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Note that for p = 0, the second identity yields

d

= [Jo(@)] = ~1(a).

To prove (1) we recall the definition of J,, from (7) of Section 4.7 and write

d d = (=1)k2r \ 2k+2p
dz (@] = _7§:kuxk+p+m(5)

_ Sl e
k

D(k+p+1)\2

o L (=D)k z\ 2k+p—1
- lp; K T(k + p) (5)
= 2P Ji(z).

In the next to last step we used the basic property of the gamma function to
write '(k+p+1) = (p+k)I'(p+k). The second identity is proved similarly
(Exercise 1(a)).

Many other useful identities follow from (1) and (2). We list some of
the most commonly used ones:

(3) TI(2) + py(x) = 2y (2),
(4) 2J(@) — plp(z) = ~x i1 (),
(5) Jpr(2) = Jpa (x) = 2 J)(a),
(6) Jpr(@) + Jpir (@) = 2 Jy(a).

(We note that the corresponding formulas for Bessel functions of the second
kind also hold.) To prove (3), we expand the left side of (1) using the
product rule and get

2 Ty (x) + prP Iy (z) = 2P Ty (x)

Dividing through by zP~! gives (3). Identity (4) is proved similarly by
starting with (2) and expanding using the product rule. Adding (3) and (4)
and simplifying yields (5). Subtracting (4) from (3) and simplifying yields
(6).

There are similar identities involving integrals of Bessel functions. For
example, the identities
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(7) / 27T (@) de = 2P, 1 (2) 4 C
and
(8) /x_p+1Jp(:L-) dr = -z P ], 1(z)+C

follow easily by integrating both sides of (1) and (2) (Exercise 1).

Orthogonality of Bessel Functions

To understand the orthogonality relations of Bessel functions, let us recall
the familiar example of the functions sinnwx, n = 1,2, 3, .... We know
that these functions are orthogonal on the interval [0, 1], in the sense that
.[61 sinnrzsinmrrdr = 0 if n # m. The key here is to note that the
functions sinnwz are constructed from a single function, namely sinx, and
its positive zeros, namely nw, n=1, 2,3, ....

In constructing systems of orthogonal Bessel functions, we will proceed
in a similar way by using a single Bessel function and its zeros. Fix an order
p > 0, and consider the graph of J,(z) for x > 0. Figure 1 shows typical
graphs of Bessel functions.

by

y=J,x)

AN ANNY A2

Figure 1 A Bessel function J,(z) has infinitely many positive zeros.

We see from Figure 1 that the Bessel function J, has infinitely many zeros on
the positive axis > 0 (just like sinz). This important fact is proved in the
following section (see Exercises 14 and 35 for the cases p = 0, +1, £2, ...,
and %) We denote these zeros in ascending order

O<opr <apar < <apj <+

Hence a,; denotes the jth positive zero of J,. (Sometimes the notation o
will be used.) Unlike the case of the sine function, where the zeros are easily
determined by nw, there is no formula for the positive zeros of the Bessel



It is interesting to note
that all these functions are
bounded by 1 and their num-
ber of zeros increase in the in-
terval (0,1). These properties
are shared by other systems of
orthogonal functions encoun-
tered earlier, in particular, the
trigonometric functions.
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functions. Since the numerical values of these zeros are very important
in applications, they are found in most mathematical tables and computer

systems. For later use, we list in Table 1 the first five positive zeros of Jy,
Ji, and Js.
j 1 2 3 4 5
cgj | 2.40483 | 5.52008 | 8.65373 | 11.7915 | 14.9309
oy | 3.83171 | 7.01559 | 10.1735 | 13.3237 | 16.4706
ag; | 5.13562 | 8.41724 | 11.6198 | 14.796 | 18.9801 |

Table 1 Positive zeros of Jy, J1, and Jo.

Let a be a positive number. To generate orthogonal functions on the
interval [0, a] from J,, we proceed as in the case of the sine function, using
apj, the zeros of the Bessel function. We obtain the functions

(9) j=1,2,3,....

(),

The first four functions, corresponding to p = 0, are shown in Figure 2.

1 Jo(og1x)  Jo(orgyx)

Figure 2 Orthogonal functions generated with Jo(z): Jo(wo1rz), Jo(eo2z), ... .

