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4.7 Bessel’s Equation and Bessel Functions

We have shifted the index of
summation by 2 in the third
series so that each series is ex-
pressed in terms of z” ™.

We saw in this chapter that Bessel’s equation of order p > 0,

(1) 22 vy + (22— pPy =0, x>0,

arises when solving partial differential equations involving the Laplacian in
polar and cylindrical coordinates. Note that Bessel’s equation is a whole
family of differential equations, one for each value of p. Note also the un-
fortunate clash of terminology—DBessel’s equation of order p is a differential
equation of order 2.

Bessel’s equation also appears in solving various other classical problems.
Historically, the equation with p = 0 was first encountered and solved by
Daniel Bernoulli in 1732 in his study of the hanging chain problem (Section
6.3). Similar equations appeared later in 1770 in the work of Lagrange on
astronomical problems. In 1824, while investigating the problem of elliptic
planetary motion, the great German astronomer F. W. Bessel encountered
a special form of (1). Influenced by the monumental work of Fourier that
had just appeared in 1822 (see Chapter 2), Bessel conducted a systematic
study of (1).

Solution of Bessel’s Equation

We will apply the method of Frobenius from Appendix A.6. It is easy to
show that z = 0 is a regular singular point of Bessel’s equation. So, as
suggested by the method of Frobenius, we try for a solution

)
(2) y=> apz’ "
m=0

where ag # 0. Substituting this into (1) yields

[ee] o0
Z am(r + m)(r+m — 1)z + Z am(r +m)z"™
m=0

m=0
—i—Zam 21; —pQZamx

Writing the terms corresponding to m = 0 and m = 1 separately gives

aog(r? — p?)z" + ay [(r +1)? — p*] 2"
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Equating coefficients of the series to zero gives

(3) ao(r? —p?) =0 (m=0);
(4) a1 [(r+1)?=p? =0 (m=1)
(5) am [(r+m)? =P + am—2 =0 (m >2).

From (3), since ap # 0, we get the indicial equation
(r+p)(r—p)=0
with indicial roots » = p and r = —p.

First Solution of Bessel’s Equation

Setting r = p in (5) gives the recurrence relation

-1
B e —, S > 2.
am m(m+2p)a’m 25 m -z

This is a two-step recurrence relation, so the even- and odd-indexed terms
are determined separately. We deal with the odd-indexed terms first. With
r = p, (4) becomes a1 [(p + 1)* — p?] = 0 which implies that a; = 0 (recall
that p > 0 in (1)), and so a3 = a5 = --- = 0. To make it easier to find a
pattern for the even-indexed terms we rewrite the recurrence relation with
m = 2k and get

-1

e — k>1.
a2y 22k(k+p)a2(k_1)’ z
This gives
-1
Gy = —5——0ap;
? 22(1 +p) °
-1 1
aq = 5 a2 = o7 G0
222(2 + p) 2421(1+p)(2 +p)
-1 —1
e a = ’
% 233 +p) T W+ )2+ p)B L) "

and so on. Substituting these coefficients into (2) gives one solution to
Bessel’s equation:

& (-1t
) V=l E T e G

7
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where ag # 0 is arbitrary. This solution may be written in a nicer way with
the aid of the gamma function. (If you have not previously encountered this
function, it is described at the end of this section.) We choose

1

O @+ 1)

and simplify the terms in the series using the basic property of the gamma
function, I'(x + 1) = «T'(x), as follows:

Fl+p)[(1+p)2+p)---(k+p)] = TR+p)[(2+p) - (k+Dp)
= T@+p)[(k+p)
= .. =T(k+p+1).

After this simplification, (6) yields the first solution, denoted by J, and
called the Bessel function of order p,

0 (_1)k N 2k+p
@ ) =X iy 1 (5)

When p = n, we have T'(k+p+ 1) = (k + n)! (see (14) below), and so the
Bessel function of order n is

To get an idea of the behavior of the Bessel functions, we sketch the graphs
of Jy, Jl/g, Ji, Jo and J7 in Figure 1.
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Jo(0) = 1
Jp(0) =0

if p>0.

