIZIE I I:I.IZII:IIIZI4 I I:I.I:Illilﬂﬁ I I:I.IZIII:IIZIIS I I:I.IZIII:II:I'F . III.IIIIIZIIZIB I I:I.IZIIIIIIZIS' I 00010

The graphs seem indicate that the error varies linearly with the increment h in the

independent variable.

It is very common to indicate this dependency by saying that "the error

is of order h", or error = O(h). The magnitude of the error can be estimated by using Taylor
series expansions of the function f(x+h).

Finite difference formulas based on Taylor series expansions

The Taylor series expansion of the function f(x) about the point x = Xq is given by the formula

) (n)
f(x):Z 0))1,

Where f™M(xo) = (d"f/dX") | =0, and FO(xo) = f(Xo).

If we let x = xg+h, then x-x, = h, and the series can be written as

f (n)(x

u%+m_;

Download at InfoClearinghouse.com 31

0) [ﬂ.]n - .I:(XO)+ f (XO) |:h+ f"(XO) [ﬂ.]Z +O(h)
nl il 2

© 2001 Gilberto E. Urroz

Where the expression O(h®) represents the remaining terms of the series and indicates that the
leading term is of order h®. Because h is a small quantity, we can write 1 > h, and
h>h?>h®*>h*>.. Therefore, the remaining of the series represented by O(h®) provides the order
of the error incurred in neglecting this part of the series expansion when calculating f(xqo+h).

From the Taylor series expansion shown above we can obtain an expression for the derivative
f’(Xo) as

f (%, +h) - f(x

. T0%) 1 oh).

O) + f"(XO) [h"'O(hZ): f(XO+h)_
2 h

(%) =

In practical applications of finite differences, we will replace the first-order derivative df/dx
at X = X, with the expression (f(xo+h)-f(xg))/h, selecting an appropriate value for h, and
indicating that the error introduced in the calculation is of order h, i.e., error = O(h).

Forward, backward and centered finite difference approximations
to the first derivative

The approximation
df/dx = (f(xo+h)-f(x0))/h

is called a forward difference formula because the derivative is based on the value x = x, and
it involves the function f(x) evaluated at x = xy*h, i.e., at a point located forward from xq by an
increment h.

If we include the values of f(x) at x = X, - h, and x = x,, the approximation is written as
df/dx = (f(xo)-f(xo-h))/h

and is called a backward difference formula. The order of the error is still O(h).

A centered difference formula for df/dx will include the points (xo-h,f(Xo-h)) and (xo+h,f(xe+h)).
To find the expression for the formula as well as the order of the error we use the Taylor series
expansion of f(x) once more. First we write the equation corresponding to a forward
expansion:

f(xo+h) = F(Xo)+F (Xo) A+1/2 " (xo) H*+1/6 B (x0) H° + O(h?).

Next, we write the equation for a backward expansion:
f(Xo-h) = f(Xo)-F (Xo) H+1/2 " (xo) B*-1/6 B3 (x,) [H® + O(h%).
Subtracting these two equations results in
f(Xo+h)- f(Xo-h) = 27 (xo) H+1/387(xo) H+0(h®).
Notice that the even terms in h, i.e., h?, h*, ..., vanish. Therefore, the order of the remaining

terms in this last expression is O(h®). Solving for f'(x,) from the last result produces the
following centered difference formula for the first derivative:

Download at InfoClearinghouse.com 32 © 2001 Gilberto E. Urroz

or,

df _ fO+h) = (% —h)

+0(h?).
dx 2h

This result indicates that the centered difference formula has an error of the order O(h%), while
the forward and backward difference formulas had an error of the order O(h). Since h’<h, the
error introduced in using the centered difference formula to approximate a first derivative will
be smaller than if the forward or backward difference formulas are used.

Forward, backward and centered finite difference approximations
to the second derivative

To obtain a centered finite difference formula for the second derivative, we'll start by using
the equations for the forward and backward Taylor series expansions from the previous section
but including terms up to O(h°), i.e.,

f(xo+th) = F(Xo)+F" (Xo) H+1/2 87 (xo) B*+1/6 B (x) [H® + 1/24H(x,) H* + O(h°).

and

f(Xo-h) = f(Xo)-F (Xo) H+1/2 8" (xo) B2 -1/6 83 (xo) B° + 172489 (xo) H* - O(h%).

Next, add the two equations and solve for f’(Xo):
d*f/dx? = [f(xg+h) -2 H(X0)+F(xo-h)]/h? + O(h?).

Forward and backward finite difference formulas for the second derivatives are given,
respectively, by

d*f/dx? = [f(xo+2H) -2 F(xg+h)+f(x0)]/h? + O(h),
and
d*f/dx? = [f(xo) —2H(Xo-h)+Ff(xe-2H)]/h? + O(h).

Solution of a first-order ODE using finite differences - Euler forward
method

Consider the ordinary differential equation,

dy/dx = g(x,y),
subject to the boundary condition,
y(X1) =i
To solve this differential equation numerically, we need to use one of the formulas for finite

differences presented earlier. Suppose that we use the forward difference approximation for
dy/dx;, i.e.,

Download at InfoClearinghouse.com 33 © 2001 Gilberto E. Urroz

dy/dx = (y(x+h)-y(x))/h.
Then, the differential equation is transformed into the following difference equation:
(y(xth)-y(x))/h = g(x.y),

y(x+h) = y(x)+hg(x,y).

from which,

This result is known as Euler's forward method for numerical solution of first-order ODEs.

Since we know the boundary condition (x;,y;) we can start by solving for y at x, = x;+h, then
we solve for y at X3 = x,+h, and so on. In this way, we generate a series of points (X, Y1), (X2,
Y2), ., (Xn, ¥Yn), Which will represent the numerical solution to the original ODE. The upper
limit of the independent variable x, is either given or selected arbitrarily during the solution.

The term "discretizing the domain of the independent variable" refers to obtaining a series of
values of the independent variable, namely, x;, i = 1,2;,..., n, that will be used in the solution.
Suppose that the range of the independent variable (a,b) is known, and that we use a constant

value h = Ax to divide the range into n equal intervals. By making x; = a, and x, = b, then we
find that the values of x;, i = 2,3, ... n, are given by

Xi = X1 +(i-1) [Ax = a+(i-1) [AX,
and that for i = n, x, = x; +(n-1)[Ax. This latter result can be used to find n given Ax,
n=(X,-X)/ & +1=(b-a)/ Ax +1,
or, to find Ax given n,
AX = (Xp-X1)/ (n-1) = (b-a)/(n-1).
The recurrent equation for solving for y is given by
Yier = i+ AXG(Xi,Yi),

for i = 1,2, ..., n-1. Because the method solves yi.1 = f(X;,yi, &x), i.e., one value of the
dependent variable at a time, the method is said to be an explicit method.

The following example illustrates the application of the Euler first-order method to the solution
of the differential equation dy/dx = g(x,y) = x + y using SCILAB. First, we define function

g(x.y):
-->deff (" [Df]=g(x,y)"," Df=x+y")

We solve the equation in the range of values of x from x, = 0 to x, = 2.0 with an increment Dx =
0.1. The initial condition is yq = 1.0 for x, = 0:

-->x0 =0;, yO =1; Dx = 0.1; xn = 2.0;

The following commands generate a vector of values of x, a vector y of the same length of x,
initialized with zeros, and determines the value of n as the length of vector y (or x):

-->Xx=[x0: Dx: xn]; y = zeros(x); n = length(y);

The following for...end loop takes care of calculating the values of y; for i = 2,3, ..., n:

Download at InfoClearinghouse.com 34 © 2001 Gilberto E. Urroz

-->for j = 1:n-1

--> y(ji+1) =y(i) + Dx*g(x(j),y(i));
-->end;

To produce a plot of the results we determine the minimum and maximum values of y:

-->ymin = mn(y), ymx = max(y)
ymn =

0.
ymax =

3. 7274999
The plot is generated by using:
-->plot2d(x,y,1,"011"," ', [0 0 2 4])
-->plot2d(x,y,-9,'011"," ', [0 0 2 4])
-->xtitle('Euler solution dy/dx = x +y, Dx = 0.1","'x","y(x)")

Eulersolutiondyfdx=x+5 Dx=0.1
4.00 Frix

oo 0.4 0.z 1.2 1a 2.0

A function to implement Euler’s first-order method

The following function, Eulerl, implements the calculation steps outlined in the previous
example. The function detects if there is overflowing introduced in the solution and stops the
calculation at that point providing the current results.

function [x,y] = Eul er1(x0,y0, xn, Dx, g)

/1 Eul er 1st order nethod sol ving ODE

/1 dy/dx = g(x,y), with initial
//conditions y=y0 at x = x0. The
//solution is obtained for x = [x0: Dx: xn]
//and returned iny

ymaxAl | oned = 1e+100;
X = [x0:Dx:xn]; y = zeros(x); n = length(y); y(1) = yO0;
for j = 1:n-1

y(j+1) = y(j) + Dx*g(x(j).y(i));

if y(j+1) > ymaxAll owed then
disp('Euler 1 - WARNING underflow or overflow);

Download at InfoClearinghouse.com 35 © 2001 Gilberto E. Urroz

di sp(' Sol ution sought in the follow ng range:"');
di sp([x0 Dx xn]);
di sp(' Sol ution evaluated in the followi ng range:');
disp([x0 Dx x(j)]);
n=j; x=x(1,1:n); vy =y(1,1:n);
br eak;
end;
end;

//End function Eulerl

Next, we use function Eulerl to solve the differential equation from the previous example,
namely, dy/dx = g(x,y) = x+y, for different values of the x increment, Ax = 0.5, 0.2, 0.1, and
0.05, with the same initial conditions and range of values of x as before:

-->getf (' Eulerl")
-->deff (" [DF] =g(x,y)","'Df = x+y")
-->[x1,yl]=Eul er1(0,1,2,0.5,9);
-->[x2,y2]=Eul er1(0,1,2,0.2,0);
-->[x3,y3]=Euler1(0,1,2,0.1,Q9);

-->[x4,y4] =Eul er1(0, 1, 2,0.05,09);

The exact solution for this equation is y(x) = -x - 1 + 2e*. Set of values of the exact solution
are calculated as follows:

-->xx = [0:0.1:2]; yy = -xx-1+2. *exp(xx);

To plot the exact and numerical solutions we first determine the minimum and maximum
values of y:

-->ymax = max([yl y2 y3 y4 y5 yy])
ymax = 11.778112

-->ymin = mn([yl y2 y3 y4 y5 yy])
ymin = 1.

The plot of the solutions is produced through the use of the following calls to function plot2d:

-->pl ot 2d(xx,yy,1,"' 011" ,* ', [0 O 2 12])
-->plot2d(x1,yl,-1,"'011"," ',[0 0 2 12])
-->pl ot 2d(x2,y2,-2,"' 011’ ', [0 0 2 12])

->plot2d(x3.y3 -3.' 011 .* ' [0 0 2 12])
-->plot2d(x4, y4,-4,' 011'," ', [0 0 2 12])
-->xtitle('Euler 1st order - dy/dx = x+y','x','y(x)")

Download at InfoClearinghouse.com 36 © 2001 Gilberto E. Urroz

Eulex 1st oeder —-dwSfdx=2+y

12 et

A second example of application of function Eulerl is shown next for the differential equation
dy/dx = xy + 1, with initial condition x, = 0, yo = 1, in the range 0 < x < 2, with Ax = 0.5, 0.2,
0.1, 0.05, and 0.01. The SCILAB commands used are exactly the same as before except for the
definition of function g(x,y) and the title of the plot. The function g(x,y) = xy+1 is defined as:

-->deff (" [DF]=g(x,y)","' Df=x*y+1')
Warning :redefining function: g

Numerical solutions to the differential equation for the different values of Ax are obtained
from:

-->[x1,yl]=Euler1(0,1,2,0.5,9);
-->[x2,y2]=Eul er1(0,1,2,0.2,9);
-->[x3,y3]=Euler1(0,1,2,0.1,9);
-->[x4,y4] =Eul er1(0, 1, 2,0.05,9);
-->[x5,y5]=Eul er1(0, 1, 2,0.01,9);

Next, we determine the minimum and maximum values of y:

-->ymin = mn([yl y2 y3 y4 y5 yy])
ymin = 1.

-->ymax = max([yl y2 y3 y4 y5 yy])
ymax = 15.872217

We define a plot rectangle as:

-->rect = [0 0 2 16]
rect =

! 0. 0. 2. 16. !

The plot of the numerical solution is accomplished through:

-->plot2d(x1,y1,-1,"'011"," ',rect)
-->plot2d(x2,y2,-2,'011'," ', rect)
-->plot2d(x3,y3,-3,'011'," ',rect)
-->pl ot 2d(x4, y4,-4,' 011" ," ', rect)

-->xtitle('Euler 1st order - dy/dx = x*y+1','x','y(x)")

Download at InfoClearinghouse.com 37 © 2001 Gilberto E. Urroz

Euler 1storder —dpfdz=x"r+1

16 Fix)
»
| *
B
o B
a_| ¢'E' #
O'E)’X
+'S"§' +
i & L
i‘nﬁ“?‘
P+@t@+@*ﬁ"€"@‘@' x
I:l T
0 1 2

The following example solves the differential equation dy/dx = g(x,y) = x + sin(xy) in the
interval 0< x < 6.5, with initial conditions xq= 0, yo = 1, for Ax = 0.5, 0.2, 0.1, 0.05, and 0.01.
The steps are the same as in the two previous example:

-->deff (' [Df] =g(x,y)"," Df=x+sin(x*y)")
Warni ng :redefining function: g
-->[x1,yl]=Eul er1(0,1,6.5,0.5,9);
-->[x2,y2]=Eul er1(0,1,6.5,0.2,9);
-->[x3,y3]=Euler1(0,1,6.5,0.1,9);
-->[x4,y4] =Eul er1(0,1,6.5,0.05,9);

-->ymin = nmin([yl y2 y3 y4 y5 yy])
ymin = 1.

-->ymax = max([yl y2 y3 y4 y5 yy])
ymax = 22.628614

-->rect = [0 0 7 25]

rect =
! 0. 0. 7. 25, !
-->plot2d(x1,y1,-1,'011"," ', rect)
-->plot2d(x2,y2,-2,'011'," ',rect)
-->plot2d(x3,y3,-3,'011'," ',rect)
-->pl ot 2d(x4, y4,-9,'011'," ',rect)

-->xtitle(' Euler 1st order - dy/dx = x+sin(x*y)','x',"'y(x)")

Download at InfoClearinghouse.com 38 © 2001 Gilberto E. Urroz

Euler 1st oeder —dwSdx =2+5inx v

250 iz

T.0

Finite difference formulas using indexed variables
In the presentation of the Euler forward method, above, we demonstrated how you can get,
from the general formula for the first derivative,
dy/dx = [y(x+h)-y(x)]1/h,
the recurrence formula for the explicit solution, namely,
Yis1 = Vi + AXG(Xi,Yi),
fori=1,2,..., n-1. This suggest re-writing the formula for the derivative as,

dy/dx = (Yis-yi)/ Ax + O(AX).

Using this sub-index notation, we can summarize the forward, centered, and backward
approximations for the first and second derivatives as shown below:

First Derivative

FORWARD: dy/dx = (Yi+1~Yi)/ AX+0O(AX).
CENTERED: dy/dx = (Yis i)/ (2AX)+O(AX7).
BACKWARD: dy/dx = (y;~Yi.1)/ Ax+0(AX).

Second Derivative
FORWARD: d2y/dx? = (Yisa—2 s tyi)/ (AX?)+O(AX).

CENTERED: d?y/dx? = (Vi —2§i+yi1)/ (AXD)+0(AXP).

Download at InfoClearinghouse.com 39 © 2001 Gilberto E. Urroz

BACKWARD: d?y/dx? = (Yi—2§i1+Yi0)/ (AXP)+O(AX).

Solution of a first-order ODE using finite differences - an implicit
method

Consider again the ordinary differential equation, dy/dx = g(x,y), subject to the boundary
condition, y(x;) = y;- This time, however, we use the centered difference approximation for
dy/dx, i.e.

dy/dx = (y(x+h)-y(x-h))/(2*h).
With this approximation the ODE becomes,

(y(x+h)-y(x-h))/(2*h) = g(x,y)-
In terms of sub-indexed variables, this latter equation can be written as:

Yiat2[AXg(Xi,yi)-Yi.1 = 0, (1=2,3, ..., n-1)

where the substitutions y(x) = yi,y(x+h) = yi.1,Y(x-h) = yi.1, and h = Ax, have been used.

If the function g(x,y) is linear in y, then the equations described above consist of a set of (n-2)
equations. For example, if n =5, we have 3 equations:

Y1+2[AX [g(X2,Y2)-y3 = 0
Yo+2[AX [g(X3,Y3)-Ya = 0
Ya+2AX [§(X4,Y4)-Ys = 0

Since y; is known (it is the initial condition), there are still 4 unknowns, y,, ys, Y4, and ys. We

need to find a fourth equation to obtain a solution. We could use, for example, the forward
difference equation applied toi =1, i.e.,

(Y2-y1)/ AX = 9(X1,Y1),

Y2-AX [g(X1,y1)-y1= 0.

or

The values of x;, and n (or Ax), can be obtained as in the Euler forward (explicit) solution.

Example 1 -- Solve the ODE
dy/dx =y sin(x),
with initial conditions y(0) = 1, in the interval 0 < x < 5. Use Ax = 0.5, or n = (5-0)/0.5 + 1 = 11.
Exact solution: the exact is y(x) = exp(-cos(x))/(cosh(1)-sinh(1)).
Numerical solution: Using a centered difference formula for dy/dx, i.e.,
dy/dx = (Yisa¥i-1)/ (21AX),
into the ODE, we get (Yi.1—VYi.1)/ (2[Ax) = y; sin(X;), which results in the (n-2) implicit equations:

Yia + 2AXEIn(x) & -y =0, (i=2, 3, .., n-1).

Download at InfoClearinghouse.com 40 © 2001 Gilberto E. Urroz

We already know that
yi1=1

(initial condition), thus we have (n-1) unknowns left. We still need to come up with an
additional equation, which could be obtained by using a forward difference formula for i = 1,
i.e.,

dy/dx] =1 = (Y2-y)/AX = -y, sin(xy),
or
(L+Ax sin(x1)) 1 - &, = 0.