To simplify the notation, we let

(10) Apj= 2B =123 ...
a

So Ap; is the value of the jth positive zero of .J, scaled by a fixed factor 1/a.
We are now in a position to state some fundamental identities.
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THEOREM 1
ORTHOGONALITY
OF BESSEL
FUNCTIONS WITH
RESPECT TO A
WEIGHT

Fixp > 0 and a > 0. _( 21T = 1,?,. ..) be as in (9) and (10).
Then

0
(11) / Jo(Ppamidu{dgp)e di'=10- fox J 44 k,

0
and

a -

(12) / J (Apjz)zdr = — Jp+1(am) o S E

Note that (12) involves A,; and apj. Property (11) is described by saying
that the functions J,(Apjz), 7 = 1,2, ... are orthogonal on the interval
[0,a] with respect to the weight . The phrase “with respect to the
weight z” refers to the presence of the function z in the integrand in (11).
On the interval [0, 1] —that is when ¢ = 1—formulas (11) and (12) take on
a simpler form

1
(13) / Jp(opiz) Ip(oppz)xde = 0 for j # k,
0
. 1
(14) /0 Jg(apjx)x dr = §J§+1(apj) forj=1,2,....

The proof of (11) is found in the proof of Theorem 3. The proof of (12) is
outlined in Exercise 36.

Bessel Series and Bessel-Fourier Coefficients

Just as we used the functions sinnmz to expand functions in sine Fourier
series, now we will see how we can expand functions using Bessel series.
More precisely, a given function f on the interval [0, a] can be expressed as
a series

oo

(15) fl@) =2 4;7,(0)

=1

called the Bessel series of order p of f. Putting aside questions of
convergence, let us assume (15) is valid and proceed to find the coefficients
in the series. Multiplying both sides of (15) by J,(Apgx) z and integrating
term by term on the interval [0, a] gives

=0 except when j=k

(16) /f (Apkz .TdI—ZA / Jp(Api) Jp(Aprz)2 da .




THEOREM 2
BESSEL SERIES OF
ORDER p

Note the similarity with
Fourier series. At the points
of discontinuity the Bessel se-
ries converges to the average
of the function.
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The orthogonality property (11) shows that all the terms on the right side
of (16) are 0 except when j = k. Canceling the zero terms and using (12),
we get

o foa flx)dp(Apjx)z da B
o 4= fo 2Opt)zds o«

2 a
2 J3+1(apj) /O f(,L)Jp(Ap]',C)l' dz .

The number A; is called the 7th Bessel-Fourier coefficient or simply the
Bessel coefficient of the function f.

The next theorem gives conditions under which the Bessel series expan-
sion of a function is valid. For the meaning of piecewise smooth, refer to
Section 2.2.

If f is piecewise smooth on [0, a], then f has a Bessel series expansion of
order p on the interval (0, a) given by

@)= 3 ATy,

j=1

where A,q, Ap2, ... are the scaled positive zeros of the Bessel function .J,
given by (10), and A; is given by (17). In the interval (0, a), the series con-
verges to f(x) where f is continuous and converges to the average w

at the points of discontinuity.

Before giving an example of a Bessel series, we make a useful remark
about the notation. While the notation ay; and Ap; is appropriate to denote
the zeros and scaled zeros of the Bessel function of order p, it is a little
cumbersome to work with. For this reason, when it is understood which
order we are dealing with, and so there is no risk of confusion, we will drop
the index p and write a; and \; instead of a,; and Ay;.

EXAMPLE 1 A Bessel series on the interval [0, 1]
Find the Bessel series expansion of order 0 of the function f(z) =1, 0 <z < L.
Solution Applying Theorem 2, we get

fl@) =3 Asdologa),

where «; is the jth positive zero of Jy, and
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Figure 3 Partial sums of the
Bessel series.

a;Ji(ey)

Theorem 2 asserts that the Bessel series converges to f(z) at all points in the
interval. Thus

ad 2
1= — Jlasz) O0<z <.
;%Jl(aj) o(e)

J 1 2 3 4 5

a; 24048 | 5.5201 | 8.6537 | 11.7915 | 14.9309
| Ji(ay) | 5191 | —.3403 | 2714 | —.2325 | .2065
W 1.6020 | —1.0648 | .8514 | —.7295 | .6487

Table 2 Numerical data for Example 1

Using the numerical data provided by Tables 1 and 2, we can write explicitly the
first few terms of the series:

1 = 1.6020Jp(2.4048z) — 1.0648 Jo(5.5201 ) + .8514 Jo(8.6537 )
— 7295 Jo(11.7915 ) + .6487 Jo(14.9309 z) + - - - .

It is worth noticing that the Bessel coefficients tend to 0 as 7 — oo. This is a
property that holds in general.