Jo(x)

J12(%)
Jy(x)

x -

0 1 2 3 \\\\\’
_4 !

Figure 1 Graphs of Jy(z) forp=10,1,1,2,7.

Note that J, is bounded at 0. As we will see shortly, this property is not
shared by the second linearly independent solution.

Second Solution of Bessel’s Equation

If in (2) we replace r by the second indicial root —p, we arrive as before at
the solution

s (EDE myew
(8) J_p(r)—kzzom(§> |

It turns out that if p is not an integer, then (8) is linearly independent of J,.
Thus when p is not an integer, (7) and (8) determine a fundamental set of
solutions of Bessel’s equation of order p. Before turning to the case when
p is an integer, we compute the Bessel functions J, and J_, for the value

p=73

EXAMPLE 1 Bessel functions of order p = +3

SIIOW that
J (1)—\}—8! 1 a]l(l J (]:)— H‘_‘(()S r
1/2 ., - 1/2 . .

Solution Substituting p = % in (7), we get

> (—1)* (m>2k+%
> :

Jiplr) =Y —
kzzo kID(k+ 4 +1)

To simplify this expression, we use the result of Exercise 44(b), which implies that

1 (2k +1)!



Figure 2 Graphs of Jy,o,
J_l/z, and their envelopes y
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Figure 4 Yo, Yl, YQ.
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Thus
oo
22k+lk| 2k+ %
ot )
1/2(2) Z 21<; Tl \2
= /2
— Z 2 = [ Zgina.
2k + 1)! T
The other part is proved similarly by substituting p = —= into (8) and simplifying

with the help Exercise 44(a) (see Exercise 21). In Figure 2 we plotted Jy and J_;.
Clearly these two functions are linearly independent, since the first one is bounded
while the second one is not. |

It is important to keep in mind that J, and J_, are linearly independent
only when p is not an integer. In fact, when p is a positive integer, we
observe that k —p+1<0for k=0,1,..., p—1, and so the coefficients in
(8) are not even defined for k=0, 1, ..., p—1, because the gamma function
is not defined at 0 and negative integers. It is useful, however, to have a
definition for J_, forn =1, 2, .... A simple construction of this function
is presented in Exercise 16. It yields a second linearly dependent solution
that satisfies

(9) J_pn(z)=(=1)"J,(z) (ninteger > 0).

We could use the Frobenius method to derive a second linearly independent
solution. However, we will describe an alternative method that is commonly
used in applied mathematics. We start again with the case when p is not
an integer and define

Jp(x) cospr — J_p(x)
sin pw

(10) Yy(z) = (p not an integer).
Since J, and J_, are in this case linearly independent solutions of Bessel’s
equation, it follows from (10) that ¥}, is also a solution of Bessel’s equation
that is linearly independent of J,. The function Y, is called a Bessel
function of the second kind of order p. For integer p, this function is
constructed by a limiting process from the noninteger values as follows:
(11) Y,=1lmY,.

V—p
It can be shown that this limit exists (see Figure 3 for an illustration) and

defines a solution of Bessel’s equation of order p which is also linearly inde-
pendent of J,. As illustrated in Figure 4, we have

(12) lim Y,(z) = —co.

z—0t
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In particular, the Bessel functions of the second kind are not bounded near
0. We summarize our analysis of (1) as follows.

GENERAL : Ty e -
SOLUTION OF |The general solution of Bessel’s equation (1) of order p is

BESSEL’S EQUATION
OF ORDER . p

y(x) = erdp(z) + c2¥p(),

where J), is given by (7) and Y}, is given by (10) or (11). When p is not an
integer, a general solution is also given by

y(x) = e1dp(@) + e J_p(z),

where .J, is given by (7) and .J_, is given by (8).

Explicit formulas and computations of the Bessel functions are presented
in the exercises. We next investigate the gamma function.

The Gamma Function

The gamma function is defined for z > 0 by

(13) T'(z) = /:O t* e tdt.