These equations can be written in the form of a matrix equation, for example, for n = 5:

o1 0 0 0 000y,0 0yoO

. ~ 0Q, 0 0,0
4+ AxEin(x,) 1 0 0 0830 20¢
B 1 2 X [EiN(X,) -1 0 0 Eug,/g Sz Eo B
0 0 1 ZU&XEﬁn(Xg) -1 OD[WD DOD
H 0 0 1 2xEin(x,) -1HH.H HOH

where y0 represents the initial condition for y. [Note: The data requires n = 11. The example
for n =5 is presented above to provide a sense of the algorithm to fill out the matrix of data].
The matricial equation can be written as AR = b. Matrix A and column vector b can be defined
using SCILAB, as indicated below, and the solution found by using left-division. First, we enter
the basic data for the problem:

- - >x0=0; xn=5; Dx=0. 5; y0=1; x=[x0: Dx: xn] ; n=(xn- x0) / Dx+1
n = 11.

Next, we fill the main diagonal, and the two diagonals below the main diagonal in matrix A
using:

-->A=zeros(n,n); A(1,1) =1; for j =2:n, A(j,j)=-1;, end;

-->A(2,1) = 1+Dx*sin(x(1)); for j = 3:n, A(j,j-1)=2*Dx*sin(x(j-1)); end;
// second di agonal

-->for j =3:n, A(j,j-2) =1; end; /1 Third di agonal

The right-hand side vector is defined as:

-->b = zeros(n,1); b(l) = 1; /I Ri ght - hand si de vector
The implicit solution is obtained from:

-->y = A b; //Solving for y

To compare the implicit solution we calculate also the explicit solution obtained through the
Euler first-order solution:

-->deff (" [z]=ff(x,y)"'," zzy*sin(x)"')
-->getf(‘Eulerl)
-->[xx, yy] =Eul er 1(x0, y0, xn, Dx, ff);

To produce data reproducing the exact solution we use:

Download at InfoClearinghouse.com 41 © 2001 Gilberto E. Urroz

-->deff (' [y]=FE(x)"',"'y=exp(-cos(x))/(cosh(1)-sinh(1))")
-->xE = [0:0.05:5]; yE = fE(XE);

The following commands will generate the plot showing the exact, implicit, and explicit
solution in the same set of axes:

-->plot2d(xE ,yE',1,'011',' ', [0 0 5 8])
-->plot2d(x',y,-1,'011"," ', [0 0 5 8])
-->plot2d(xx',yy',-9,'011"," ', [0 0 5 8])

-->xtitle("+ Inplicit o Explicit','x','y")

+Implicit o Explicit

oo 0.5 1.0 15 2.0 2.4 3.0 3.5 4.0 4.5 a.n

Explicit versus implicit methods
The idea behind the explicit method is to be able to obtain values such as
Yis = (X, ¥i), Yis2 = F(Xi,Xis1,Y i,Yis1), €tC.

In other words, your solution proceeds by solving explicitly for a new unknown value in the
solution array, given all previous values in the array. On the other hand, implicit methods
imply the simultaneous solution of n linear algebraic equations that provide, at once, the
elements of the solution array. With this distinction in mind between explicit and implicit
methods, we outline explicit and implicit solutions for second-order, linear ODEs.

Outline of explicit solution for a second-order ODE

For example, to solve the ODE
d?y/dx?+y = 0,

in the x-interval (0,20) subject to y(0) = 1, dy/dx =1 aty = 0. Use Ax = 0.1.
First, we discretize the differential equation using the finite difference approximation

d?y/dx® = (Yia-2 ity (A7)

Download at InfoClearinghouse.com 42 © 2001 Gilberto E. Urroz

which results in
Vier-2 Giatyi)/ (A +y; = 0

An explicit solution can be obtained from the recurrence equation:
Vieo = 28-(L+OX) N, 1= 1, 2, ..., n-2;.

This equation is based on the two previous values of y;, therefore, to get started we need the
valuesy =y, andy =y,. The value y; is provided in the initial condition, y(0) =1, i.e.,

ylzl.

The value of y, can be obtained from the second initial condition, dy/dx = 1, by replacing the
derivative with the finite difference approximation:

dy/dx = (y2- y1)/4X,
which results in
(y2-y)/ &x =1,
or
Y2 = Y1t AX.

The x-domain is discretized in a similar fashion as in the previous examples for first derivatives,
i.e., by making x; = a, and x, = b, and computing the values of x;, i = 2,3, ... n, with

Xi = X1 +(i-1) [Ax = a+(i-1) [AX,
where,
N = (Xp-X1)/Ax+1 = (b-a)/ Ax+1.

The implementation of the solution for this example is left as an exercise for the reader.
Outline of the implicit solution for a second-order ODE
We use the same problem from the previous section: solve the ODE
d?y/dx?+y = 0,
in the x-interval (0,20) subject to y(0) = 1, dy/dx =1 at x = 0. Use Ax = 0.1.
We discretize the differential equation using the finite difference approximation
d?y/dx* = (Yisa-2 Batyi)/ (AX°)
which results in
(Vis1-2*Yityi)/ (AX)+y; = 0.
From this result we get the following implicit equations:
Yi1-(2-OX%) §i+yiss = 0,
fori=2,3, ..., n-1. There are a total of (n-2) equations. Since we have n unknowns, i.e., yi,
Yo, -.-,¥Yn, We need two more equations to solve a system of linear equations. The remaining

equations are provided by the two initial conditions:

From the initial condition, y(0) = 1, we can write y; = 1. For the second initial condition,
dy/dx = 1, atx =0, we will use a forward difference, i.e.,

Download at InfoClearinghouse.com 43 © 2001 Gilberto E. Urroz

dy/dx = (y2 - y1)/ 4%,
or
Yo - y1= AX.

The x-domain is discretized in a similar fashion as in the previous examples. The n equations
resulting from discretizing the domain can be written as a matrix equation similar to that of
Example 1. Solution to the matrix equation can be accomplished, for example, through the use
of left-division for matrices. The implementation of the solution for this example is left as an
exercise for the reader.

SCILAB provides a number of functions for the numerical solution of differential equations.
These functions are designed to operate on single differential equations (i.e., similar to the
examples presented so far), as well as on systems of differential equations. Therefore, before
presenting the SCILAB functions for solving ordinary differential equations, we present some
concepts related to systems of such equations.

Systems of ordinary differential equations

To introduce the idea of systems of differential equations we will limit the coverage of the
subject to first-order, linear equations with constant coefficients. A system of ordinary
differential equations consists of a set of two or more equations with an equal number of
unknown functions, Y,(X), Y,(X), etc. Asan example consider the following homogeneous
system:
1 dy,
o T3VT2Y,=0, oY *Y,=0.

In a homogeneous system the right-hand sides of the equations are zero. The following
example represents a NON-homogeneous system of ordinary differential equations:

d
A+2y -5y, =sin(x) %—4y +3y,=¢e*.
dx ! 2 *odx ! 2

Systems of ordinary differential equations using matrices

A homogeneous system of ODEs can be written as a single matrix differential equation by using
vector functions and a matrix of coefficients as illustrated in the following example. First, we
re-write the homogeneous system presented above to read:

dyl_

dX __3yl+2y21
dyz_
ax 1Yz

Then, we define the vector function f(x) = [y:(x) y»(x)]", and the matrix A = [-3 2; 1 -1], and
write the differential equation:

d

™ f(x) = A f(x).

This result is equivalent to writting:

Download at InfoClearinghouse.com 44 © 2001 Gilberto E. Urroz

d (O0_G3 2004000
ox F,(0H H1 —1%@4@%

The non-homogeneous system presented earlier can be re-written as

dy, :
W:_Zyl +5y2 _Sn(x) ’

dy, y
i T8y, tel.

For this system we will use the same vector function f(x) defined earlier, but change the

matrix A to A =[-2 5; 4 -3]. We also need to define a new vector function, g(x) = [-sin(x)
exp(x)]". With these definitions, we can re-write the non-homogeneous system as:

d
& 100 = ATe0+ g,

d n()O0_G-2 5%@1(@5 Grsin(x)0
ax 000 Ha -3H 8,00 Hexon) E

Systems of linear homogeneous ODEs - solution using matrices

or

Consider the system of linear nonhomogeneous ODEs with constant coefficients given by:

dyi/dx = yi+ys, dy,/dx = yi+y,-ys, dys/dXx = Sy;+y,tys.

In matricial form, this can be written as:

(X0 O 0 100y(X0

GE=d 1 T
B8 B 1 1HH:(0H

or,

d
™ f(x) = A f(x).

We can use the eigenvalues and eigenvectors of matrix A to obtain the solution to the system
of homogeneous equations by following this procedure:

1. Determine eigenvalues of the nxn matrix A. Call these eigenvalues A, A, ,..., AL

2. Determine the eigenvectors of the nxn matrix A. Call these eigenvectors

Download at InfoClearinghouse.com 45 © 2001 Gilberto E. Urroz

X1:[X11' X12""'Xl,n]’ XZ:[X21'X22""’ X2,n]' et Xn:[Xn,l' Xn,2""'xn,n]'

3. The general solutions to the system are put together as follows:

yl(X) Xll Bl exp()\1 X)+ X21 BZ exp()\2 X)+' " Xl,n Bn exp()\n X)’

Y (X) 1 Brexp(A; x)+ X, Byexp(A,x)+.. X, B exp(A,x),

yn(x) = Xn,l Blexp()\lx)+ Xn,2 Bzexp()\ZX)+" Xn,n Bn exp(7\nx).

i.e.,
n ()\j X)
Y(x) = > x,Be ,k=12,..,n
i=1
These general solutions include n unknown constants, B, B,, ..., B.. We will need n

initial conditions to solve for the N constants to uniquely determine the solution to the
system.

For the system under consideration, the solution steps can be translated into SCILAB
instructions as shown below. To obtain eigenvalues and eigenvectors we use the user-defined
function eigenvectors defined in Chapter 5.

S.>A=1[1,01:1,1,-1:5,1, 1]
A =

! 1.
! 1.
! 5

-->getf (' eigenvectors’)

-->[x,l anbda] = ei genvectors(A)

| anbda =
! 3.1149075 - .8608059 . 7458983 !
X =
! .4170021 - .3827458 - .1983289 !
I - .2198294 . 5884340 . 9788391 !
! . 8819208 . 7122156 . 0503957 !

The solutions are, therefore,
y1(x) = 0.4170021B,e%11%%* -0.3827458 B,e 0-¥%%% 0 198328 B,e? 4289

yo(X) = - 0.219829 B, e3 1149 4 0.5884340B,e 0-808%% 1 9788391 Bye” 7458983x
ys(x) = 0. 881920881e3 149 4 0.7122156 B,e 08008059 1 0 0503957B4e” 7458983¢"

Substituting the following initial conditions: y,(0) =1, y,(0)=2, and y,0) =3, produce a
system of linear equations:

Download at InfoClearinghouse.com 46 © 2001 Gilberto E. Urroz

0.4170021B, -0.3827458 B, -0.198328 B; = 1
- 0.219829 B+ 0.5884340B, + 0.9788391 B3 = 2
0.8819208B, + 0.7122156 B, + 0.0503957B;= 3

which can be solved using left-division as follows:

-->AA=x; bb=[1; 2; 3]
bb =

- - >B=AA\ bb
B =

! 3.5181246 !

I - .3600066 !
! 3. 049763 !

The results are B; = 3. 5181246, B, = - 0. 3600066, and B; = 3. 049763.
To determine the coefficients in the solutions we can use:

-->C=AA *[B B B]

C =
! 1.4670652 - 1.3465474 - .6977459 !
! . 0791400 - .2118401 - .3523886 !
! 2.6896495 2.1720889 . 153695 !

Thus, the solutions are:

yi(X) = 1.4670652e*49% - 1.3465474e 0-890805% g 69774509¢0- 7458983

y1(X) = 0.0791400e*14%% -0.2118401e 0898959 _ 352388642893

y1(X) = 2.6896495e114% + 2 1720889e 0808059 + 1536956 7458983¢
These solutions can be shown graphically by defining the following three functlons

-->deff (" [y]l=yl(x)',['y=0";"'for j=1:3";"'y=y+C(1,])*exp(lanbda(j)*x)";" " end])
-->deff (" [y]l=y2(x)',['y=0";"'for j=1:3";"'y=y+C(2,])*exp(lanbda(j)*x)";" " end])
-->deff (" [y]l=y3(x)',['y=0";"'for j=1:3";"'y=y+C(3,])*exp(lanbda(j)*x)";" " end])
A plot of the solution is shown next:

-->xx=[0:0.1:1];yyl=real (y1(xx));yy2=real (y2(xx));yy3=real (y3(xx));

-->xset ("wi ndow , 1);xset('mark',[-1 -2 -3],1);

-->plot2d([xx" xx" xx"],[yyl vyy2' yy3],[-1,-2,-3],'011"," ',[0 -20 1 80])

-->plot2d([xx" xx' xx'],[yyl vyy2' yy3],[1,2,3],"011"," ',[0 -20 1 80])

Download at InfoClearinghouse.com 47 © 2001 Gilberto E. Urroz

Bolution toserstemn of ODEs
&0 iz

0o 0.1 0.z 0.z 0.4 0.4 0.6 or ng 0.9 1.0

d
The solution to the non-homogeneous system, X f(x) = A f(x), can be accomplished in a

straightforward manner by using the equation,
f(x) = exp(Ax)b,
where b is a vector containing the initial conditions, i.e.,
b = [y1(0) Y2(0) ... Ya(O)]".

and the expression exp(At) is a matrix defined as:
1 g2 — 1 kk
exp(AY) = | +At+ 5 ... =|+;EAt ,

where | is the identity matrix, A> = AA, A’=A>A, ... To evaluate the expression €XP(AX),
SCILAB provides function expm.

The solution to the linear system under consideration, using the equation, f(x) = exp(Ax)b, can
be obtained as follows using SCILAB (matrix A is the same matrix of coefficients of the ODE
system defined earlier):

-->deff("[y] = fm(t)', " y=real (expm(A*t)*bb)")

A plot of the solution using this matrix approach is produced with the following SCILAB
statements:

-->xx=[0:0.1:1]; n = | ength(xx)
n = 11.

-->yne[];for j=l:n, ynr[ymfm(xx(j))]: end;

-->plot2d([xx', xx", xx"],[ym(1,:)" ,ym2,:)" ,ym3,:)"'1,[1,2,3])

-->xtitle('Solution to systemof QDEs','x','y(x)')

Download at InfoClearinghouse.com 48 © 2001 Gilberto E. Urroz

i Bolution toserstemn of ODEs
a0

1] 0.1 0.z 0z 0.4 0.4 0.6 or g 09 1.0

Systems of linear nonhomogeneous ODEs - solution using matrices

Consider the system of linear nonhomogeneous ordinary differential equations with constant
coefficients given by

dyl_

X dyz . dys
o ChTtYste, ——=Y,~Y;+8n(x), and &:5y1+y2+y3+303(x)

dx

This system can be written as a matricial differential equation as:

Y1)
0 1oyl(x) e*
Xy2(x) = 1 -1% 2(x)§+ in(x)
1 1553(x) 0S(X)
Y3(x)

In general, a nonhomogeneous system can be written in matricial form as

d
o [00=AT) + 900

For the case under consideration, we have:

A solution to the system of ODEs is given by

fx)= @ (xC+ () $¢<x)“> o(x) dx ,

Download at InfoClearinghouse.com 49 © 2001 Gilberto E. Urroz

where ®(x) = exp(Ax) is known as a fundamental matrix of the system, ®(x)® is the inverse
matrix of @(x), and C is a vector of constants, i.e., C=[C; C, ... C,].

Unlike the homogeneous case, the presence of the integral in the solution f(x) complicates the
calculation or programming of the solution using SCILAB. The reader is referred to symbolic
packages such as Maple or Mathematica to obtain such solutions. Numerical solutions,
however, are possible with SCILAB, as will be demonstrated in subsequent sections of this
book.

Converting second-order linear equations to a system of equations

2
A second-order linear ODE of the form % + % +cy=r(x), can be transformed into a
i _dy d’y du
linear system of equations by introducing the relationship, u(x) = o’ SO that e = thus,
. du du .
the equation reduces to - +bu+cy=r(x), or - -=-bu-cy+r(x). The resulting system of
equations is:
%:—bu -cy +r(x),
dy _
ax -

Which can be written in matricial form as df/dx = A f(x)+g(x), with

g, Ob -cO . OO
"WEBAAHL 0BT Ho R

For example, the solution to the second order differential equation

d’y 5dy _
dx2+dX 3y=x,

can be obtained by solving the equivalent first-order linear system:

3—22—5u+3y+x,
dy
d

Download at InfoClearinghouse.com 50 © 2001 Gilberto E. Urroz

The procedure outlined above to transform a second order linear equation can be used to
convert a linear equation of order n into a system of first-order linear equations. For
example, if the original ODE is written as:

dny d(n_l) d2y aldy _
> +a _, 5D +...+4, v t gt AYE r(x),
we can re-write it as
(n-1)
dy d d?y & dy
ol WG "% ot Tax Y r(x),

dun_1
dx =8, Uy - A U - -3, U, - AU - agy + (X)),
dun—z_ dun—s_ %_ dy_
ax -1 T T Uiz T T e T
or, in matricial form,
wn—l B S_ an—l) - an—3 - ai - aO B EH(X)B
Rl a1 0 0 0 0f 20 5
0: 0O 0o 1 0 0 O 0O: O
f()=0 0O A=0O 09gx=0,.0
Dul O g : : : : O o U
| O O g 0
gy 8 g0 0 0 1 00 50 0

For example, to transform the following fourth-order (N=4) linear ODE

d4y+3d3y _2d’y 5dy

+— +y=0,
o e)
. d d? d? . . .
subjected to y=1, (Ty =-1, —Z =0, —Z =-1,at x=0, into a first-order linear system, we
X dx ax
would write:

dug/dx = -3u(X)+2u,(X)-5u(X)-y(x)+x?/2, du,/dx = us(x), du;/Zdx = u,(x), and dy/dx = uy(x),

or

Download at InfoClearinghouse.com 51 © 2001 Gilberto E. Urroz

W,(x)0 +3

d @09 oL
dx fu, (x)0 00

0O, .0 0
ay(x)g go

2 -5 -10m,(x)0O B(Z /2%
0 0 og:gjz(x)gw 0 O
Lo oo g
0 1 0poy(®¥o 50 8

with v(x) = [us(x);u(x);u(X); y()1', A = [-3,2,-5,-1;1,0,0,0;0,1,0,0;0,0,1,0]; and g(x) = [x*/;0;
0; 0]", the system of differential equations is written as dv/dx = Av+g(x). The initial
conditions are y(0) = 1, uy(0) = dy/dx = -1, u,(0) = du/dx = d’y/dx? = 0, u3(0) = du,/dx =
d?u/dx? = d*y/dx® = -1, or up = [-1;0;-1;1].