Note that Theorem 2 tells us nothing about the behavior of the Bessel series at
the endpoints of the interval. In this example, if we take z = 1 in the series all the
terms become zero, since we are evaluating Jy at its zeros. This is also clear from
the graphs of the partial sums in Figure 3. So, in this example, the Bessel series
does not converge to the function at one of the endpoints. |

Parametric Form of Bessel’s Equation

In the remainder of this section, we explore two important differential equa-
tions that are closely related to Bessel’s equation.
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The condition that y(0) be
finite is effectively a second
boundary condition on y.
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Let p 2 _0,_0, > 0, and let a_p_,-_ denote the jth-;_)(;s_itive zero of Jplz) . For
j=1,2,..., the functions J,(=% z) are solutions of the parametric form
of Bessel’s equation of order p,

(18) 22y (z) + 2/ (z) + (V22® — p?)y(x) = 0,

together with the boundary conditions

(19) y(0) finite, y(a) =0,

when A = Ay; = 9{;‘% and these are the only solutions of (18), aside from
scalar multiples, with these properties. Moreover, these solutions satisfy
(11) and (12) and so they are orthogonal on the interval [0, a] with respect
to the weight function z.

Proof We will make a change of variables in (18) and reduce it to Bessel’s equation
as follows. Let u = Az, du = Adz, and let y(z) = y(%) = Y(u). From the chain
rule, ¢/ (z) = Y'(u) & = AY’(u), and, likewise, y'(z) = A2 Y"(u). Substituting in
(18), we get Bessel’s equation of order p in ¥ (u)

WY (u) + uY’(u) + (u? — p?)Y(u) = 0.
Thus the general solution is
Y{u) = c1Jp(u) + 2y (u) = c1Jp(Az) + oYy (Az) = y(x).

For y(0) to be finite, we must set ¢ = 0, because Y, blows up at 0. So y(x) =
c1Jp(Ax), and the boundary condition y(a) = 0 holds (for ¢; # 0) if and only if
Aa = ap;. Hence,
. %
A=Ay = .

are the only positive values of A for which there are nontrivial solutions. Therefore,
the solutions of (18) and (19) are as claimed.

We come now to the proof of (11). To simplify notation, let us write A; for
Apj» and ¢;(x) for Jp;(Ap;x). The goal is to show that for j # k

[ o@onwads=o.

2 2
Let us write (18) in the form (zy') = —&z——p) y. Since the ¢'s satisfy this

equation with the corresponding \’s, we have
(A3 2% —p%)
(z¢)) = ——=5—¢;
and
A2 g% p?
(o y) = =G5,

Multiplying the first equation by ¢, and the second one by ¢; and then subtracting
the resulting equations, we get, after simplifying,

Nk = ADdsdkx = ulzd)) — di(z 67)
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Figure 4 Spherical Bessel
fUIlCtiOI'lS, .j07 jl? j2» 73

Note that d
dr(29}) — ¢j(xdy) = '(E[st:r b — d;zdy] -
Hence

(A2~ 22) /O b5(@)bu(@)z dz = Gy — 6,04 ° = 0,

because ¢;(a) = ¢r(a) = 0, and the desired result follows, since A7 — A3 # 0. For
the proof of (12), see Exercise 36. [ |

Our last example is a differential equation that gives rise to yet another
important family of functions.

EXAMPLE 2 Spherical Bessel functions
The equation

(20) 22y + 2zy’ + (kx? —n(n+ 1))y =0, 0<z<a, yla)=0,

arises in many important applications in Chapter 5. In this equation, & is a
nonnegative real number and n = 0, 1, 2,.... We are seeking bounded solutions
in the interval 0 < z < a. You can check that the substitution

{21) y =z 2w

transforms (20) into the following parametric form of Bessel’s equation:

1
2*w” + zw' + (kz? — (n + 5)2)w =0, w(a)=0

(Exercise 37). We know from Theorem 3 (with p = n+1,/2) that bounded solutions
arise only when

k=2,
and Cni1/25

a’ ¥

where o, 11/2 ; denotes the jth positive zero of Jn+%. The corresponding solutions
are scalar multiples of

A=A, =

Wa,;(2) = Ty 2 (An ;@) n=0,1,2,..., j=1,2,....

Hence, using (21), it follows that the solutions y,; of (20) are scalar multiples of

(22) e Gng),  n=0,1,2,.., j=1,2,....

It is customary to express the solutions in terms of the spherical Bessel functions

of the first kind (see Figure 4):
_ T
(23) Jn(z) :(?T)l/?Jn+%(m)7 n=0,1,2,....