This integral is improper and converges for all 2 > 0. The basic property
of the gamma function is

[z +1) =2l(z).

To prove this we use integration by parts as follows:

00 oo
MNx+1)= / tYetdt = —t”:e*t‘go +2 / t*le7tdt = zT'(x),
0 Jo

where in the first integral we let u(t) = t*, dv = et dt, du = xt* "1 dt, v(t) =
~t
—e
We can easily find the values of the gamma function at the positive
integers. For example,

[e.e]
I'(1) z/ etdt=1.
0
The basic property now gives

I2)=1T(1) =1, I(3)=2[(2)=2, T(4)=3T3)=3!....
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Continuing in this manner, we see that

(14) I'(n+1) =n!

forall n = 0,1, 2, 3,..., where we have set 0! = 1. For this reason the
gamma function is sometimes called the generalized factorial function.
Other values of the gamma function can be found with various degrees of
difficulty. From the value

(15) I(

R

DO —

(Exercise 34) and the basic property we find

Although we have defined the gamma function for x > 0, it is possible
to extend its definition to all real numbers other than 0,—1,—2,—3,... in
such a way that the basic property continues to hold. To do so, we write
the basic property as

I(z) = %r(x +1)

and then define the value of the gamma function at z from its value at = + 1.
For example, we have

D(~7)=-2T(3) = ~27 and D(2) = —2I(~3) = tV.

1

2 2
This clearly extends the definition of the gamma function to negative num-
bers other than —1, —2, —3,.... The graph of the gamma function is
sketched in Figure 5. Notice the vertical asymptotes at x = 0, —1,—2,

. Also notice the alternating sign of the gamma function over negative
intervals.
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Forn=0,1,2,..,
Min+1)=mn!
rm=o0=1

I'(—n) is not defined
I'(z)>0forxz >0

I'(z) alternates signs on the
negative axis.

Y

Figure 5 I'(z), the generalized factorial function.

Exercises 4.7

In Ezercises 1-4, determine the order p of the given Bessel equation. Use (7) to
write down three terms of the first series solution.

Loy +ay +(x2 -9y =0. 2. 2%y +ay +ay=0.
3. 2%y +ay + (22— Dy =0. 4. 2y +xy + (a2 - Py =0.

In Ezercises 5-8, find the gemeral solution of the given differential equation on

(0,00). Write down two terms of the series expansions of each part of the solution.
[Hint: Use (8).]

5. ny”Jra:y’—}—(xz—%)y:O. 6. xzy”+zy’+(x2—%l—5)y=0.
7. ny”+$y’—|—(1'2——1%)y:0, 8. .szy”+xy'+(x2——2%) =0.

9. Find at least three terms of a second linearly independent solution of the
equation of Exercise 1 using the Frobenius method. (A first solution is given by

(7))
10. Verify that y; = 2PJp(x) and yo = 2PY,(x) are linearly independent solutions
of
'+ (1 -2p)y +2y=0, z>0.
In Ezercises 11-14, use the result of Fxercise 10 to solve the given equation for
x> 0.
11. 2y’ —y' +2y=0. 12. " +y=0.
13. 2y’ — 2y +z2y=0. 14. zy" = 3y +zy =0.

15. Establish the following properties:

(8) Jo(0) = 1, J,(0) =0 if p > 05

(b) Jn(z) is an even function if n is even, and odd if n is odd;
( Jp(x) _ 1

¢) limg_o+ 5 = gorgr) -



[
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16. Suppose in (7) we replace p by a negative integer —n.

(a) Based on the properties of the gamma function, explain why in (7) it makes
sense to set 1/T'(k—p+1)=0fork=0,1,2,..., p—1. [Hint: Exercise 32 below.]
(b) By reindexing the series that you obtain, show that J_,(z) = (—1)"J,(z).

In Ezxercises 17-20, solve the given equation by reducing it first to a Bessel’s equation.
Use the suggested change of variables and take x > 0.