SCILAB functions for the numerical solutions of initial
value problems (IVP)

SCILAB provides function ode for the solution of initial value problems, i.e., those subject to
initial, rather than boundary, conditions.

Function ode

The simplest call to function ode is
y=ode(y0,x0,x,T)
where the point (x0,y0) represents the initial conditions for the differential equation
dy/dx = f(x,y),
and x is a vector of values of the independent variable x.

The function f can be a single function f(x,y) or a vector of functions,

Dfl(X,Y)B Dfl(xlyllyZ"“'yn)B
sz(x'y)D:sz(xlylnyzn""yn)m
o : 0O 0O : 0
O o 0O [l
Ta(YO O (X Yas Yoo s ¥a) O

f(xy)=

Download at InfoClearinghouse.com 52 © 2001 Gilberto E. Urroz

In the latter case, y is also a vector representing the variables y = [y1 Y ... Ya]'-

The first example shows the solution to the differential equation dy/dx = xy, in the range
0<x<2, with initial conditions y(0) = 1.

-->deff (" [z]=fF(Xx,y)',"z=x.*y")
-->x0 = 0; yO =1; Dx =0.1; xn = 2; x = [x0:Dx:xn];
-->y = ode(yO0, x0, x, f);

-->plot(x,y,"'x',"'y' ,"ode solution to dy/dx = x*y')

odesolution todyfd=x"y

o 0x 04 06 08 10 1z 14 16 18 D
In the second example, we solve the differential equation du/dt = u sin(t), in the range 0<t<10,
with initial condition u(0) = 5.
->def f (" [w =g(t,u)', weu.*sin(t)")
-->t0=0; Dt=0.1;tn=1;u0=5;t=[t0:Dt:tn];
-->u = ode(u0,t0,t,q);

-->plot(t,u,'"t',"u ,"'ode solution to du/dt = u*sin(t)")

odesolution todufdt =u*sinit})

10

[Ex]
b=t

— = Rr B3 R3O L
wooDd -1 = th S 0h
P N AT NI ST I I

Lh

0

The next example uses a system of two differential equations, namely,

dy;/dx =y, + X

Download at InfoClearinghouse.com 53 © 2001 Gilberto E. Urroz

dy,/dx = -y,

with initial conditions y;=1, y, = 2, for x, = 0.

-->def £ (U [wW =f(x,y)", ["yl=y(2)+x","y2=-y(1)","w = [yl;y2]"])

-->x0 = 0; Dx =0.1; xn = 2; y0 =[1;2];

-->X = [x0:Dx:xn]; y = ode(y0, x0, x,f);

-->mn(y), max(y)

ans = - 2.8322936

ans = 2.999147

-->plot2d([x' ,x"],[y(L,:)", y(2,:)'1,[1,-1],"' 111" ,'y1l@2',[0 -3 2 4])

-->xtitle('ode solution for two functions','x',"'y")

odesolution fortwo functions

-3.00

— . .
0.0 Dﬁi 0.4 0.6 0.8 10 1.2 14 14 18 20
+

Numerical methods used in function ode

Function ode uses as default the numerical method known as the Adams method. In general,
Adams methods for solving the differential equation dy/dx = f(x,y) basically consist in obtaining
Yie1 = Y(Xk:1) through the fitting of a polynomial that interpolates f(x,y) at selected points (x;,y;)
of the solution. The k-th order Adams-Bashforth method is an explicit method that uses the
current point (x,,y,) and k-1 points for the solution. The k-th order Adams-Moulton method is
an implicit method using points (Xn+1,Yn+1), (Xn,¥n) @and k-2 previously calculated points. Adams
methods are also known as predictor-corrector methods because their solution involves an
initial predictor step, which is then modified in a corrector step that improves the solution.

Function ode can be called with an additional argument that specifies the numerical method to

be used for a solution. This argument becomes the first argument in the call to function ode.
The function call, if such optional argument is used, is

[y] = ode([type].y0,10,t,f)

where type is one of the following character string: "adams", "stiff", "rk", "rkf", "fix", "discrete",
or "roots". The meaning of each of these options is presented next:

"adams": Default value. Uses the Adams predictor-corrector method for the solution.

Download at InfoClearinghouse.com 54 © 2001 Gilberto E. Urroz

"stiff": This option invokes the use of a Backward Differentiation Formula (BDF) for the
solution of stiff ordinary differential equations.

"rk": Invokes an adaptive, 4-th order, Runge-Kutta method.

"rkf": Invokes a Fehlberg's Runge-Kutta method of order 4 and 5 (RKF45).
"fix": Same solver as "rkf", a simpler user interface.

"root": ODE solver with root finding capabilities.

"discrete": Discrete time simulation.

The type options “root” and “discrete” do not represent different methods for solving ordinary
differential equations. Instead, they represent enhanced abilities for function ode for root
finding and combining discrete and continuous systems. The applications of these options will
be presented later.

Adams-Bashforth methods

These methods involve explicit functions for y,.; in terms of k points in the solution. The
equations describing the Adams-Bashforth methods of orders 1 through 5 are shown below. In
these equations the term f, represents f(x,,y,) and Ax is the increment in the independent
variable x:

Vi1 = Yo + A, (same as Euler 1 order method)
Yos1 = Yn + (AX 72)(3F-Tr)

Yot = Yn + (AX /12)(23f,-16f,.1+5F,.))

Yot = Yn + (AX /24)(55F,-59F, 1 +37F, ,-9f,.5)

Vet = Yn + (A /720)(1901F,-2774f,1+2616f, ,-1274f, 5+251f, 4)

Adams-Moulton methods

The following equations represent the Adams-Moulton methods of orders 1 through 5. These
are implicit methods, in which the term f,.; = f(Xp+1,Yn+1):

Ynir = Yn + Xy

Y1 = Yn + (AX /2)(Foui-To)

Yoer = Yn + (AX /12)(Foey + 8F-Frs)

Yns1 = Yn t (AX /24)(9fn+1+ 19fn-5fn_1+fn_2)

Yns1 = Yn t (AX /720)(251fn+1+ 646fn-264fn_1+106fn_2-19fn_3+251)

Adams-Bashforth-Moulton methods

The Adams-Bashforth-Moulton predictor-corrector method uses one of the Adams-Bashforth
formulas to produce a first approximation for the solution (a predictor value), followed by an
evaluation of the function f(Xn.1,Yn+1) = fre1, Which is used in an Adams-Moulton formula to
produce a better approximation to the solution (a corrector value). Depending on the order of
the formula used for the predictor part of the algorithm, we need one or more values of the
solution to get the algorithm started. The Runge-Kutta method, described below, can be used

Download at InfoClearinghouse.com 55 © 2001 Gilberto E. Urroz

to generate those few initial data values necessary to get the Adams-Bashforth-Moulton
procedure started.

Runge-Kutta methods

The general approach for the Runge-Kutta methods consists of the following equations

ky = AX f(Xn,Yn)
ko = Ax f(x,+ah,y,+8K,)
Yni1 = Yo + 0Ky + BK;

where the values of the parameters a and [are selected from Taylor series expansions
representing different orders of the approximation. For example, for an error of order Ax®,
the Runge-Kutta method is given by

ky = A f(Xn,Yn)
ks = A f(X,+ h,y,tky)
Ynsr = Yn t (kl + kz)/z-

A fourth-order Runge-Kutta method is given by the formulas

k1 = AX f(xann)
ky = Ax f(Xn+ AX /2,y,tk/2)
ks = A f(X,+ AX /2,y,tKo/2)
ks = AX f(X,+ AX, Y, + K3)
Yntr = Yn t (kl + 2Ky + 2ks +k4)/6.

A fourth-fifth order Runge-Kutta method produces a fourth order and a fifth order estimate
(VYn+1,Zn+1) Of the function through the following algorithm:

k, =AxOF (X,,Y,)
k2 :AXDf(Xn +%’yn +ﬁ)

30X 3k 92

Ky = AxOF (X, +—. Y,
3 (n 8 y 32)

12/x 1932k1 7200k, = 7296k
+ - +

k, = AxOF (X, +———, ¥, 5
13 2197 2197 2197
k, = AXCF (x, +Ax, y, + 0K gy, 3080k, 845k)
6 513
K = AXCF (x + 2%y B g 354K +1859k4 LI
2 27 2565 4104

25 1408 2197 1

=y + Kk + k, + k, —=k
You =% T 516 1 2565 4104 * 5°

_ 16 6656 28561 9 2
=Y.t kl k k4 - ks + ke
135 12825 56430 50 55

Download at InfoClearinghouse.com 56 © 2001 Gilberto E. Urroz

Examples of function ode with different numerical methods

In this first example we solve the differential equation dy/dx = (x+1)e®®Y in the range 0<x<5,
with initial condition y(0) = 0 using different methods within function ode:

-->deff (" [z]=f(x,y)',"z = (x+1).*exp(-0.01.*y)")
- - >x0=0; Dx=0. 1; xn=5. 0; y0=0; x=[x0: Dx: xn] ;

-->y1 = ode(' adans', y0, x0, x, f);

-->y2 ode('rk',y0, x0,x,f);

-->y3 = ode('rkf',y0,x0,x,f);

-->min([yl y2 y3]), max([yl y2 y3])

ans = 0.

ans = 16.126815
-->plot2d([x',x" ,x"],[yl ,y2",y3],[-1,-2,-3]," 111",

-->'" Adans net hod@Runge- Kutta 4th order @Runge-Kutta 4-5th order’',
-->[0 0 5 20])

-->Xtit|e('dy/dx = (X+1)*€‘Xp(-0.01*y)','x','y')

derfdx =+ expd -0.01%)

o EI. 0 25 N 35 4.0 4.5 5.0

ﬁ H& E u%%a% %E’ﬁnr et

In the following example we solve the system of equations

dyi/dx = - yq, dy,/dx =y,
in the range 0<x<5, with initial conditions y;(0) = -1, y,(0) =1
-->deff (" [z]=f(x,y)',['z1l=-y(1)','z2=y(2)',"'z=[21;22]"'])

-->x0=0; Dx=0. 1; xn=5. 0; yO=[- 1; 1] ; x=[x0: Dx: xn] ;
-->y1 = ode(' adans', y0, x0, x, f);

Download at InfoClearinghouse.com 57 © 2001 Gilberto E. Urroz

-->y2 = ode('rk',y0, x0, x,f);
-->y3 = ode('rkf',y0,x0,x,f);
-->min(yl), max(yl)

ans = - 1.

ans = 148. 4132

-->plot2d([x' ,x' ,x"],[yd(1,:)",y2(1,:)" ,y3(1,:)"],[-1,-2,-3]," 111", ...
-->'" Adans net hod@Runge- Kutta 4th order @Runge-Kutta 4-5th order', ...
-->[0 -1 5 0])

-->xtitle(' Systemof equations - y(1)','x','y")

Bwsternof equations - {1}
0.0 r
] @B
-0.14 Y B
b

Bimﬁﬁﬁiiill

e —

-->plot2d([x', x',x"],[yl(2,:)" ,y2(2,:)",y3(2,:)"'].,[-1,-2,-3]," 111", ...
-->'" Adanms net hod@unge- Kutta 4th order @Runge-Kutta 4-5th order', ...
-->[0 -1 5 150])

Ewsternof equations - y{2)
1500 ¥

134 .0
1108
1047
a0
4.5
50.4
443
mz

14.1
BE
i peEeREEEEEEBERERREEERE

’ 3 gﬁﬁg&%ﬁﬂ%ﬁlﬁfﬁ%ﬁu 2 3 4 I A

Stiff ordinary differential equations

There are a number of definitions of a stiff matrix (see, for example, Hoffman, J.D., 1992,
“Numerical Methods for Engineers and Scientists,” McGraw-Hill, Inc., New York) based on their
requirements for stability or on the presence of a rapidly decaying transient. The concept of
stability in the numerical solution of an ordinary differential equation involves the analysis of

Download at InfoClearinghouse.com 58 © 2001 Gilberto E. Urroz

the error inherent in the numerical method. If a small error introduced in the first step of the
numerical solution remains constant or decays as solution steps accumulate, the solution is said
to be stable. If, on the other hand, a small error involved in the first step of the solution
increases without bound as the solution steps accumulate the solution is said to be unstable.

Thus, based on the numerical solution of an ordinary differential equation, a stiff equation is
defined as one which requires a step size so small for stability that round-off errors (inherent in
computer calculations) become significant. Alternatively, a stiff equation is one that contains
some transient component that decays rapidly compared to the main transient component.

As an example, consider the ordinary differential equation dy/dx = f(x,y) = -1000(y-x)+2001,
whose exact solution is y(x) = -exp(-1000x)+x+2. The solution is composed of two parts, y;(x) =
-exp(-1000x), and y,(X) = x+2, which vary at significantly different rates as x varies. The first
component, yi(X), goes quickly to zero, while the second component, y,(x), produces a simple
linear solution. Component y;(x) is only significant for very small values of x. The following
two graphs illustrate the behavior of the solution y(x) for small and relatively large values of x.

-->deff (" [y]=f(x)", " y=-exp(-1000. *x) +x+2')

-->plot(xs,ys,'x",'y","'solution for snall values of x')

solution for sonall walwes of
12 il

20|

1a_]

16_|

14 _|

1.2]

10

1] 2e-3 de-3 fe-3 fe-3 10e-3 12e-3

-->x1=[0:0.001:1]; yl=f(xl);

-->plot(xl,yl,"x","y","solution for larger values of x')

Download at InfoClearinghouse.com 59 © 2001 Gilberto E. Urroz

- solution forlargessralues of

T Sy U R O R S T
= Y N - N T U =

0.1 0.z 0z 0.4 0.4 0.6 or g 09 1.0

=

To determine the effect that the increment in the independent variable, Ax, has on the
solution, we attempt solutions using function Eulerl that implements Euler’s first-order
method using values of Ax = 0.0005, 0.0010, 0.0020, 0.0025. We then plot the solution to
compare the results for different values of Ax.

-->def f (' [dydx] =g(x,y)"', "' dydx=-1000. *(y-x)+2001")

-->getf (' EBulerl")

- ->Dx=0. 0005; x0=0; xn=0. 01; y0=1; [x1, y1] =Eul er 1(x0, yO0, xn, Dx, @) ;
- ->Dx=0. 0010; x0=0; xn=0. 01; y0=1; [x2, y2] =Eul er 1(x0, yO0, xn, Dx, g) ;
- ->Dx=0. 0020; x0=0; xn=0. 01; y0=1; [x3, y3] =Eul er 1(x0, y0, xn, Dx, @) ;
- ->Dx=0. 0025; x0=0; xn=0. 01; y0=1; [x4, y4] =Eul er 1(x0, yO0, xn, Dx, @) ;

-->min([yl y2 y3 y4]), max([yl y2 y3 y4])
ans = - 3.0525
ans 5.3825

-->rect = [0 -4 0.01 6];

-->pl ot 2d(x1,y1,-1,'011"," ', rect)
-->plot2d(x2,y2,-2,'011'," ',rect)
-->pl ot 2d(x3,y3,-3,'011'," ',rect)
-->pl ot 2d(x4, y4,-4,'011'," ',rect)
-->pl ot 2d(x1,y1,1,' 011" ," ', rect)
-->pl ot 2d(x2,y2,2,'011'," ', rect)
-->pl ot 2d(x3,y3,3,'011'," ', rect)
-->pl ot 2d(x4, y4,4,' 011" ,"' ', rect)

-->plot(xl,yl,"x","y","solution for larger values of x')
-->xtitle('Stiff equation numerical solution Euler 1st order','x','y')

Stiff equation nurnerical solution Euler 15t oxder

G ¥

3] ¢

4]

3] @t

] Mo g B F- W+ ¥+ ¥+ ¥ F- ok + 0% o ¥+
1@ i &

0] -

-1

-2

-3_: x
-4

0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0.010
The points indicated by the crosses and asterisks correspond to the values of Ax = 0.0005 and

0.0010. The values indicated by the crosses enclosed in circles correspond to Ax = 0.0020, and
the dark diamond marks correspond to Ax = 0.0025. The result indicates that Ax must be of

Download at InfoClearinghouse.com 60 © 2001 Gilberto E. Urroz

size 0.0010 or smaller to ensure stability. This is a characteristic of a stiff ordinary
differential equation since a very small step Ax is required for stability.

Function ode allows the use of the argument ‘stiff’ to change the numerical method for the
solution to a Backward Differentiation Formula (BDF) for its solution. The following SCILAB
commands demonstrate the use of function ode with the argument ‘stiff’ for the solution of the
differential equation under consideration. The graph thus produced shows that the solutions
are stable for the four values of Ax used.