Choosing a specific multiple of the functions in (22), we obtain the solutions of (20)
as the spherical Bessel functions:

(24) Yn,;(2) = Jn(An;2), n=0,1,2,..., j=1,2,.... |
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In the exercises you are asked to study the spherical Bessel functions,
including their orthogonality. In most cases, the results are simple conse-
quences of properties of Bessel functions and (23).

Exercises 4.8

1. (a) Supply the details of the proof of (2), (7), and (8). [Hint: To prove (2), show
that the derivative is > ,=, m(;—;%x%_l. Then change k to k + 1 to start
the sum at 0.]

(b) Supply the details of the proof of (4), (5), and (6).

2. (a) On the graphs of Jy and J; in Figure 1, Section 4.7, note that the maxima
and minima of Jy occur at the zeros of J;. Prove this fact.
(b) Show that the maximum and minimum values of .J, occur when

B pJp($) N pJp(I) _ .

x = T (@) or I = T 1) or Jp_1(z) = Jpp1(x).
0 (c) Ilustrate (b) graphically when p = 2.

(d) Show that at the zeros of J,, J,—1 and Jpy1 have equal absolute values but
opposite signs.

In Exercises 3-10, evaluate the given integral.

3. /xJo(:r) dz. 4. /1'4 Js(z)dx. 5. /Jl(x) dz.
6. /x_z.]g(a:) dzx. 7. /w3J2(x)dx. 8. /x3J0($)dx.
9. /Jg(.T) dz. 10. / Ji(z)[Jo(z)]"dx. [Hint: Let u= Jy(z).]
Jo
11. Use (2) and Example 1 of Section 4.7 to derive the formula
2 |[sinx
J3/o(z) = E{ ~ ~cosx] .

12. Use (2) and Exercise 11 to derive

/21,3 . 3
Js2(x) = p {(? —1)sinz — ;cost .

13. Express Js in terms of Jy and J;.

14. Use the explicit formula for Jy,» given in Example 1 of Section 4.7 to show
that .J, /o has infinitely many positive zeros in the interval 0 < x < co. What are
these zeros?

10 15. (a) Plot the functions Si;x and cos z on the same graph to illustrate the fact
that they intersect at infinitely many points. Conclude that the function J3/2(x)
has infinitely many zeros in (0, co).

(b) Approximate the first three roots of the equation #2Z = cosz.

16. (a) Let 0 < ap1 < apa < -+ < ap; < --- denote the positive zeros of J,.
How many roots does the function J,(%2-z) have in the interval 0 < 2 < a? Justify

your answer.

(b) Tlustrate your answer graphically withp =2, a=1, and j = 5.
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17. Let 0 < c <1, and let

_ 1 if0<x<e,
f(”)“{o ife<x < 1.

(a) Derive the Bessel series of order 0 of f

> 20]1(001]')
T Jo(eyz), O<z<1.
2. oy (e

(b) Discuss the convergence of the series in the interval 0 < x < 1.

L@m (¢) Take ¢ = % Investigate the convergence of the series at + = 0 and z =1

numerically. Does the series seem to converge at one or both points? To what
values? (Note that convergence at these points is not covered by Theorem 2.)

L@ 18. Take a = % in Exercise 17 and write explicitly the first five terms of the series
in this case. Plot several partial sums and describe the behavior at and around
the point z = % . Observe how the partial sums overshoot their limiting values
regardless of the increase in the number of terms in the approximating partial sums.
This illustrates the Gibbs phenomenon at a point of discontinuity for Bessel series
expansions.

19. (a) Obtain the Bessel series expansion

o0
1
4225 —Ji(ax), O0<a <1,
= s Js(ay) (057)

where the «;’s are the positive zeros of Jy.
(b) Plot some partial sums and discuss their behavior on the interval 0 < z < 1.

20. Bessel series of order m. Fix a number m > 0 and let 0 < a1 < ag <
. < a3 < ...denote the sequence of positive zeros of J,,. Obtain the Bessel series
expansion

22 Tmer () J (ojz), O<a<l.
21. Refer to Exermse 20.
(a) Take m = 5, and determine the exact values of the ¢;’s in this case? [Hint:
Example 1 of Section 4.7.]
(b) Compute explicitly the coefficients in the Bessel series expansion of f(x) = /z,
0<z <l
(c) Recall the formula for Jy in terms of sinz and show that the expansion in (b)
is really a sine Fourier series expansion of x.
[ (d) Plot some partial sums of the Bessel series and discuss the convergence on the

interval 0 < z < 1.