17. a2y’ +(1+2p)y +2y =0, y=2"Pu. 18. 2y’ +y + 1y =0, 2= /=
19. ¢/ +e*y=0, 2=2¢ 3. 20. %y +xy +(42* - 1)y =0, z =27

21. Show that J_/s(z) = 1/7% COS T.
22. Establish the identities

(8) Japa(®) = \/ 2 [E02 —cosz] . (b) Jogpa(x) = 2 [-% —sina] .

23. General solution of Bessel’s equation of order 0.

(a) Use (7) to derive the first six terms of the series solution Jy of the Bessel’s
equation z%y” + zy + x%y = 0.

(b) Use (a) and the reduction of order formula to find six terms of yo, the second
series solution. [Hint: See Example 5, Appendix A.6.]

(b) Plot your answers and compare their graphs to those of Jo and Yj for z near
zero, say 0 < x < 4. Describe what you find.

(¢) Explain why we must have Yy = aJo + byz, where a and b are some constants.
Evaluate the functions at two points in the interval 0 < z < 4, say at z = .2 and
x = .3, and obtain two equations in the unknown coefficients a and b. Solve the
equations to determine a and b, and then plot and compare the graphs of Yy and
aJo+biys.

24. Repeat Exercise 23 with Bessel’s equation of order 1.
25. Project Problem: The aging spring problem. The equation
Y (t)+ e Thy(t) =0 (a>0), t>0,

models the vibrations of a spring whose spring constant is tending to zero with
time.

{a) Show that the change of variables u = %e_%(“‘t_b) transforms the differential

equation into Bessel’s equation of order zero (with the new variable w). [Hint: Let
_ 2 d d2 2 2

V) = yt) e = ot = —gudts Tf — o [2 udX]

(b) Obtain the general solution of the differential equation in the form
2 2
y(t) = 01J0(~e‘5<“t_b)) + e Yo(Zemz(et=0)y,
a a

where ¢ and ¢y are arbitrary constants, .Jy is the Bessel function of order 0, and
Yy is the Bessel function of order 0 of the second kind.

(c¢) Discuss the behavior of the solution as t — oo in the following three cases:
1 =0, #0,¢1 #0,c0=0; ¢1 #0, co # 0. Does it make sense to have
unbounded solutions of the differential equation? [Hint: What happens to the
differential equation as ¢ — 0o?)
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In Exercises 26-27, solve the given aging spring problem. In each case determine
whether the solution is bounded or unbounded as t — oo.

26. v’ (1) + e *y(t) =0, y(0) = Jo(1) ~ .765, ¢/ (0) = —J§(1) ~ .440 .
27, y'(t) + e_%y(t) =0, y(0)=.1, ¥ (0) =0. [Use Jo(1) ~ .765; Ji(1) =~ —.440;
Yo(1) = .088; Yy (1) ~ .781.]

Qg 28. Bessel’s function of the second kind of order zero. The Bessel function
of the second kind of order 0 is given explicitly by the formula

Yo(z) = % [Jo(x)(lnx +7> + i wxzm ,
m=1

22 (m1)2

where h,, =14+ 3+ 2+ ...+ L and v is Euler’s constant:

v = lim (hy —Inm) = 0.577216.
m—00

(a) Approximate the numerical value of Euler’s constant.
(b) Justify the property lim,_ o+ Yp(z) = —c0.

29. DModified Bessel function. In some applications the Bessel function J,
appears as a function of the pure imaginary number iz.

(a) Show that J,(iz) = & > =, % Thus except for the factor i the
function that we get is real-valued. This function defines the so-called modified

Bessel function of order p,

B st (x/2)2k+p
O LT

(b) Verify that the modified Bessel function of order p satisfies the modified
Bessel’s differential equation

22y +ay — (2® +pPy =0.

(¢) Plot the modified Bessel function of order 0 and note that it is positive and
increasing for z > 0.

30. Modified Bessel functions of the second kind.

(a) Show that Kp(z) = 5557 -p(x) — ()] is also a solution of the modified
Bessel’s equation of Exercise 29. This function is called the modified Bessel
function of the second kind (sometimes called of the third kind).