-->def f (' [dydx] =g(x,y)"', "' dydx=-1000. *(y-x)+2001")

- ->Dx=0. 0005; x0=0; xn=0. 01; yO=1; x1=[x0: Dx: xn] ; yl=ode("' sti ff',y0, x0, x1, g);
-->Dx=0. 0010; x0=0; xn=0. 01; y0=1; x2=[x0: Dx: xn] ; y2=ode("' sti ff',y0, x0, x2, g9);
- ->Dx=0. 0020; x0=0; xn=0. 01; y0=1; x3=[x0: Dx: xn] ; y3=ode("' sti ff',y0, x0, x3, g);
- ->Dx=0. 0025; x0=0; xn=0. 01; y0=1; x4=[x0: Dx: xn] ; y4=ode("' sti ff',y0, x0, x4, g);
-->min([yl y2 y3 y4]), mex([yl y2 y3 y4])

ans = 1.

ans = 2.0099544

-->rect = [0 0 0.01 2.5];

-->plot2d(x1,y1,-1,'011"," ', rect)
-->plot2d(x2,y2,-2,'011'," ',rect)
-->pl ot 2d(x3,y3,-3,'011'," ',rect)
-->pl ot 2d(x4, y4,-4,'011'," ',rect)

-->xtitle('Stiff equation - ode function with option stiff',"'x',"y")

Etiffequation —-odefunctionwithoption stiff
2.50 ¥

125
]
1.75
1.50
1.25
1.00
0.7
0.50
025

0.0
0.000 0001 .00z 0.002 o004 0.005 0.006 o007 0.002 0.ong 0.010

||||||||gl||||||||||

Function ode with root finding option

Function ode can be invoked with the first argument ‘root’ if the solution of the ordinary
differential equation dy/dx = f(x,y) is subject to the constraint g(x,y) = 0. The solution is
calculated for a range of values of x (a vector) and stopped when the constraint g(x,y)=0 is
satisfied. For example, suppose that we are solving the differential equation dy/dx = f(x,y) =

Download at InfoClearinghouse.com 61 © 2001 Gilberto E. Urroz

x sin(y), with initial conditions y(0) = 1, subjected to the constraint g(x,y) =x +y -5 =0, in the
range 0 < x < 10. We will obtain the solution by using:

-->def f (" [dydx] =f(x,y)"'," ' dydx = x*sin(y)"')
-->deff (" [W =g(x,y)","w = x+y-5")

-->y0=1; x0=0; x=[0: 0. 1: 10] ;

-->[y,rd] =ode(' root',y0,x0,x,f,1,9);

We can check that the solution was stopped before reaching the maximum value of x by
checking the lengths of the vectors x and y:

-->length(x), length(y)
ans = 101.

ans = 23.
Vector rd contains information on the point where the calculation was stopped.

-->rd
rd =

! 2.1889184 1. !
To plot the results of the recent call to function ode we create a new vector of x values, xx:
-->xx = x(1:23);

-->plot(xx,y,"'x","y","ode function with root option')

- ode function with root option

T Sy U R O R S T
= Y N - N T U =

04 ng 12 1.4 20 4

=

The following plot shows the truncated solution altogether with the solution for the full x range
(0,10):

-->yf = ode(yO0, x0, x, f);
-->plot(x,yf,"'x","y","ode function solution")

-->plot2d(xx,y,-9,'011',* ', [0 1 10 3.4])

Download at InfoClearinghouse.com 62 © 2001 Gilberto E. Urroz

odefunctionsolution

Discrete solutions with function ode

Function ode provides the option "discrete” for the solution of a differential equation dy/dx =
f(x,y) based on a set of discrete (integer) indices kvect, that starts with kO. The initial
condition is y(k0) = y0. The simplest call to the function is

[v] = ode(“discrete’,y0,k0,kvect,f).

When using this option, the solution is calculated recursively by using yw..=f(k,yy), for k=1,2,...

As an example, we solve the differential equation dy/dx = x%*1, in a discrete domain
k=1,2,...,20, with y(1) = 2.5:

-->def f (" [dydx] =f (x,y)"', "' dydx=x.72-1")

-->k0 = 1; kvect =[1:1:20]; y0 = 2.5;

-->y = ode('discrete',yo0, kO, kvect,f);

The following plot shows the results of y as function of k:

-->pl ot (kvect,y,"'k',"'y',"ode function with option discrete')

Download at InfoClearinghouse.com 63 © 2001 Gilberto E. Urroz

odefunctionwithoption discrete

Lo

h

=
-~

B2 L
[==T 2*1
= O

40

[==
[= T T = A
[Y e B e Y e R e |

=

—_
w
th
-a
w
e
—_-
—_
[EE)
—_
th
—_
par}
—_
=1

21

Changing ODE numerical solution parameters with odeoptions

Function ode uses a number of parameters which can be redefined through the use of the
function odeoptions(). When this command is used, SCILAB generates an input form where the
parameters of the numerical methods for ordinary differential equations can be modified.
Application of the function odeoptions() can be used to modify the global variable
%ODEOPTIONS. This variable is a vector containing the following information:

[itask,tcrit,h0,hmax,hmin,jactyp,mxstep,maxordn,maxords,ixpr,ml,mu]
where the different elements are described as follows:
itask - identifies the task required from the numerical method. Possible values of itask are:
: normal computation at specified times
: computation at mesh points (given in first row of output of ode)
: calculate one step at one internal mesh point and return

: normal computation without overshooting tcrit (see below)
: one step, without passing tcrit (see below), and return

O~ WNBE

terit - this value applies when itask = 4 or 5, representing a critical value of the independent
variable t.

hO - represents the first step in the independent variable tried in the numerical solutions
when adaptive methods are used.

hmax - maximum step size
hmin - minimum step size

jJactype - Jacobian type. This option can be used when additional derivatives (a Jacobian) are
provided for the solution. Possible values of this option are:

: functional iterations, no Jacobian used ("adams" or "stiff" only)
: user-supplied full Jacobian

: internally generated full Jacobian

: internally generated diagonal Jacobian ("adams" or "stiff" only)
: user-supplied banded Jacobian (see ml and mu below)

A WNEFO

Download at InfoClearinghouse.com 64 © 2001 Gilberto E. Urroz

5 : internally generated banded Jacobian (see ml and mu below)
mxstep - Maximum number of iterations allowed.

maxordn - Maximum non-stiff order allowed for the numerical method (maximum allowed is
12).

maxords - Maximum stiff order allowed, at most 5-th order.
ixpr - print level, either 0 or 1.
ml,mu - see description below:

If jactype = 4 or 5, ml and mu are the lower and upper half-bandwidths of the banded
Jacobian. The band includes those terms of the Jacobian, J;j, with i-ml <= j <= ny-1.

If jactype = 4 the Jacobian function must return a matrix J which has (ml+mu+1) rows
and ny columns (where ny is the number of elements of y in dy/dt =f(t,y)), such that
the first column of J is made of mu zeros followed by of,/dy,, df,/0dy,, 0fs/dy,, ... (1+ml
possibly non-zero entries). Column 2 of J is made of mu-1 zeros followed by 9f,/0x,,
aleaXQ, etc

The default value of the global variable %ODEOPTIONS is [1,0,0,%inf,0,2,500,12,5,0,-1,-1],
i.e., itask = 1, tcrit = 0, hO = 0, hmax =, hmin = 0, jactype = 2, mxstep = 500, maxordn = 12,
maxords =5, ixpr =0, ml =-1, mu = -1.

Applications of numerical solutions to IVPs

This section presents the solution to initial value problems (IVPs) some of which are obtained
from the physical sciences, e.g., mechanical systems, electric circuits, etc.

Systems of ODEs from mechanical systems

Systems of ODEs can obtained from the analysis of two linked particles in oscillatory motion or
from the analysis of electric circuits. For example, the figure below shows two particles, P,

and P, , linked by three springs. The figure at the top represents the system in their state of
equilibrium, while the one at the bottom shows the system at any generic point at time t>0.

Download at InfoClearinghouse.com 65 © 2001 Gilberto E. Urroz

X X
1 2
I —p P " I
I L,a. I LEi I LC !

particles in maotion

The displacement of particle P, with respect to its equilibrium position is given by X,(t),
while that of particle P, is given by x,(t). The magnitude of the force applied by a spring on
an attached particle is given by Hooke's law,

F=—k(L-L,),

where K is the spring constant, L is the stretched length of the spring, and L, is the
unstretched length of the spring. The force that spring A, with constant K, , applies on
particle P, is given by

Fo= K (Ly+x —-L,) = kX,

A

while that applied by spring B on particle P, is

Fg = Kg(LytLgtLhe —Ly v Lo % 1g) = Kg(X =)

For the position illustrated in the Figure above, both forces will act in the negative direction of
X, , thus, writting Newton's second law for particle P, of mass m, results in:

d?x,

_FA_FB:mlal’ or _kAXl_kB(Xl_XZ):ml dt2

Similarly, for particle P,, of mass m,, with the magnitude of the force applied by spring C
given by

Fc = ‘kc(Lc_Xz_Lc)‘:kcxz’

we can write

d?x,
Fe—Fc=mya,, or Ke(X, =%) ke, = m, at?
The resulting system of equations can be written as:
d*x, Kt kg ks d*x, Ky kg + ke
== - X,+— X, and s = X - % -
dt m, m, dt m, m,

Download at InfoClearinghouse.com 66 © 2001 Gilberto E. Urroz

These two second-order equations can generate a system of four first order equations if we
define x3 = dx;/dt, and x, = dx,/dt. The resulting system is:

Xmldt = X3

dledt = Xg

ng/dt = -(kA+kB)X1/m1 + kBXZ/ml

dX4/dt = kBX1/m2 - (kB+kc)X2/m2

or, using vectors, dx/dt = f(t,x), where x = [X; X, X3 X4]", and

0 X, 0
N N
0 0
f&@:%-A B&ﬂﬁ&%
U U
Ty ko tko,
Bm, m, B

Suppose we use the following values ks = 20 N/m, kg = 40 N/m, ke =50 N/m, m; =2 kg, m, =5
kg, and given the initial conditions x; = 0.5 m, x, = 0.2 m, X3 = dx/dt = -0.1 m/s, x, = dx,/dt =
0.1 m/s, at t = 0, we will solve the system of equations in the interval 0 <t < 100 s, using a
time increment of At = 0.1. This is the SCILAB solution:

First, we define the function f from dy/dt = f(t,y) and enter the values of the parameters:
co>def f ([FF]=F(t,x)", FE=[X(3);X(4);-(KA+KB).*x(1)/ml+kB. *x(2)/md; . .

-->kB. *x(1)/ m2- (kB+kC) . *x(2)/ n2] ")

-->kA = 20; kB = 40; kC=50; m = 2; n2 = 5;

Next, we calculate the parameters for the solution and the solution itself:

-->t0=0; Dt =0. 1; tn=10; x0=[0.5;0.2;-0.1;0.1];t=[t0: Dt:tn];

-->x = ode(x0,t0,t,f);

To produce a plot of the positions x;(t) and x,(t) we use:

—osplot2d([t',t'],[x(1,:) ,x(2,:)'1,[1,9]," 111", x1@&2 ',[0 -1 10 1])

-->xtitle(' Two particle oscillation',"t(s)', ' x1(m & x2(m")

Download at InfoClearinghouse.com 67 © 2001 Gilberto E. Urroz

Twroparticleoscillation

1 1fon) S dim)

tis)

The corresponding velocities, v;(t) and v,(t), are plotted by using:

-->plot2d([t',t"],[x(3,:)" ,x(4,:)"]1,[1,9],"111",'vi@2 ',[0 -2.5 10 2.5])
-->xtitle(' Two particle oscillation',"t(s)','vli(ms) & v2(ms)')

Twoparticleoscillation

7 juvl{m."s}&,vi{m.fs}

tis)

System of ODEs from Electric Circuits

A second application of systems of ordinary differential equations can be obtained from
electric circuits. Consider the circuit shown in the figure below. The circuit consists of two
loops each with a capacitor, an inductor, and a voltage source. The two loops share the
resistor R. The electrical current circulating in the left-hand side loop is referred to as 1,(t)

and it is assumed to be positive in the counterclockwise direction. A similar electric current,
I(t), circulates in the right-hand side loop. The voltages E,(t) and EJ(t) are positive in the

sense indicated by the arrow. The equations for the voltage across individual components are:

Download at InfoClearinghouse.com 68 © 2001 Gilberto E. Urroz

e Resistor, V= RI

» Capacitor, VC=%
Ld

° V =—
Inductor, LT o

where V = voltage (volts), R = resistance (ohms), | = electric current (amperes), q = electric
charge (coulombs), C = capacitance (farads), L = inductance (henrys), t = time (seconds). By
do

definition, |=a }

For the purpose of writing the governing equations we use Kirchoff law of conservation of
voltage in a closed loop in a circuit with voltages across resistors, capacitors, and inductors
decreasing in the direction of circulation of the current. Thus, for loops number 1 and 2, we
would write, respectively:

q, L,di(t) _
E, T @ R(l,-1,)=0,
and
L2dl2 a,
E,-R(,=1) ——g ¢ =0

Introducing the definition of the electric currents in the equations, |, = ot and I,= ot

and rearranging terms we get a system of four first-order differential equations:

d,_ Rl R, ¢ & d_ d, R, R, g E d
d L, L, LC L ' d ' d L, L, LGC, L, ' d 2

1 1 171 1 2 2 272 2

These four equations can be transformed into a system of differential equations dy/dt = f(t,y),
withy =[y1 Y2 Y3 yal' = [01 G2 11 I2]", and

Download at InfoClearinghouse.com 69 © 2001 Gilberto E. Urroz

7 . 7

0 Ya 0

f(t y):D_ Ry4_ Y1 +ED
' 0 L LC LU

|:| 1 1~1 1|:|

DRY3 _ RY4 _ Y, +E O

L2 LZCZ L2 E

Suppose that we use the values R = 1800 ohms, L; = 500 henrys, L, = 800 henrys, C; = 0.005
farads, C, = 0.010 farads, E; = E, = 0, with initial conditions g; = 100 coulombs, g, =1; =1, =0,
the following two example illustrate how to produce the solution for the charges qi(t), g.(t),

and the currents I,(t), I(t).

The first example uses constant voltages E; and E,. First we define the system function f(t,y)

and the parameters of the circuit:

-->def f (" [dydt]=f(t,y)", dydt = [y(3);y(4);...
--> Ry(3)/L1+R*y(4)/L1-y(1)/ (L1*Cl) +E1/ L1; . ..
--> Ry(3)/L2-R*y(4)/L2-y(2)/ (L2*C2) +E2/ L2] ')

-->R=1800; L1=500; L2=800; C1=0. 005; C2=0. 010; E1=0; E2=0;

Next, we define the parameters of the solution and calculate the solution using function ode:

-->t0 =0; Dt =0.1; tn = 10; t
-->y = ode(y0,t0,t,f);

= [tO:Dt:tn];y0 = [100;0;0;0];

To produce plots of electric charge we use:

-->min([y(1,:) y(2,:)]), max([y(1,:) y(2,:)])
ans = - 117.01482, ans = 100.

-->plot2d([t',t"],[y(L,:)" ,y(2,:)"']1,[2,9]," 111" ,'gl@2',[0 -120 100 120])
-->xtitle('Electric charge ODE solution',"t(s)',"'ql, q2(coul onb)"')

Electriccharge ODEsolution

120 q1q2fcoulomb}

a6

T

N
o
1

N

1
>
Ty

=

24) . j f

J . ¥
-4z _]
72
06 _] s

120
T T T T T T T T T T T T T T T T T T T
0 1& 3 20 20 40 50 &0 70 20 20 100

A plot of electric current follows:

-->min([y(3,:) y(4,:)]), mx([y(3,:) y(4,:)])

Download at InfoClearinghouse.com 70

© 2001 Gilberto E. Urroz

- 32.655809
31. 88677

ans
ans

—-splot2d([t',t'],[y(3,:) ,y(4 :)'1,[1,9], 111" ,'11@2',[0 -40 100 40])
-->xtitle('Electric current ODE solution',"t(s)','11,12(anpere)")

Electyi tODEsaluti
4o ILIHampers) eCLYic CurTen solution

| 1
[= koL
= - - - A Y a1

1
L
|25

(s

1
N
=

100

=
i
[
=
L
=
N
=
th
=
=
=
-
=
o
=
o
=

In the following example we introduce sinusoidal driving voltages, E;(t) and E,(t):
-->def f (' [EE1] =E1(t)",' EE1=12*cos(120* %pi *t)")

-->def f (' [EE2] =E2(t)',' EE2= 6*cos(60*%i *t)")

Next, we redefine the function f(t,y) to include E;(t) and E,(t):

-->def f (" [dydt]=f(t,y)", dydt = [y(3);y(4);...
-->-Rey(3)/L1+R*y(4)/L1-y(1)/(L1*Cl) +E1(t)/L1; . ..

--> RY(3)/L2-RAy(4)/L2-y(2)/ (L2*C2) +E2(t)/ L2] ")

The parameters for the solution will be now:

-->t0 =0; Dt =0.1; tn =50; t =[t0:Dt:tn];

Because the system function f(t,y) is now complicated by the presence of time-dependent
voltages E1(t) and E2(t), function ode will take a few minutes to complete the solution.

-->y = ode(y0,t0,t,f);
To produce a plot of electric charges use:

-->min([y(Ll,0) y(2,:)]), max([y(1,:) y(2,:)])

ans = - 154.45894

ans = 200.