22. Study the behavior of the partial sums of the Bessel series in Exercise 20 when

m = % What do they converge to in the interval 0 < x < 17

In FEzercises 23-30, approzimate the given function by a Bessel series of the given

order p. Plot several partial sums of the series and discuss their convergence on
the given interval.
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23. flz)=2z% 0<z<l;p=2. 24. f(z)=2% 0<x<1;p=3.
0 ifo<z<i

J— 27
25. f(-f)—{% if L <o <1 26. fz)=2% 0<z<1, p=0.
p=1.

_f 0 fo<z<i, v J 0 o<z < g,
27 f(r)—{% 1f1<:c<1 28. f(x)k{zl—d if 55 <z <1
p=2. p=3.
29. flz)=10<z<2;p=1. 30. flz)=Jo(z);0<z <ap;p=0.

In Ezercises 31-34, find all A > 0 for which the given parametric form of Bessel’s
equation has a solution that is finite at x = 0 and satisfies the given boundary
condition.

31. 2%y’(x) + 2y (z) + (Ma? — Ly(a) =0, y(1) =0.
32. «%y'(x) + 2y (x) + Na?y(z) =0, (2) = 0.

33. a%y"(2) + 29/ (z) + (V2* ~ Py(x) =0, y(m) =0.
34. 2%y (z) + 2y (2) + (A2? - L)y(z) = 0, y(5)=0.

35. Project Problem: Zeros of J,. We will prove that the positive zeros of
Jn(z) (n=0 %1, £2, ...) form an increasing sequence

O<ap <apa <+ < Quip < -+ — Q.

Parts (a)-(g) deal with the case n = 0.

@ (a) Plot the graph of Jo(z) and note that there are infinitely many positive zeros
that we will denote in ascending order by 0 < a1 < ap < a3 <.
(b) Show that the substitution y(z) = L\/— u(z) transforms Bessel s equation of

order 0 into )
Conclude that u(z) = /zJo(z) is a solution of this differential equation.
(c) Let v(z) =sinz. Check that

—(u" +uv(z) = d (uv —u'v).

(d) Using (b), show that —(u” +u) = % .
(e) Show that [ Lﬁ’}z—) dx = uwv’ — v/v + C and hence

~(2k+1)m .

/ u)sinz dz = —[u(2km) + u(2km + 7)].
2k 42?

(f) Conclude from (e) that u(x) has at least one zero in [2kw, (2k + 1)7]. [Hint:

Assume the contrary, say u{z) > 0 for all z in the interval, and get a contradiction

by studying the signs of the terms on both sides of the last equality in (e).]

(g) Conclude that Jo(z) has infinitely many positive zeros.

(h) Suppose that f and g are differentiable functions such that - f(z) = g(z).

Show that between any two zeros of f there is at least one zero of g.

{i) Use (2) with p = 0 to show that J; has infinitely many zeros that tend to co.
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() Use (2) and induction to show that J, (n > 0) has infinitely many zeros that
tend to co. Prove this result for all integers n.

36. Project Problem: A proofof (12). Let 0 <y < az < - < aqp < -

denote the sequence of zeros of J, in (0,00), and let Ay = <& .
(a) Rewrite (18) as

2
(/) + ¥z = Z)y =0, y(a) = 0.

Multiply both sides of the equation by zy’ and put it in the form
[(zy)?] + (\2? = p*)(y?) = 0.

(b} Take y = Jp(Arx) and A = A, integrate the equation in (a) over 0 < z < q,
and obtain

o @ + (a2 = Pyt -2 [ yfaads 0.
0

[Hint: Use integration by parts on the second term in (a). Justify the equality

py(0) = 0.]
(¢) For y = Jp(Aez) and X = A, justify the equality y(a) = 0, and get

war=2 [

o zly()]* dz.

(d) Fory = Jp(Axx), use (4) to show that y'(a) = —AxJp+1 (k). Derive (12) from
(c).

Spherical Bessel Functions

37. Use (21) to transform (20) into one of the equations of the form (18).

38. Use (23) and explicit formulas for the Bessel functions to show that

. sinx
) =
JO( ) X )
) sinx — xcosx
Ji(z) = S R
, (3 — 2%)sinz — 3z cosx
Ja(z) = 3 :

[Hint: See Exercises 11 and 12.]

In Ezxercises 3942, derive the given recurrence relation for the spherical Bessel
functions. [Hint: Use (23) and the corresponding formulas for the Bessel func-

tions.]
30. Lt @) = (@), 40, e (@)] =~ ()
T odr & =1 dzr ‘

41. / "5, (2) de = 2" %5, () + C.

42. /x_"+1jn(:c) dr =~z ", 1 (z)+C.
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