-->plot2d([t',t"],[y(L,:)" ,y(2,:)"],[2,9]," 111" ,'gl@2',[0 -200 50 200])

-->xtitle('Electric charge ODE solution - CASE 2','t(s)','ql, g2(coul omb)")

Download at InfoClearinghouse.com 71 © 2001 Gilberto E. Urroz

Electriccharge ODEsolution -CAEEZ
200 1La2{coulomb) ectyiccharge solution

-
o 00 B3 Th
[R e R e B e)

(s

=
e
[
—_
=
-
Lh
(o)
=
[oul
Lh
[Th)
o
[Ek]
Lh
s
=
e
Lh

a0

For a plot of the electric currents use:

-->min([y(3,:) y(4,:)]), max([y(3,:) y(4.:)])
ans = - 65.0047
ans = 61. 126823

-->plot2d([t',t"],[y(3,:)" ,y(4,:)"'1,[1,9],'111','11@2',[0 -70 50 70])
-->xtitle('Electric current ODE solution - CASE 2','t(s)','I1,12(anpere)')

Electriccurzent ODE solution -CHEE2
op Il IXarnpere)

= kx Both
oS R O
P IR A N [I I I A

-14

(s

=
il
[
—
=
—
Th
[
=
[
h
[
=
1]
h
.
=
.
h

an

Solving a fourth-order equation
Consider the fourth-order linear equation presented in an earlier section

d4y+ 3d’y 2d%y ,5dy
ax* dx® dx? dx

+ty=0,

] d d? d? . .
subjected to y=1, OTY =-1, —Z =0, —Z =-1,at x=0. To solve this equation we
X dx ax

transform the fourth-order equation into a first-order system of linear equations:

dug/dx = -3us(X)+2u,(X)-5uy (X)-y(X)+x°/2,

Download at InfoClearinghouse.com 72 © 2001 Gilberto E. Urroz

du,/dx = us(x),
dug/dx = uy(x),
dy/dx = uy(x),

or
W,(x)0 -3 2 -5 -10m,(x0 B(Z/ZS
d @Ml 0 0 0g@(E, 50 g
dxW,(x)0 00 1 0 oOMxO Uo E
oy()g 0o 0 1 0pgpoy(¥g 80 B
With
(W, (X)0 F3 2 -5 -10 Exz/z%
0 0 O
Dl“m P Lo 05 g0p
DY(X)D 0o 01 03 50 B

the system of differential equations is written as

dv/dx = Av+g(X).
The initial conditions are y(0) = 1, u;(0) = dy/dx = -1, u,(0) = du,/dx = d*/dx? = 0, u3(0) =
du,/dx = d?uy/dx? = dy/dx® = -1

10
Un U

0
u(O)—D [l
310
(1. 0
0l o

To implement the solution using SCILAB we first define the function f(x,v) and the parameters
for the solution

-->def f (" [dvdx] =f (x,Vv) "', " dvdx=A*[v(1);v(2);Vv(3);v(4)]+[x"2;0;0;0]")
-->A =1[-3,2,-5, 1,1,0,0,0,0,1,0,0,0,0,1, 0];

-->v0 =[-1;0;-1;1];t0=0;Dt=0.1;tn=10;t=[t0: Dt: tn];

The numerical solution to the system of differential equations is obtained through:
-->v = ode(v0,t0,t,f);

To produce a plot of the solution y(t) we use:

-->min(v(4,:)), max(v(4,:))

ans - 3.903516
ans 137. 7293

-->plot(t,v(4,:),"t","y(t)',"Solution to 4th order equation')

Download at InfoClearinghouse.com 73 © 2001 Gilberto E. Urroz

Bolution todthorderequation
130 Fit)

i e
Ly Ch =1 M = Lo
= S e R e e e R == |

—_
=

1
fury
=

=
-
[
[m
N
h
-3
-1
o
=1
=

The Van der Pol equation

The Van der Pol equation results from the analysis of the Van der Pol oscillator circuit shown in

the figure below.
Ip
=
— tunnel
E= CoT @‘ diode

Application of Kirchoff’s laws to this circuit results in the following equations:

C(dE/dt)zll, R|2 + L(dlz/dt) =E+ Eo, |3 = f(E), |0 = |1 + |2 + |3
This set of four equations can be reduced to two differential equations

C(dE/dt) = I - 1, - ()
L(dlz/dt) —E+ EO - R|2

If we eliminate the resistor from the circuit (R=0), the two differential equations can be
combined into a single second order differential equation

C(d’E/dt?) + F(E)(dE/dt) + (E+Eg)/L = dl /dt.

Download at InfoClearinghouse.com 74 © 2001 Gilberto E. Urroz

The function f(E) represents the response of the tunnel diode to the voltage E, and can be
taken to be the third-order polynomial

f(E) = KE(E?/3 - (E4+E,)E/2 + E4Ey).
Tuning the voltage source E so that E, = -(E;+E,)/2, we can write
f(E) = KE(E?/3 + EoE/2 + EJE,).

If we define E = (E-E1)y/2 + (E1+E;)/2 = (E»-E1)y/2 + Eo, and scale the time so that 1 = t(LC)?,
we can transform the governing equation into the Van der Pol equation

d?y/d7? + k(y*-1)(dy/d1) +y = 0,
where k = K((E;-E)/2)? (L/C)"? and dly/dt = 0.

The Van der Pol equation, being a second-order equation, can be transformed into a set of two
first-order equations, by using dy/dt = uy (1), and y = u,(7). The system of equations is

duy/dt = -k(u>-1)uy - up

du,/d7 = u;
or,
du/dt = f(t,u),
with
()0 Fk(uZ-Du, —u,0
un) = (05 fuy=g U T
(1) 0 U, 0

The Van der Pol equation is solved next using SCILAB’s function ode. The initial conditions
used are uy(1) = duy/dr=dy/dTr =2, Uuy(1) =y =1 at 1= 0. The solution is obtained for the range
0 < 1< 100, and for values of k =0.01 and kK = 4.0. First, we define the function f(t,u):

-->deff (" [ff]=f(t,u)", ff=[-k*(u(2)72-1)*u(1)-u(2);u(1)]")
-->u0=[1;2];t0=0; Dt =0.1;tn=100.0;t=[t0: Dt:tn];

The solution for k = 0.01 is found first:

-->k=0.01; ul=ode(u0,t0,t,f);

To produce plots of the function we determine the maximum and minimum values of u:
-->m n(ul), max(ul)

ans = - 2.2268766
ans = 2.231914

First, we plot the signals u,(7) =y, and uy(7) = dy/drt against t:

-->plot2d([t" t'],[ul(2,:)" ul(l,:)'],[1,-1],"111",'y@ly/dt',[0 -3 100 3])
-->xtitle('Van der Pol equation - k = 0.01",'t"',"y,dy/dt")

Download at InfoClearinghouse.com 75 © 2001 Gilberto E. Urroz

300

wdsrdt

WanderFolequation -k =0.01

.14

L

I opuieiel

AL
b
o,
b

1.19

0.4z

++++HFT
st e i
++++-H-++
+++H++HF
444
++++++
H++4
++++HH
e e
-
e
++++t
H 4+
++++t
4
4+t
o+
+++++

=0.43_]

e e
P
A
+H++++ttE
Htt by
O i s
H4 4+

~139]

-

L

Anfsl
e

]

e

I

THCS

b
A1
.
“ull
k]
i

ERTHE

—2.00_]

0.0
E—

1T 100.0

The phase portrait dy/drt vs. y is shown next:

-->plot(ul(1,:),ul(2,:),"y" ,"dy/dt',' Van der Pol equation - k = 0.01")

WanderFolequation -k =0.01

3 dyridt

The solution to the Van der Pol equation for k = 4, and the corresponding plots are obtained
with the following SCILAB commands:

-->k=4.00; u2=ode(u0,t0,t,f);

-->plot(t,u2(2,:),"t"',"y","Van der Pol equation - k = 4') //Signal y vs. t
FanderPolequation —k=0.01
3 ¥
2|
1]
o_J
-1_|
2]
4 t
-3 T T T T T T T T T
0 10 20 a0 40 al a0 o a0 o0 100
Download at InfoClearinghouse.com 76 © 2001 Gilberto E. Urroz

-->plot(u2(1,:),u2(2,:),"'y","dy/dt',"Van der Pol equation - k = 4") /| Phase
portrait

FanderFol tion -k=44
2 dgridt anderFolequation

The Rossler flow

In the analysis of chaotic dynamical systems, a three-dimensional flow is described by a set of
three ordinary differential equations involving three variables x(t), y(t), and z(t). The Rossler
flow is given by the equations (see Bergé et al., 1984, “Order within Chaos - Towards a
deterministic approach to turbulence,” John Wiley & Sons, New York):

dx/dt=-y-z
dy/dt= x+ay
dz/dt=b+xz-cz

To solve this system using SCILAB function ode we re-write the system as
du/dt = f(t,u)
with
M0 x(t)o 0 —-u,-u, 0O
u®) = dLMg= 5 9t =g u+au, o
H,(OE EMOF b +u,u; —cu,

In the following exercise we solve for the Rossler flow using a =b = 0.2, ¢ = 5.7, in the interval
0 < t < 200, with initial conditions x(0) = y(0) = z(0) = 1. We use a time increment At = 0.1.
The solution starts by defining the function f(t,u) and the parameters of the flow and of the
solution:

-->deff(C[w=f(t,u)' " we[-u(2)-u(3);u(l)+a*u(2); b+u(1)*u(3)-c*u(3)]")
-->a=0.2; b=0.2; c¢=5.7; t0=0; Dt=0.1; tn=200; t=[t0:Dt:tn]; u0=[1;1;1];

The solution is stored in variable u from:
-->u=o0de(u0,t0,t,f);

The following are plots of the signals x(t), y(t), and z(t) resulting from the solution:
-->plot(t,u(1,:),'t","x","Rossler flow)

Download at InfoClearinghouse.com 77 © 2001 Gilberto E. Urroz

Rosslerflow

|

J\f\

m

40

i

an

100

-->plot(t,u(2,:),"t',"y","Rossler flow)

=R 5 R O =]

1
=1 1 1 1
= 0 Th B k2

1
[ury
[

Rosslerflow

120

140

160

120

200

=

m

40

i

an

100

-->plot(t,u(3,:),"t"',"z","Rossler flow)

ERosslexflonwr

120

140

W

i

|

120

200

0

Al

n

)

40

G0

i

20

L4

100

120

il T

il

140

|
T

160

NN

120

200

The behavior of the signals is, in general, aperiodic or chaotic. Phase portraits of signals may
provide additional information regarding strange attractors resulting from the solution. A
phase portrait of signal y vs. x follows:

-->plot(u(l,:),u(2,:),"'x","y"," Rossler flow)

Download at InfoClearinghouse.com 78 © 2001 Gilberto E. Urroz

Bosslerflow

oo

1 1 [1
o0 ih +u M) =1] + ih

1
fury
=

1
fury
k2

1
fury
(=]

1
oh

1
b2
(vl
(=
_
==

14

A phase portrait of the rate of change in x, dx/dt, vs. x, is obtained next. First, we determine
the length of vector x = u(1,:), and use function mtlb_diff (see Chapter ...) to estimate the
derivative dx/dt. The next step is to produce a vector xx consisting of the data in u(1,:) but
reduced by one to make it of the same length as dx. The phase portrait is shown below:

-->n=l ength(u(l,:))

n = 2001.

-->dx = ntlb_diff(u(l,:))/Dt;

-->xx=u(1, 1: n-1);

-->plot (xx,dx,"'x',"dx/dt',"' Rossler Flow)

RosslerFlow
daidt
12
a_]
4_|
o_|
-4 |
-5 _|
-1z_|
-16_|
=20
x
-4
T T T T T T T T T T T
-10 -t -z 2z G 1n 14

Solutions to boundary value problems (BVPs)

Download at InfoClearinghouse.com 79 © 2001 Gilberto E. Urroz

Boundary value problems consist of ordinary differential equations with conditions provided at
different values of the independent variable. Unlike initial boundary problems, which can be
solved using the same numerical solution after transforming the differential equation into a
system of first-order differential equations with appropriate initial conditions, boundary value
problems are not suitable for solution through a single numerical method. In this section, we
explore some approaches to the solution of boundary value problems.

The shooting method

The simplest type of boundary value problems consists of a second order differential equation,
d?y/dx? = g(x,y,dy/dx) subject to the boundary conditions y(x,) = Yo and y(x;) = y:. The figure
below illustrate three possible solutions to the initial value problem represented by the same
differential equation, namely, d?y/dx? = g(x,y,dy/dx), subject to the initial condition y(xo) = Yo,
and different initial derivative conditions. There is one value of dy/dx at x = x, that produces
the solution that satisfies the second boundary condition y(x;) = y;. The solution to the
boundary value problem will be curve (ll) in the figure.

0

®
()

The so-called “shooting” method consists in solving the initial value problem d%/dx* =
g(x,y,dy/dx), subject to the initial condition y(Xq) = Yo, dy/dX|x=x0 = Y’ (Xo) = Yo', for different
values of yy’, and obtaining the corresponding boundary values y; = y(x;). As a result we get a
set of data values { [(Yo')1,(Y1)1], [(Yo?)2:(Y1)2]s s [(Vo)ns(y1)n] } from which we can interpolate
the value of y,’ corresponding to the given value of y;. The solution to the boundary value
problem, thus, becomes the solution to a number of initial value problems followed by an
interpolation. Once the proper value of y,’ is determined, the initial value problem is solved
one last time.

A function to implement the shooting method

The following SCILAB user-defined function, shooting, produces the solution to a second-order
boundary value problem given the boundary conditions y(X,) = Yo and y(x;) = y;. The second-
order differential equation d?y/dx? = g(x,y,dy/dx) is transformed into a first-order system of
two ordinary differential equations of the form du/dx = f(x,u), with u; = y(x), u, = du;/dx =
dy/dx, and

Download at InfoClearinghouse.com 80 © 2001 Gilberto E. Urroz

e f(xu)_m u, 0O
g HuL U

The general call to the function is
[u, table, yOp] = shooting(yb,yp,x,f)

The boundary conditions are passed on to the function as a vector yb = [yoy:]. The solution is
obtained on a range represented by vector x. We also need to provide a vector of values of the
derivative yo’, referred to as yp. The function returns the values of u as a 2xn matrix, where
the first row is the function y(x) and the second row is the derivative dy/dx corresponding to
the values of x. The function shooting also returns variable table which is a table of values of
Yo" and the corresponding values of y(x;) that were used to interpolate the initial condition for
the derivative at x = x, for the final solution. The first row in the table are the values of y,’,
while the second row in the table are the values of y(x;). In addition to matrices u and table,
function shooting returns also the derivative boundary condition, yOp = dy/dx| =0, interpolated
from the shooting method.

A listing of the function is shown next:

function [y, xyTabl e, yderiv] = shooting(yb, yp, x, f)

/1 Shooti ng nethod for a second order

// boundary val ue probl em

//yb = [y0 yl1l] -> boundary conditions

/11X a vector showi ng the range of x

/1f function defining ODE, i.e.,

I dy/dx = f(x,y), y = [y(1);y(2)].

/lyp = vector with range of dy/dx at x=x0
//xyTable = table for interpolating derivatives
/lyderiv = derivative boundary condition

n = length(yp);

m = length(x);

yl = zeros(yp);

for j = 1:n
y0 = [yb(1);yp(j)];
yy = ode(y0, x(1),x,f);
y1(j) = yy(1,m;

end;

xyTable = [y1;yp];

yderiv = interpln(xyTable,yb(2));

yo = [yb(1);yderiv];

y = ode(y0, x(1),x,f);

Consider the case of the second order boundary value problem defined by the ordinary
differential equation

d?y/dx? + dy/dx + y = sin(3x),

subject to the boundary conditions y(0) = 1, y(5) = -1. We re-cast the ODE into the following
first-order system,

du/dx = f(x,u),

Download at InfoClearinghouse.com 81 © 2001 Gilberto E. Urroz

with

u; = y(x), U, = duy/dx = dy/dx,

_ (X o u,
U(X)—%J N f(x,u) =g

O
. [
[$N(3x) —u, —u,g

The boundary conditions are now, u;(0) = 1, u;(5) = -1. The solution to this boundary value
problem with SCILAB is accomplished as follows:

-->deff (" [w=f(x,u)', " we[u(2);sin(3*x)-u(l)-u(2)]")
-->yb=[1, - 1] ; x0=0; Dx=0. 1; xn=5; x=[x0: Dx: xn] ; yp=[- 10: 1: 10] ;

-->[u, tabl, yop] =shooti ng(yb, yp, x, f);

The plot of the solution is produced by using:

-->plot(x,u(1,:),"'x" ,"y","shooting nethod solution 2nd order BVF')

shooting rethod solution 2nd oxder BV E

= o kxR th Tk -]

1
[y

1
(2]

=
—
[
[
N
th

To illustrate the shooting method applied to the second-order boundary value problem
presented above, we produce numerical solutions to the corresponding second-order ordinary
differential equation using initial conditions y(0) = 1 and different derivative boundary
conditions to produce the following graph. The solution to the boundary value problem with
boundary conditions y(0) = 1 and y(5) = -1 is discontinuous curve in the graph.

-->yp0 =[3,6,9, 12, 15]; [/Different values of dy/dx at x = 0
-->um = zeros(5,m; //Cal cul ate different sol utions
-->for k =1:5

IS y0 = [1;ypO(k)];
> uu = ode(y0, x0, x, f);
> um(k,:) = uu(l,:);

Download at InfoClearinghouse.com 82 © 2001 Gilberto E. Urroz

-->plot2d([x', x',x",x",x"],[um1,:)" ,um2,:)" ,um(3,:)" ,unm(4,:)" ,um5,:)"],...
-->[1,2,3,4,5]," 111", ' yOp=3@O0p=6@O0p=9@O0p=12@0p=15', . ..

-->[0 -5 5 10])

-->plot2d(x',u(1,:)',-1,"'011"," ',[0 -5 5 10])

-->xtitle('Boundary val ue solution - shooting method','x','y")

Boundars waluesolution - shooting rnethod

3
e s

Outline of the implicit solution for a second-order BVP

In this section we present the outline for an implicit, finite-difference based solution to the
second order boundary value problem

d?y/dx?+y = 0,
in the x-interval (0,5) subject to y(0) = 1, and y(5) = 0. Use Ax = 0.1.
We discretize the differential equation using the finite difference approximation
d?y/dx* = (Yisa-2 Biatyi)/(AX°)
which results in
(Visr-2%Yi+Yi0)/ (AXP)+y; = O

From this result we get the following implicit equations:

Vi (2-O) Bty = 0,

Download at InfoClearinghouse.com 83 © 2001 Gilberto E. Urroz

fori=2,3, ..., n-1. There are a total of (n-2) equations, corresponding to the (n-2) unknowns
Y2, Y3, ---2¥n2» Yn1 [Y1 = Y(0) and y, = y(5)]. Therefore, the resulting set of linear algebraic
equations has a unique solution. The implementation of the solution for this example is left as
an exercise for the reader.

Function bvode for the solution of boundary value problems

SCILAB provides function bvode for the numerical solution of boundary value problems. The
function works on a general boundary value problem, which, as indicated earlier, requires a lot
of detailed information in its set up. The problem solved through function bvode consists of
the boundary value problem:

u,O0 0O vy 0O0 vy O

0 O 0 O O

any g g dy/dx g gdu/dx g
—2 =f(xu), with u=Cu,0=0 d’y/dx* O=0du,/dx O
dx 0.0 O : oo . O
0°'0 O 0 O 0

Hi.H B™y/dx™E R, /dxE

For example, the second-order differential equation

d?y/dx? + 5(dy/dx) +y = cos(x),
is re-written as

d?y/dx? = cos(x) -y - 5(dy/dx),
or, with, u; = y(x), u, = dy/dx, as

d?y/dx? = f(x,u) = cos(x) - U; -5U,.

External SCILAB functions used with bvode

Using SCILAB, the function f(x,u) can be defined, for example, as
deff(*[ff] = f(x,u)’,’ ff=cos(x)-u(1)-5%u(2)’)

The general boundary value problem d™y/dx™ = f(x,u) is solved in the interval [xL,xR], with
the boundary conditions provided through a function g(i,u) = 0, so that g(i,u) = u; - bc;, with u; =
d"ty/dx"?, and bc; being the corresponding boundary condition at point x = {j. The values of {j,
Jj=1,2, .., m* are provided in vector {(zeta), and they are either xL or xR, i.e., the location of
the boundaries for the problem.

For example, if the equation is of order 2 (m*=2), and the boundary conditions are y(xL) =y,
and y(xR) =vy,, we will write the vector zeta as { = [xL,xR], or {1 =xL, {; = xR, and g(1,u) = u; -
Yo, 9(2,uU) = U, - y;. The latter results are equivalent to uy () = y(XxL) = yg and u,(xR) = y(xR) =
Y1

As a second example, assume that the equation to be solved is of order 3 (m*=3) subject to
boundary conditions y(xL) = yq, dy/dx | = Yo', and y(xR) = y;. The vector zeta is written as {
= [xL,xL,xR], and the function g(i,u) given by g(1,u) = u; - Yo, 9(2,uU) = U, - yo’, g(3,uU) = U; - y;.
If instead, the boundary conditions are y(xL) = y,, and y(xR) =y;, dy/dx |« = Y1’, the vector
zeta is written as ¢ = [xL,xR,xR], and function g(i,u) given by g(1,u) = u; - Yo, 9(2,u) = Uy -y

Download at InfoClearinghouse.com 84 © 2001 Gilberto E. Urroz

g(3,u) = u, - y;’. Another possibility is that two of the boundary conditions are derivatives,
e.g., Y(XL) = yo, dy/dX|x=x. = Yo', and dy/dx|«xr = y¥1’. In this case we would have (=
[XL,xL,xR], and g(1,u) = uy - Yo, 9(2,u) = Uy - Yo', 9(3,u) = U, -y,”. Thus, there is a one-to-one
relationship between the elements of vector zeta and values of function g(i,u) representing
boundary conditions of the problem.

Function bvode requires that we pass also derivatives of the functions f(x,u) and g(x,u). Let’s
refer to the functions that calculate those derivatives as df(x,u) and dg(i,u). Function df
represents a vector [df,, df,, .., df,«] with df; = df(x,u)/du;, while function dg represents a
vector whose elements are dg;; = dgi/du; for a fixed value of i. Referring to the second-order
boundary value problem described earlier, namely, d%/dx? = f(x,u) = cos(x) - u; -5u,, subject
to the boundary conditions y(1) = 0.5 and y’(2) = -1.5, we would define the zeta vector as { =
[1,2], with g; = g(1,u) = u; - 0.5, and g, = g(2,u) = u, + 1.5. The derivative functions would be
dfl = 0f/du1 = '1, df2 = 0f/dU2 = '5, dgll = ﬁgllﬁul = 1.0, dng = 0glldU2 = OO, ngl = ﬁgzlﬁul = 0,
dg,, = dg,/du, = 1.0. Using SCILAB, we will define the functions f(x,u), g(i,u), df(x,u), dg(i,u)
as follows:

deff('[ff] = f(x,u) ',"'ff=cos(x)-u(1)-5*u(2)");
deff (' [dff] = df(x,u)', " dff =[-1,-5]");
deff(*[gg] ~=g(i,u) ", ["9g=[u(1)-1,u(2)+1]"," gg=gg(i)'])

def f (' [dgg] dg(i,u)",['dgg = [1,0;0,1]" ;" dgg=dgg(i .2)']3;
Notice that functions f(x,u) and g(x,u) return a single value, while functions df(x,u) and dg(x,u)

return vectors.

The user may also define a function that provides initial guesses of the solution. The general
call for this function is

[u0,du0] = guess(x)

where x is a vector, e.g., X = [xL:Dx:xR], with Dx = increment in x. Function guess provides
initial guesses for the solution u0 = [(uy)e; (U2)o; ...;(Um)e] and for the derivative of the solution,
duO = [(du;/dx)g, (duy/dx), ..., (dun/dx)e]. Typically, this function is not used in the solution,
i.e., no initial guesses of the solution and its derivative are provided, and the function guess
can simply be defined as

deff(‘[u0,du0] = guess(x)’ , [‘u0= 0", ‘du0 =0"])

General call to function bvode

The general call to the function bvode is as follows:
[u] = =bvode(x,n,m,xL,xR,zeta,ipar,ltol,tol,fixpnt,f,df,g,dg,guess)

where x is a vector of values of the independent variable, x = [xL:DX:xR]; n is the number of
differential equations to be solved (n = 1 for the case under consideration); m is a vector whose
elements indicate the order each of the equations being solved (m =[m*] in this case); xL and
XR are the extremes of the interval where the solution is sought; zeta is the vector specifying
the location of the boundary conditions (examples of how to put together vector zeta were
presented earlier); ipar is a vector of 11 solution parameters whose components are described
below; Itol and tol are vectors specifying the number of the component of u and the tolerance
for the solution of those components; fixpnt indicates the number of fixed points in the
interval [xL, xR] other than the extremes (typically, fixpnt = 0); f, df, g, dg, and guess are
external SCILAB functions described earlier.

Download at InfoClearinghouse.com 85 © 2001 Gilberto E. Urroz

Description of elements of vector ipar

Next, we describe the elements of vector ipar, showing typical values for the solution of simple
boundary value problems. For a more detailed description of these parameters, use

--> hel p bvode

ipar(1) determines whether the boundary value problem is linear (ipar(1) = 0) or non-
linear (ipar(1) = 1).

ipar(2) determines the number of collocation points per subinterval. Typically, ipar(2)

ipar(3) = number of subintervals in the initial mesh. Typically, ipar(3) = 0, in which
case the number of subintervals is set to 5.

ipar(4) = number of solution and derivative tolerances, with 0 < ipar(4) < m*.

ipar(5), ipar(6) = dimensions of workspaces (vectors). Select a relatively large
number for those parameters, say 10000 or 15000.

ipar(7) determines the type of output produced by the function bvode. With ipar(7) = -
1, bvode produces a full diagnostic printout, with ipar(7) = 0 bvode produces selected
printout, and with ipar(7) = 1 bvode produces no printout.

ipar(8) controls the type of mesh used in the solution. If ipar(8) = 0 bvode generates a
uniform initial mesh.

ipar(9) is used to indicate whether or not initial guesses for the solution are provided.
For example, if ipar(9) = 0, bvode understands that no initial guess for the solution is
provided.

ipar(10) offers options for breaking out of function bvode in case convergence problems
are detected. For regular problems use ipar(10) = 0.

ipar(11) = number of fixed points in the mesh other than xL and xR. This number is the
same as the dimension of fixpnt. Typically, ipar(11) = 0.

For the solution of the second-order boundary value problem described earlier in this section,
the vector ipar can be put together as:

i par =0*ones(1, 11)
i par (3)=1;i par (4)=2;ipar(5)=10000; i par (6)=2000; i par(7)=1

Application of function bvode to a second order boundary value problem

The problem to be solved is the one that has been described above, namely,

d?y/dx? = f(x,u) = cos(x) - U; -5us,

subject to the boundary conditions

y(1) =0.5and y’(2) = -1.5.

Download at InfoClearinghouse.com 86 © 2001 Gilberto E. Urroz

The parameters n and m in the call to function bvode for this problem are n =1 and m = [2].
Also, fixpnt = 0. Functions f,df,g,dg, and guess for this problem were defined earlier. We also
defined the vectors zeta and ipar. The boundaries are located at xL = 1 and xR = 2. Using an
x-increment Dx = 0.1, we can define the solution points as x = [xL:Dx:xR]. There is a couple of
arguments, namely, Itol and tol that need to be defined. Vector Itol indicates the indices of u
for which a tolerance for convergence will be defined. For this case we can take Itol = [1,2]
to define convergence tolerance for both the first and second components of u. The tolerances
are relatively small numbers, say, tol = [1e-10, 1e-10].

Having defined all the arguments for function bvode we put all the steps leading to the
function call together in the following SCILAB script:

//Script for 2nd order boundary val ue probl em sol ution wth bvode

deff('[ff] = f(x,u) ', ff=cos(x)-u(1)-5%u(2)"):
deff (' [dff] = df(x,u)', ' dff = [-1,-5]");
deff (' [gd] = g(i,u) ",["gg=[u(1)-1,u(2)+1]"," gg=g9(i)']);

deff('[dgg] = dg(i,u)",["dgg = [1,0;0,1]" ;" dgg=dgg(i,:)"]);
deff('[u0,du0] = guess(x)' , ['u0= 0", '"du0 =0']);

n=1; me[2] ; fi xpnt =0; xL=0; xR=2; Dx=0. 1;
x = [xL:Dx: xR ;
zet a=[xL, xR] ;

i par=zeros(1,11);
i par (3)=1;i par(4)=2;ipar(5)=10000; i par(6)=2000; i par(7)=1;

ltol=[1, 2];
tol=[1l.e-5,1.e-5];

u=bvode(x, n, m xL, XR, zeta,ipar,ltol,tol,fixpnt,f,df, g, dg, guess);

xset (' wi ndow , 1)
plot(x,u(1,:),"x","'y(x)","' BVODE 2nd order solution')

xset (' wi ndow , 2)
plot(x,u(2,:),"x","dy/dx",' BVODE 2nd order solution')

Placing this script in file bvp2 within the SCILAB working directory, it can be executed through:
-->exec(' bvp2')

The resulting plot shows the solution for y(x) and dy/dx versus x:

Download at InfoClearinghouse.com 87 © 2001 Gilberto E. Urroz

BEVWODE Znd order solution

0 et
8]
7
a_]
a_]
4 _
3]
2]
1]
x
l:l T T T T T T T T T
a 0.z 0.4 0.6 0.8 1.0 12 1.4 1.6 18]
EWODE Znd oxdersolution
0 dgrfdx
40 _|]
a0 _|
m_|
10_|
0_
i x
-1|:| T T T T T T T T T T T T T T T T T T T
1] 0.z 0.4 0.6 0. 1.0 1.2 1.4 1.6 1.2 2.0

Function bvode applied to a third-order boundary value problem

Consider the third-order ordinary differential equation
x3(d®y/dx®) + (1-x)(d?y/dx?) -3(dy/dx) +y = x+1

subject to the boundary conditions, y(0) = 2.5, y(10) = 4.5, dy/dx]|y10 = -1. To solve this
problem using function bvode we first re-cast the differential equation as

d®y/dx® = f(x,u) = (x+1-(1-X)us -3u, + uy)/x?
with u; = y(x), u, = dy/dx, uz = d’y/dx?, and u = [ug;u,;us]. The boundary condition functions
will be g, = g(1,u) = u; - 2.5, g, = g(2,u) = u; - 4.5, and g; = g(3,u) = u, + 1. The derivative
functions will be df = [1/x?, -3/x%, (1-x)], and dg = [1,0,0;1,0,0;0,1,0]. The zeta vector is zeta
=[0,10,10]. Also, n=1, m =[3], fixpnt = 0.

The following script solves the boundary value problem and produces graphs of the function
y(X) and its first two derivatives:

//Script for 3rd order boundary val ue probl em sol ution wth bvode

deff('[ff] = f(x,u) ", ff=(x+1-(21-x)*u(3)-3*u(2)+u(l))/x"2");
deff (' [dff] = df(x,u)"',"dff = [1/x"2,-3/x"2, (1-x)/x"2]");
deff('[gg] =

g(i,u) ",["gg=[u(l)-2.5u(l)-4.5 u(2)+1]"," gg=99(i)']);
deff('[dgg] = dg(i,u)',['dgg =[1,0,0;1,0,0;0,1,0]" ;" dgg=dgg(i,:)']1);
deff('[u0,du0] = guess(x)' , ['u0= 0", '"du0 =0']);

n=1; me[3] ; fi xpnt =0; xL=0; xR=10; Dx=0. 1,

x = [xL: Dx: xR];

zet a=[xL, xR, xR] ;

i par=zeros(1, 11);

Download at InfoClearinghouse.com 88 © 2001 Gilberto E. Urroz

i par (3)=1;i par(4)=3;ipar(5)=50000;i par(6)=50000; i par(7)=1;

Itol=[1,2,3];

tol=[1.e-5,1.e-5, 1le-5];

u=bvode(x, n, m xL, xR, zeta,ipar,ltol,tol,fixpnt,f,df, g, dg, guess);

xset ('window ,1);plot(x,u(l,:),"x","y(x)',"BVODE 3rd order solution")
xset (' wi ndow , 2);plot(x,u(2,:),"'x"," dy/dx"',' BVODE 3rd order solution')
xset (' wi ndow , 3);plot(x,u(3,:),"'x","d2y/dx2',' BVODE 3rd order solution')

BEWODE Zxd oxdersolution
120 i

100_|

a0 _]

BEWODE Zxd oxdersolution
70 dgrfdx

| |
(R SR = kW Both o
= 5 2 o =2 5 8 S 8 5

P I I NP N (N A AP B

=
-
[
[m
N
h
-3
-1
o
=1
=

EVODE=Zrd oxdersoluti
120 Az idxz rd ordersalution

-
[= I 2 B L = B
[N e S e N e N e B e |

1
fury
=

1
[Ek]
=

)
Lh
=

=
=
[
[
N
th
-3
-1
=
w
=

Application of bvode to a third-order problem with one interior
fixed point

The following example solves the same third-order boundary value problem as before, except
that now the boundary conditions are located at three different locations: y(0) = 2.5, y(5) =

Download at InfoClearinghouse.com 89 © 2001 Gilberto E. Urroz

4.5, y(10) =-1. To account for boundary conditions at three different locations, it is necessary
to change a few of the parameters in the script, including introducing xM = 5, and using fixpnt
=[5], zeta=[xL,xM,xR], Itol=[1], and tol=[1.e-5]. Also, the option ipar(11)=1 is introduced.

/1Script for 3rd order boundary val ue probl em sol ution with bvode
// Case of three different boundary points

deff('[ff] = f(x,u) ", ff=(x+1-(21-x)*u(3)-3*u(2)+u(l))/x"2");
deff (' [dff] = df(x,u)","dff = [1/x"2,-3/x"2,(1-x)/x"2]");
deff('[gg] =

g(i,u) ", ["99=[u(1)-2.5,u(1)-4.5 u(1)+1]", " g9=99(i)']);
deff('[dgg] = dg(i,u)',['dgg =[1,0,0;1,0,0;1,0,0]";"dgg=dgg(i,:)'])
deff (' [u0,du0] = guess(x)' , ['u0= 0", '"du0 =0']);

n=1; me[3]; fi xpnt =[5] ; xL=0; xR=10; Dx=0. 1; xM = 5;

x = [xL:Dx: xR ;

zet a=[xL, xM xR] ;

i par=zeros(1,11);

i par (3)=1;i par(4)=1;ipar(5)=50000;i par(6)=50000;ipar(7)=1;ipar(11)=1;
Itol=[1];

tol=[1.e-5];

u=bvode(x, n, m xL, xR, zeta,ipar,ltol,tol,fixpnt,f,df, g, dg, guess);
xset (' wi ndow , 1)

plot(x,u(1,:),"x","y(x)"',"BVODE 3rd order solution")

xset (' wi ndow , 2)

plot(x,u(2,:),"x","dy/dx","' BVODE 3rd order solution')

xset (' wi ndow , 3)

plot(x,u(3,:),"'x","d2y/dx2',' BVODE 3rd order solution")

EWODE3rd ordersolution
74 et

— - -
L e h w

1
fury

1
th

BEWODE Zxd oxdersolution

Download at InfoClearinghouse.com 90 © 2001 Gilberto E. Urroz

EVODE=Zrd oxdersoluti
- Az idxz rd ordersalution

23]
19]

Application of bvode to a fourth-order problem with two interior
fixed points

Consider the fourth-order ordinary differential equation
x3(dy/dx*) +6x3(d’y/dx®) +6x(d*y/dx?) = (x+1)Y2,

subject to the boundary conditions y(1) = 1, dy/dx |1, = -2, d*y/dx?| 1.7 = -0.5, d*y/dx®| = = -
0.1. With u; =y, u, = dy/dx, us = d’y/dx?, us = d®y/dx®, and us = d*y/dx*, the fourth-order
system is written as

d®y/dx® = f(x,u) = (1-6xuy - 6xuz)/x® + (x+1)M2.

The boundary conditions will be described by
0:=9(1,u) = uy - 1, 9,=9(2,u) = U, + 2, g3=g(3,u) = uz+ 0.5, g,=g(4,u) =uz + 0.1.
The derivatives of functions f and g are given by
df, = 0, df, = 0, df; = -6/x°, df, = -6/x,

and

0oQg

[]
Op
ot
19

dg =

o O +— O
O r»r O O

SIS

The parameters fixptn and ipar(11) are redefined as fixptn = [1.2,1.7] and ipar(11) = 2. Since
we have four possible derivatives to deal with in the boundary conditions we want to redefine
Itol and tol as Itol = [1,2,3,4] and tol=[1e-5,1e=5,1e-5,1e-5], respectively. The value of ipar(4)
is changed to ipar(4) = 4. The value of m is changed to m = [4].

The following SCILAB script produces the solution for the problem just described.

/1Script for 4th order boundary val ue probl em sol ution with bvode
//Problemincludes 2 interior points

deff('[ff] = f(x,u) ", ff=(1-6*x**2*u(4)-6*x*u(3))/x**3+sqrt(x+1)");
deff (' [dff] = df(x,u)',"dff =1[0,0,-6/x**2,-6/x]");
deff('[gg]l = g(i,u) ", ["99=[u(1)-1,u(2)+2,u(3)+0.5 u(4)+0.1]","9g=99(i)"]);

Download at InfoClearinghouse.com 91 © 2001 Gilberto E. Urroz

deff('[dgg] = dg(i,u)',['dgg =[1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1]"; ...
"dgg=dgg(i,:)"]);

deff('[u0,du0] = guess(x)' , ['u0= 0", '"du0 =0'1]);

n=1; me[4] ; fixpnt=[1.3,1. 7]; xL=1; xR=2; Dx=0. 1; x = [xL: Dx: xR];
zeta=[1,1.3,1.7,2];

i par=zeros(1,11);

i par (3)=1;i par(4)=4;ipar(5)=20000; i par(6)=20000;ipar(7)=1

i par (11) =2;

Itol =[1, 2, 3, 4]

tol=[1l.e-11,1.e-11,1. e-11, 1. e- 11]

u=bvode(x, n, m xL, XR, zeta,ipar,ltol,tol,fixpnt,f,df, g, dg, guess);

xset ("w ndow ,1); plot(x,u(l,:)," ' x","y(x)", BVODE 4th order solution')
xset ('wi ndow ,2); plot(x,u(2,:),"'x","dy/dx"',' BVODE 4th order solution')
xset ('window ,3); plot(x,u(3,:),"'x","d2y/dx2"',"' BVODE 4th order solution')

EVODE 4th ordersolution
13 et

EVODE 4th ordersolution

-19

B
=17
-10
=31

A2z EWODE4th ordersolution

L= S I R N L N = A == =]

1
fury

[
[e=
—_
-
—_
[X)
—_
L
—_
s
-
rh
—_
[=3
—_
3
—_
oo
—_
=]
b2
[e=

Download at InfoClearinghouse.com 92 © 2001 Gilberto E. Urroz

Boundary value problems with eigenvalues

Consider the boundary value problem

d?y
dx?

+Ay =0,
subject to y(0) = 0 and y(L) = 0, where A is an unknown value. Assuming that A > 0, the
solution is a sinusoidal wave, i.e.,
y(x) = Cy sin(vVAX) + C, cos(VAX).
Replacing the boundary condition y(0) = 0 produces 0 = C,, thus, the solution reduces to
y(x) = C; sin(vAx).

The second boundary condition, namely, y(L) = 0, produces the eigenvalue equation

0 = C, sin(vAL).
_Since, in general, we want the constant C; to be different from zero, the equation is satisfied
" sin(vAL) = 0,
i.e., if VAL= 1, 27, ... Thus, the problem has an infinite number of eigenvalues, A,= n*r7/L?,

n=1,2,... Associated with each eigenvalue is the eigenfunction sin(n7x/L). The most general
solution to the original boundary value problem is a linear combination of the eigenfunctions,

i.e.,
-’ . 2 x
X) =) C, [&n
y(X) nZ n H%E

Notice that the ordinary differential equation that defines the boundary value problem has a
solution only for specific values of the constant A.

Numerical solution to a boundary value problem with eigenvalues

Using finite difference approximations for the derivatives, it is sometimes possible to find a
few eigenvalues of a boundary value problem such as the one described above. Using, for
example, a centered finite difference formula for the derivative d’y/dx?, i.e.,

d’y = Yin~ 2y, +VYi,
dx® (AX)®

Download at InfoClearinghouse.com 93 © 2001 Gilberto E. Urroz

into the differential equation
d’y
dx®

+Ay =0,

produces the following difference equation

Yia = 2Y; *Vin
(AX)*

=-ALy;

for i=2,3,...,n-1. Implied in the latter result is the fact that the range of values of x, i.e., 0 < x
<L, is divided into n-1 increments of size Ax = L/(n-1). Thus, y; = y(X;), where x; = i/Ax. Also,

y1 =y(0) =0, and y, = y(L) = 0.

The problem involves n-2 unknowns y,,ys,...,¥n.1, in N-2 equations. For example, forL=1, n=

5, Ax = 1/(5-1) = 0.25, 1/(Ax)? = 16. The general equation becomes

160y, — 32y, +16y,,, =-A Ly,
for i=2,3,4. We have, therefore, the following three equations:
16y;-32y,+16y3 = -Ay,,

16y,-32y3+16y, = -Ays,
16y3-32y,+16Ys = -Ay,.

With y; = ys = 0, the three equations result in
-32y,+16y, = -y,
16y2-32y3+16Y, = -Ays,
16y3-32y4 = -Ays.

The resulting system of equations can be written in matricial form as

032 -16 0 O0y,0

0 0. 80
16 32 -16-0.p=A0HLn
E 0 -16 32 E @4@ @4@

or, with
032 -16 00 0,0
A=316 32 -165 Y=g
0 -16 325 B,H
as,

Ay = Ay.

Download at InfoClearinghouse.com 94

© 2001 Gilberto E. Urroz

This is the classical eigenvalue problem which can be solved using SCILAB function spec or the
user-defined function eigenvectors developed in Chapter 5.

A function for calculating eigenvalues for a boundary value problem

The following function, BVPeigenl, programs the solution to the boundary value problem
described earlier, namely,

d?y
dx?

+Ay =0,

subject to y(0) = 0 and y(L) = 0, where A is an unknown value. The function call is
[x,y,lan] = BVPei genl(L,n)

where X is a vector containing the values x;, y is a matrix whose columns are the eigenvectors
of the eigenvalue problem developed earlier (these eigenvectors are computed using function
eigenvectors, developed in Chapter 5), and lam is a vector containing the n eigenvalues of the
problem. The arguments of the function are the domain length L and the number of points in
the solution n. The function also plots the eigenvectors for the first five eigenvalues found.
These eigenvectors represent eigenfunctions y,(x). A listing of the function follows:

function [x,y,lam = BVPeigenl(L,n)

Dx = L/(n-1);

A = zeros(k, k);
for j = 1:k
Al i) = 2*a;
end;
for j = 1:k
j,j+1

getf (' ei genvectors');
[yy, | am =ei genvectors(A);
I'1disp("yy");disp(yy);

y = [zeros(1,k);yy;zeros(1,k)];
[1disp("y");disp(y);

xm n=m n(x) ; xmax=max(x) ; ym n=m n(y); ymax=nax(y);
rect = [xmin ymn xmax ynmax];
xset (' wi ndow , 1); xset (' mark',[-1:-1:-10], 1);

if k>=5 then
m=5;
el se
m = k;
end

for j = 1:m
plot2d(x',y(:,j), j, '011"," ",rect);

Download at InfoClearinghouse.com 95 © 2001 Gilberto E. Urroz

/lplot2d(x",y(:,j),-j,"011"," ', rect);
end;
xtitle(*Eigenfunctions for D2y+l anfy=0",'x",’y")

For example, for L =1 and n =5, the following solution is obtained:
-->get f (' BVPei genl')

-->[x,y, | an] =BVPei genl(1, 5)

lam =1 9.372583 32. 54.627417 |
y =

1o 0. 0. !
! .5 - .7071068 .5 !
! . 7071068 3.140E-16 - .7071068 !
! .5 . 7071068 .5 !
Iooo. 0. 0. !
X =

1o .25 .5 .75 1. 1

Notice that the first eigenvalue found is A, = 9. 372583, close to the theoretical value of 77 =
9.8696. A plot of the eigenfunctions follows.

Eigenfunctionsfor DIy +lam =0
0.707 Ll

0566
0434
0.283
0141
0.000
=0.141
-0.2383
=0.434
=0.566
=0.707

0.1 0.z 0.z 0.4 0.a 0.4 o7 0.z 0.9 1.0

[=
[e=

To see the eigenfunctions in a more continuous fashion, we call function BVPeigenl using n =
50:

-->[x,y, | an] =BVPei gen1(1, 50);
The first eigenvalue for n=50 is 9.866224, closer to the theoretical value of 77 = 9.8696 than

the first eigenvalue found earlier for n=5. The plot of the eigenfunctions for n=50 is shown
below.

Download at InfoClearinghouse.com 96 © 2001 Gilberto E. Urroz

EigenfunctionsforD2y+lam =0
0.2019

-
0.1615 f"f e

0.1x1z T

0.0808

0.0404

0.0000
-0.0404

-0.0808

-0.1212

-0.1615 .
1 U - N

] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.9 1.0

0.

Notice that if the equation under consideration, d’y/dx? + Ay = 0, represents the equation of a
vibrating string, the eigenfunctions represent what are referred to as the different modes of
vibration of the string. The eigenvalues represent the different natural angular frequencies of
vibration of the string.

Exercises

[1]. Determine the general solution to the following linear ordinary differential equations using
the corresponding characteristic equation:

(a) d’y/dx® + 4(dy/dx) + 5y = 0. (b) d?y/dx? + 2(dy/dx)+y = 0.
(c) d*y/dx*+ d?y/dx? + dy/dx + 3y = 0 (d) d®y/dx* -3y =0

[2]. Obtain the particular solution to the following second order equations:

(a) d’y/dx? + 3(dy/dx) +y = 2e™ (b) d?y/dx® + 2y = 2x° + x
(c) d?y/dx? + dy/dx = sin(2x) (d) d®y/dx* +y = cos x

[3]. Plot the time variation of position, velocity, and acceleration of a damped mechanical
oscillator for the following parameters:

(@ m=2kg, B=0.01 Ns/m, k=2N/m, X, =0.2m, vo =1.2 m/s
(b) m=4kg, B=0.10Ns/m, k=2 N/m, X, =0.2m, vo = 1.2 m/s
() m=1kg, =0.02Ns/m, k=2N/m, X, =0.2m, vo=1.2 m/s
(d) m=0.5kg, =0.25Ns/m, k=2 N/m, Xo=0.2m, vo=1.2 m/s

[4]. Plot v-vs-X, a-vs-x, and a-vs-v phase portraits of the motions described in problem [3].
[5]. The mechanical oscillators described in problem [3] are subjected, respectively, to the
driving forces shown below. In each case, plot the time variation of position, velocity, and
acceleration of the resulting motions. Also, plot the v-vs-x, a-vs-x, and a-vs-v phase portraits

of the motions.

(@ Fp=2.5N, w =0.5rad/s (b) Fo =10 N, w =0.05 rad/s
() Fo=0.5N, w =1.5rad/s (d)Fo=4N, w =0.25rad/s

Download at InfoClearinghouse.com 97 © 2001 Gilberto E. Urroz

[6]. For the following functions approximate the derivative df/dx at x = a with (f(a+h)-f(a))/h
using values of h = 0.1, 0.01, 0.001, 0.0001, 0.00001. Plot the error involved in the numerical
estimate of the derivative against the value of h.

(@) f(x) =sin(2x), x =1 (b) f(x) = (*+3x)/(x+1), X = 2

(c) f(x) = 1/(1+x?), x = -1 (d) f(x) = tan(x), x = /4

[7]. Repeat problem [4] but using a centered difference, i.e., (f(a+h)-f(a-h))/(2h).

[8]. Repeat problem [4] for the second derivative d*f/dx?® using the forward difference
approximation (f(a+2h)-2f(a+h)+f(h))/h?.

[9]. Repeat problem [4] for the second derivative d*f/dx? using the centered difference
approximation (f(a-h)-2f(a)+f(a+h))/h?.

[10]. Given the ODE,
dy/dx = y&in(x),

and the boundary condition,
y(0) =1,

write a SCILAB function that uses the Euler method to obtain a numerical solution to this ODE
in the interval 0 < x <2.5. Use Ax = 0.25, 0.1, and 0.05. The exact solution is given by

y = 2/(cos x+1).
Plot the numerical solution against the exact solution for comparison.

[11]. Write a SCILAB function to produce an implicit solution for the first-order ODE from
problem [10]. The exact solution is y(x) = 1/x.

[12]. Write a SCILAB function to complete the explicit solution for the second-order ODE
d’y/dx? + y = 0. An outline of the solution is presented elsewhere in this chapter. The exact
solution is y(x) = sin x + cos X.

[13]. Write a SCILAB function to complete the implicit solution for the second-order ODE from
problem [12]. The exact solution is y(x) = sin x+cos X.

[14]. Use SCILAB function ode to solve the following ordinary differential equations
numerically. Plot the numerical results for the different values of Ax.

(@) dy/dx =xy +sin(x), y(0)=1,a=0,b=1, Ax=0.2, 0.1, 0.05, 0.01

(b) dy/dx = sin(x)cos(y), y(0) =0,a=0, b=m Ax = /10, /20, p/50, /100
(c) dy/dx =exp(xy),y(0)=1,a=0,b=10,4x=1,0.5,0.2,0.1

(d) dy/dx = x? - sin(x), y(0) = 2,a=0, b =5, Ax = 0.5, 0.25, 0.1, 0.05

[15]. Solve the following systems of differential equations using matrices. Plot the solutions
against x.

(@) dyi/dx =2y, - y,, dy2/dx = 2(y2-y1), Y1(0) = 1, y2(0) = -1

(b) dy,/dx = -5y, +y,+ X, dy,/dx = -yi1-y, - 5x, y1(0) = 0, y»(0) = 2

(c) dyi/dx =2y, - y,, dyx/dx = 2y,-y1, dys/dx = ys-y1, Y1(0) =1, y»(0) = -1, y3(0) = 2

(d) dy21/dx =2y; - Yot Y3+ X, dyo/dx = -y + 2y, -2, dys/dx = ys-y1, y1(0) = 1, y»(0) = -1, y3(0)

Download at InfoClearinghouse.com 98 © 2001 Gilberto E. Urroz

[16]. Solve the systems of differential equations of problem [15] using SCILAB function ode.
Plot the solutions against x.

[17]. Convert the following linear differential equations into systems of first-order ODEs and
solve for y(x) using SCILAB function ode. Plot the solution y(x):

(@) d’y/dx® + dy/dx + 2y = x, y(0) = 1, dy/dx = -1 at x = 0.

(b) d®y/dx® - 5(dy/dx) +y =0, y(0) = 0, dy/dx = -1 and d?y/dx* =1 for x = 0
(c) d’y/dx® - (d*y/dx?) +y =x, y(0) = 0, dy/dx = -1 and d’y/dx* = 1 for x = 0
(d) d?y/dx* + 2y = sin(x), y(0) = 1, dy/dx = -1 at x = 0.

[18]. The figure below shows two particles P, and P,, of mass m; and m,, respectively, linked
by three springs (ka, kg, k). The figure at the top represents the system in their state of
equilibrium, while the one at the bottom shows the system at any generic point at time t>0.
The displacement of particle P; with respect to its equilibrium position is given by x;(t) while
that of particle P, is given by X,(t). The corresponding velocities are v; = dx;/dt and v, =
dx,/dt. The magnitude of the forces applied by the springs on the particles are given by
Hooke's law, F = k(L-Ly), where L is the stretched length of the spring, L, is the unstretched
length of the spring, and k is the spring constant. The particles are also provided by dashpots
that produce a viscous damping force whose magnitude is given by F = Bv, where b is a damping
constant and v is the speed of the particle, i.e., F = f(dx/dt), where x = position of the
particle.

i i
—» Py B, "2 B
I E] E] I
| Ly I Lg I Lo

particles in motion

(a) Write down the differential equations describing the motion of the two linked particles
including spring and damping forces as shown in the figure above.

(b) Solve for x;(t) and x,(t) if my = 10 kg, m, = 20 kg, ky = 80 N/m, kg = 120 N/m, kc = 100 N/m,
B =1 N&/m, B, =5 NB&/m. The initial conditions are given by x;(0) = 0.5 m, x,(0) = 0.25 m,
v1(0) = 0, v,(0) = 1.0 m/s. Plot the signals and the velocity versus time for 0 <t <5s.

(c) Solve for x,(t) and x,(t) if m; = 10 kg, m, = 20 kg, ka = 80 N/m, kg = 120 N/m, ke = 100 N/m,
B: = 0, for values of 3, =0, 0.1, 0.5, 1, and 5 N&/m. The initial conditions are given by x;(0) =
0.5 m, x,(0) = 0.25 m, v;(0) = 0, v,(0) = 1.0 m/s. Plot the signals and the velocity versus time
for 0 < t < 5 s for the different values of £3.

(d) Write the differential equations for x;(t) and x,(t) if an external force F; = Fq sin(apt + @)
is applied to particle P; in addition to the spring and damping forces.

(e) Using the conditions of part (a) of this problem solve for x;(t) and x,(t) for the case in which
particle P; is subject to the external force F; = Fy sin(apt + @) with Fo = 20 N, ay = 2.5 rad/s,

Download at InfoClearinghouse.com 99 © 2001 Gilberto E. Urroz

and @ = 1.5 ™. Plot the signals, velocity, and acceleration versus time for 0 < t < 5 s for the
different values of 3.

[19]. Consider the following two-loop electric circuit with Ry = 2500 ohms, R; = 1500 ohms, R, =
1000 ohms, L; = 500 henrys, L, = 800 henrys, C; = 0.00006 farads, and C, = 0.001 farads.

L, L,

(@) Write down the system of differential equations describing the electric charges
g1(t) and g»(t) in the capacitors C,and C,, respectively, and the electric currents I(t)
and I,(t) in the loops when the switches are turned on.

(b) For q;(0) =0, g,(0) =0, 1,(0) = 0, 15(0) = 0, E4(t) = 0, E,(t) = 120 cos(30t) volts,
determine the electric currents I;(t) and I,(t). Plot the results for 0 <t <120 s.

(c) For q;(0) = 0, g,(0) = 0, 1,(0) = 0.2 amperes, 1,(0) = 0.1 amperes, E;(t) = 6 volts,
E,(t) = 12 volts, determine the electric currents I,(t) and I,(t). Plot the results for 0 <t
<120s.

(d) For q.(0) = 50 coulombs, g,(0) = 100 coulombs, 1,(0) = 0, 1,(0) = 0.12 amperes,
E;(t) = 6 sin (10 t) volts, E,(t) = 12 cos(30t), determine the electric currents I;(t) and
[,(t). Plot the results for 0 <t <120 s.

(e) For q;(0) =0, g,(0) =0, 1;(0) = 0, 15(0) = 0, E4(t) = Ex(t) = 120 cos(120t),
determine the electric currents I,(t) and I,(t). Plot the results for 0 <t <120 s.

[20]. The Zeeman’s equations can be used to model the fluctuations on the length of the
heart’s fibers as the heart pumps blood through the blood vessels of a human body:

dx/dt = k(-y - x*/3 + rx)
dy/dt = x/k,

where x is a measure of the fiber length fluctuation, y is a measure of the electrical stimulus
that produces the fiber fluctuations, and k and r are constants. Solve the Zeeman’s equation
for the following parameters:

() k=0.5,p=1,x(0)=0, y(0)=-1 (b) k=0.5, p=5,x(0)=0, y(0)=-1
(c) k=0.5, p=10, x(0) =0, y(0) = -1 (d)k=0.5,p=20, x(0) =0, y0)=-1

Download at InfoClearinghouse.com 100 © 2001 Gilberto E. Urroz

Plot the signals x vs. t, y vs. t, and the phase portrait x vs. y.

[21]. The Lorenz equations are used to simulate the convection of a layer of fluid of infinite
horizontal extent heated from below. The model is a simplified version of the heating of the
atmosphere. The equations are obtained by expanding the terms for temperature and
pressure involved in the problem with their Fourier series expansion and simplifying the
expansion to the first three modes represented by the variables x, y, and z. The resulting
system of equations is

dx/dt = o(-x+y)

dy/dt=rx-y-xz
dz/dt = xy - bz

where o, r, and b are constants that result from combining physical parameters of the
problem. (For a detailed derivation refer to Berge, P., Y. Pomeau, and C. Vidal, 1984, “Order
within Chaos - Towards a deterministic approach to turbulence,” John Wiley & Sons, New
York).

Solve the Lorenz equations for the following combination of parameters:

(@ 0=10,r= 25,b= 2.666, % =1,yy=1,29 =1

(b) 0=10,r= 75,b= 2.666, % =1,yy=1,25 =1

(c) 0=10,r= 25,b= 2.666, % =1,yy=1,25 =1

(d) 0=10,r= 25,b= 2.666, % =1,yy=1,25 =1
Plot the signals x-vs-t, y-vs-t, z-vs-t, as well as the phase portraits x-vs-y, x-vs-z, and y-vs-z.
[22]. The governing equation for a pendulum of length L is the second-order ODE,

d’6/dt? + (g/L) 6=0,

where g is the acceleration of gravity, and 6 is the angle measured from the vertical position of
the string. Solve the pendulum equation for the following conditions:

(@ L=1.2m, g=9.806 m/s?, 6 = /3, (d6/dt), = -1
(b) L=3ft, g=32.2 ft/s?, 6, = /6, (d6/dt); =1
(c) L=2.0m, g=9.806 m/s®, 6 = w2, (d6/dt), = -0.5
(d) L=6ft, g=232.2 ft/s°, 6, = 3/4, (d6/dt), = -0.5
Plot the signals 6-vs-t, and (d6Adt)-vs-t. Also, plot the phase portrait d6/dt-vs- 6.

[23]. Repeat the solutions of problem [22] if the pendulum is subjected to a periodic
excitation so that the governing equation becomes

d’6/dt? + (g/L) 6= (Fo/(mL)) cos(wt+q).
The values to use for each of the cases in problem [22] are as follows:
(@ Fp=2.5N, m=0.2 kg, w= /2 rad/s, o= 1/3
(b) Fo=0.5N, m=0.8 kg, w= 1.0rad/s, ¢=0
(c)Fo=1.5N, m=1.2kg, w=0.1rad/s, ¢=2717/3
(d)Fo=3.0N, m=0.1kg, w=0.05rad/s, ¢=-17/3

[24]. Solve the following boundary value problem using the shooting method.

Download at InfoClearinghouse.com 101 © 2001 Gilberto E. Urroz

(@) d’y/dx* + 3(dy/dx) + 2y = sin(2x), y(0) = 1, y(1) = 0
(b) d¥y/dx?-3y =1 +Xx, y(0) = -1, dy/dx|4-,=-0.5
(c) d¥y/dx? + dy/dx = In(x), dy/dx|x-0=0, y(1) = 1
(d) d?y/dx? - dy/dx -y = 2 sin(x), y(1) = -2, y(2) = 3

[25]. Solve the boundary value ODEs of problem [24] by using an implicit solution with finite
differences.

[26]. Solve the boundary value ODEs of problem [24] by using function bvode.
[27]. Solve the following boundary value ODEs using function bvode:

(@) dy/dx’+y=1+x%y(0)=1,y(1)=2,y@3)=-1

(b) d¥y/dx® + d?y/dx? = x, y(0) = 1, dy/dx |1 = -1, y(2) = 0

(¢) d?y/dx? - dy/dx = e™?, dy/dx |y = -1, y(1) = 2

(d) d’y/dx® + dy/dx = -1 + x, y(0) = 1, dy/dX | = -1, d’y/dx?|er = 1

[28]. Determine the first n eigenvalues of the problem d?y/dx? + Ay = 0, subject to y(0) = 0,
y(L) = 0, for the following combinations of values of n and L:

(ad n=10,L=10 (b)n=20,L=5
(c)n=15,L=1 (d)n=30,L=100

[29]. For the differential equation
x2(d?y/dx?)+x(dy/dx)"+(1+A)y=0, y(1) = y(2) = 0,

use centered-difference approximations for the derivatives to perform an implicit numerical
solution. Obtain the first 10 eigenvalues of the problem. Plot the corresponding
eigenfunctions.
[30]. Solve the following system of equations

dx/dt = -y(x*+y?),

dy/dt = x(x*+y?),

for the initial conditions x(0) = 2, y(0) = 1. Plot the signals x-vs-t and y-vs-t, as well as the
phase portraits x-vs-y, (dx/dt)-vs-x, (dy/dt)-vs-y, and (dy/dt)-vs-(dx/dt).

[31]. The following system of equations is known as a set of coupled logistic equations and can
be used to model the behavior of two linked populations x;(t) and x,(t):

dX]_/dt = le(l - (X1+X2)/N),
ng/dt = kX2(1 - (X1+X2)/N).
Solve the system for the following combination of parameters and initial conditions:

(a) k = 1, N = 1, (Xl)O = 1, (X2)0 =1 (b) k = 05, N = 5, (Xl)O = O, (X2)0 =-1
(C) k= 2.5, N=10, (Xl)O =-2, (X2)0 =0 (d) k= 12, N = 25, (X1)0 =1, (X2)0 =1

[32]. The governing equation for gradually varied flow in an open channel is given by

Download at InfoClearinghouse.com 102 © 2001 Gilberto E. Urroz

dy S-S,
dx 1-F?'

where S, is the slope of the channel bed, i.e., the rate of change of bed elevation, z, with
distance, x, along the channel bed (S, = -dz/dx), S¢ is the slope of the energy head, i.e., the
rate of change of the total energy head, H (energy per unit weight), with x (S = -dH/dx), and F
is a dimensionless quantity known as the Froude number. The energy head, H, is the sum of
the bed elevation z, the water depth y, and the velocity head (kinetic energy per unit weight)
V/(29), i.e.,

H=z+y+V/2g,

where V is the flow velocity in the cross section (V = Q/A, Q = flow discharge, A = cross-
sectional area). The energy slope is calculated by using Manning’s equation with

P4/3
Sf = Q é 10/3 !
Ecu A
where n is the Manning coefficient (a measure of the channel bed roughness), C, is a constant
that depends on the system of units used (C, = 1.0 for the S.I., C, = 1.486 for the English

system), and P is the wetted perimeter of the cross-section (part of the channel cross-sectional
perimeter in contact with the water).

The Froude number squared is calculated from
F 2 = Q_ZT
gA®’

where T is the top-width of the cross-section (i.e., the length of the free surface at the cross
section).

For a trapezoidal section of bottom width b, side slope z, and depth y, the area, wetted
perimeter, and top width are given by

A = (btzy)y
P =b + 2y(1+z})"?
T=b+2zy

For a trapezoidal cross-section open channel with b = 2.5 ft, z = 1, S = 0.00001, g = 32.2 ft/s°,
C, = 1.486, n = 0.012, Q = 5.0 ft*/s, and with initial conditions y = 2.5 ft at x = 10000 ft, plot
the solution y(x) between x = 0 and x = 10000 ft.

Notes on problem [32]:

(1). A plot of the solution y-vs-x is called the water surface profile or a backwater curve.
Backwater curves are created whenever there is a so-called control point in the channel. For
example, the depth of 2.5 ft at position x = 10000 ft, used as initial conditions in this problem,
could be created by a small sill placed across the channel at that position.

(2). At points where the energy slope, Sy, is the same as the bed slope, S, i.e., Sf = Sg, then
dy/dx = 0. At those points the flow is said to have reached uniform conditions (uniform flow)
and the constant depth thus achieved is referred to as the normal depth, y,. You can check
that for the conditions of the present problem y, = 2.311973 ft by solving for y from the
Manning’s equation (S¢(y) = Sp).

Download at InfoClearinghouse.com 103 © 2001 Gilberto E. Urroz

(3). At a point where the Froude number is equal to 1, the flow is said to be critical. The
corresponding depth is referred to as the critical depth, y.. You can check that for the
conditions of the present problem y, = 0.4673298 ft by solving for y from the equation defining

the Froude number squared, i.e., F3(y) = 1.

Download at InfoClearinghouse.com 104 © 2001 Gilberto E. Urroz

REFERENCES (for all SCILAB documents at InfoClearinghouse.com)

Abramowitz, M. and I.A. Stegun (editors), 1965,"Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables," Dover Publications, Inc., New York.

Arora, J.S., 1985, "Introduction to Optimum Design," Class notes, The University of lowa, lowa City, lowa.
Asian Institute of Technology, 1969, "Hydraulic Laboratory Manual," AIT - Bangkok, Thailand.

Berge, P., Y. Pomeau, and C. Vidal, 1984,"Order within chaos - Towards a deterministic approach to turbulence," John
Wiley & Sons, New York.

Bras, R.L. and I. Rodriguez-Iturbe, 1985,"Random Functions and Hydrology," Addison-Wesley Publishing Company,
Reading, Massachussetts.

Brogan, W.L., 1974,"Modern Control Theory," QPI series, Quantum Publisher Incorporated, New York.

Browne, M., 1999, "Schaum's Outline of Theory and Problems of Physics for Engineering and Science," Schaum's
outlines, McGraw-Hill, New York.

Farlow, Stanley J., 1982, "Partial Differential Equations for Scientists and Engineers," Dover Publications Inc., New
York.

Friedman, B., 1956 (reissued 1990), "Principles and Techniques of Applied Mathematics," Dover Publications Inc., New
York.

Gomez, C. (editor), 1999, “Engineering and Scientific Computing with Scilab,” Birkh&user, Boston.
Gullberg, J., 1997, "Mathematics - From the Birth of Numbers," W. W. Norton & Company, New York.

Harman, T.L., J. Dabney, and N. Richert, 2000, "Advanced Engineering Mathematics with MATLAB® - Second edition,"
Brooks/Cole - Thompson Learning, Australia.

Harris, J.W., and H. Stocker, 1998, "Handbook of Mathematics and Computational Science," Springer, New York.

Hsu, H.P., 1984, "Applied Fourier Analysis," Harcourt Brace Jovanovich College Outline Series, Harcourt Brace
Jovanovich, Publishers, San Diego.

Journel, A.G., 1989, "Fundamentals of Geostatistics in Five Lessons," Short Course Presented at the 28th International
Geological Congress, Washington, D.C., American Geophysical Union, Washington, D.C.

Julien, P.Y., 1998,”Erosion and Sedimentation,” Cambridge University Press, Cambridge CB2 2RU, U.K.

Keener, J.P., 1988, "Principles of Applied Mathematics - Transformation and Approximation," Addison-Wesley
Publishing Company, Redwood City, California.

Kitanidis, P.K., 1997,”Introduction to Geostatistics - Applications in Hydogeology,” Cambridge University Press,
Cambridge CB2 2RU, U.K.

Koch, G.S., Jr., and R. F. Link, 1971, "Statistical Analysis of Geological Data - Volumes | and II," Dover Publications,
Inc., New York.

Korn, G.A. and T.M. Korn, 1968, "Mathematical Handbook for Scientists and Engineers," Dover Publications, Inc., New
York.

Kottegoda, N. T., and R. Rosso, 1997, "Probability, Statistics, and Reliability for Civil and Environmental Engineers,"
The Mc-Graw Hill Companies, Inc., New York.

Kreysig, E., 1983, "Advanced Engineering Mathematics - Fifth Edition," John Wiley & Sons, New York.
Lindfield, G. and J. Penny, 2000, "Numerical Methods Using Matlab®," Prentice Hall, Upper Saddle River, New Jersey.

Magrab, E.B., S. Azarm, B. Balachandran, J. Duncan, K. Herold, and G. Walsh, 2000, "An Engineer's Guide to
MATLAB®", Prentice Hall, Upper Saddle River, N.J., U.S.A.

McCuen, R.H., 1989,”Hydrologic Analysis and Design - second edition,” Prentice Hall, Upper Saddle River, New Jersey.

Middleton, G.V., 2000, "Data Analysis in the Earth Sciences Using Matlab®," Prentice Hall, Upper Saddle River, New
Jersey.

Download at InfoClearinghouse.com 105 © 2001 Gilberto E. Urroz

Montgomery, D.C., G.C. Runger, and N.F. Hubele, 1998, "Engineering Statistics," John Wiley & Sons, Inc.

Newland, D.E., 1993, "An Introduction to Random Vibrations, Spectral & Wavelet Analysis - Third Edition," Longman
Scientific and Technical, New York.

Nicols, G., 1995, “Introduction to Nonlinear Science,” Cambridge University Press, Cambridge CB2 2RU, U.K.
Parker, T.S. and L.O. Chua, , "Practical Numerical Algorithms for Chaotic Systems,” 1989, Springer-Verlag, New York.
Peitgen, H-O. and D. Saupe (editors), 1988, "The Science of Fractal Images," Springer-Verlag, New York.

Peitgen, H-O., H. Jirgens, and D. Saupe, 1992, "Chaos and Fractals - New Frontiers of Science," Springer-Verlag, New
York.

Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, 1989, “Numerical Recipes - The Art of Scientific
Computing (FORTRAN version),” Cambridge University Press, Cambridge CB2 2RU, U.K.

Raghunath, H.M., 1985, "Hydrology - Principles, Analysis and Design," Wiley Eastern Limited, New Delhi, India.

Recktenwald, G., 2000, "Numerical Methods with Matlab - Implementation and Application," Prentice Hall, Upper
Saddle River, N.J., U.S.A.

Rothenberg, R.I., 1991, "Probability and Statistics," Harcourt Brace Jovanovich College Outline Series, Harcourt Brace
Jovanovich, Publishers, San Diego, CA.

Sagan, H., 1961,"Boundary and Eigenvalue Problems in Mathematical Physics," Dover Publications, Inc., New York.

Spanos, A., 1999,"Probability Theory and Statistical Inference - Econometric Modeling with Observational Data,"
Cambridge University Press, Cambridge CB2 2RU, U.K.

Spiegel, M. R., 1971 (second printing, 1999), "Schaum's Outline of Theory and Problems of Advanced Mathematics for
Engineers and Scientists," Schaum's Outline Series, McGraw-Hill, New York.

Tanis, E.A., 1987, "Statistics Il - Estimation and Tests of Hypotheses," Harcourt Brace Jovanovich College Outline
Series, Harcourt Brace Jovanovich, Publishers, Fort Worth, TX.

Tinker, M. and R. Lambourne, 2000, "Further Mathematics for the Physical Sciences," John Wiley & Sons, LTD.,
Chichester, U.K.

Tolstov, G.P., 1962, "Fourier Series," (Translated from the Russian by R. A. Silverman), Dover Publications, New York.

Tveito, A. and R. Winther, 1998, "Introduction to Partial Differential Equations - A Computational Approach," Texts in
Applied Mathematics 29, Springer, New York.

Urroz, G., 2000, "Science and Engineering Mathematics with the HP 49 G - Volumes | & II", www.greatunpublished.com,
Charleston, S.C.

Urroz, G., 2001, "Applied Engineering Mathematics with Maple", www.greatunpublished.com, Charleston, S.C.

Winnick, J., , "Chemical Engineering Thermodynamics - An Introduction to Thermodynamics for Undergraduate
Engineering Students," John Wiley & Sons, Inc., New York.

Download at InfoClearinghouse.com 106 © 2001 Gilberto E. Urroz

	Ordinary Differential Equations
	Introduction to differential equations
	Definitions
	Ordinary and partial differential equations
	Order and degree of an equation
	Linear and non-linear equations
	Constant or variable coefficients
	Homogeneous and non-homogeneous equations

	Solutions
	General and particular solutions
	Verifying solutions using SCILAB
	Initial conditions and boundary conditions

	Symbolic solutions to ordinary differential equations
	Solution techniques for first-order, linear ODEs with constant coefficients
	Integrating factors for first-order, linear ODEs with variable coefficients
	Exact differential equations
	Solutions of homogeneous linear equations of any order with constant coefficients
	Obtaining the particular solution for a second-order, linear ODE with constant coefficients

	Applications of ODEs I : analysis of damped and undamped free oscillations
	Undamped motion
	Damped motion
	Initial conditions for damped oscillatory motion

	Creating phase portraits of oscillatory motion

	Applications of ODEs II : analysis of damped and undamped forced oscillations
	Applications of ODEs III: Oscillations in electric circuits
	Finite differences and numerical solutions
	Finite differences
	Finite difference formulas based on Taylor series expansions
	Forward, backward and centered finite difference approximations to the first derivative
	Forward, backward and centered finite difference approximations to the second derivative
	Solution of a first-order ODE using finite differences - Euler forward method
	A function to implement Euler’s first-order method

	Finite difference formulas using indexed variables
	Solution of a first-order ODE using finite differences - an implicit method
	Explicit versus implicit methods
	Outline of explicit solution for a second-order ODE
	Outline of the implicit solution for a second-order ODE

	Systems of ordinary differential equations
	Systems of ordinary differential equations using matrices
	Systems of linear homogeneous ODEs - solution using matrices
	Systems of linear nonhomogeneous ODEs - solution using matrices
	Converting second-order linear equations to a system of equations

	SCILAB functions for the numerical solutions of initial value problems (IVP)
	Applications of numerical solutions to IVPs
	Systems of ODEs from mechanical systems
	System of ODEs from Electric Circuits
	Solving a fourth-order equation
	The Van der Pol equation
	The Rössler flow

	Solutions to boundary value problems (BVPs)
	The shooting method
	A function to implement the shooting method

	Outline of the implicit solution for a second-order BVP
	Function bvode for the solution of boundary value problems
	Function bvode applied to a third-order boundary value problem
	Application of bvode to a third-order problem with one interior fixed point
	Application of bvode to a fourth-order problem with two interior fixed points

	Boundary value problems with eigenvalues
	Numerical solution to a boundary value problem with eigenvalues
	A function for calculating eigenvalues for a boundary value problem

	Exercises

	REFERENCES (for all SCILAB documents at InfoClearinghouse.com)