(b) Show that when p is not an integer I(x) and K,(x) are linearly independent.
(c) How would you construct K,(x) when p is an integer?

The Gamma Function
31. (a) Compute the numerical values of T'(1) and I'(2) starting from (13).
(b) Use (15) and the basic property of the gamma function to compute the values
of T(5) and T'(—2).
32. The reciprocal of the gamma function.
(a) Show that 1/T'(z) — 0 as x approaches a negative integer or 0. For this
reason, we define 1/I'(z) =0 for z =0,—-1, -2, ....
(b) Plot the graph of 1/T'(z) and show that it is continuous for all x.
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33. For z,y >0,

I‘($)F(Z/) =9 /.ﬂ’/2 COSQI—I HSiHQy—l 0do
Mz +y) 0 -

Derive this useful formula as follows.
(a) Make the change of variables u? =t in (13) and obtain

e 2
[(z) = 2/ e u?*ldu, =>0.
Jo
(b) Use (a) to show that for z, y > 0,
oo oo S22\
L(z)T(y) = 4/ / e~ (WY 2e 1251 oy dy |
o Jo

(¢) Change to polar coordinates in (b) (u = rcosf, v = rsin8, dudv = rdrdb)
and obtain that for z,y > 0,

/2
I'(z)(y) = 2T(z + v) / cos?® 1 fsin?¥ ! §dg.
0
[Hint: After you change coordinates, keep in mind (a) as you compute the integral

inr.]
34. Use the result of Exercise 33 to obtain (15).

35. Derive the formula . -
2
— e “ du=1.
o

[Hint: Use (15) and Exercise 33(a).]
In Ezercises 36-39, use the result of Fxercise 33 to compute the given integral.

/2 /2 ; .
36. / cosOsinb do . 37. / cos? fsin® 0d9 .
0 0

/2 /2 .
38. / cos® 0sin® 6 do . 39. / cos® 9do.
0 0

Use the result of Ezercise 33 to establish the following Wallis’s formulas.

7r/2 1
40./ T P L N TP A
0

2 22k(1)2’
/2 92k (L1)2
a1. / sin?* 1 odp = 2 gy g,
0 (2k +1)!
42. (a) Explain with the help of a graph why
/2 /2
/ cos?* 0.dg = / sin®* 9 do
0 0

and
w/2 v /2
/ cos? ¥ 1 g dp = / sin**1 9 do.
0 0
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(b) Use (a) and Exercises 40, and 41 to show that for k=0,1,2, ...,

/2 (2k)! /2 92k (k1)
2kgap = & i / 2k+1 — )
/o cos 3 2R (RIV2 and ; cos 0 do 2k + 11

43. Derive the following formulas using Exercise 42: for k=0, 1, 2, ...

g 2k T
1 / cos*F 9 do = (—)) and / cos®*t10dh =0
0 0

. 22R ()2
1 2n 1 2n+1)!
44. Show that (a) T'(n+ 2) 2(2n) vr.o (b)) T(n+ 5T 1) = (22n+1 n)! V.

45, (a.) Use the result of Exercise 33 to obtain that the arc length of the lemnis-
cate 72 = 2.cos 20 is 2\/27TF( )/F( ) [Hint: Arc length in polar coordinates is

b
L=y +(d9) do)
(b) Approximate the arc length in (a).

46. The beta function is defined for r, s > 0 by
1
Blr,s) = / "1 —t) e,
Jo
(a) Use the change of variables ¢ = sin?# to obtain
/2
B(r,s) =2 / cos?* 71 sin? " H dh .
Jo

(b) From Exercise 33 conclude that

4.8 Bessel Series Expansions

In this section we explore some recurrence relations, orthogonality properties
of Bessel functions, and expansions of functions in Bessel series. Many of
these properties are used in solving the boundary value problems occurring
in this chapter and throughout this book.

Identities Involving Bessel Functions

We start with two basic identities. For any p > 0,

(1) % (2P Jp(z)] = 2 Jp-1(z),

(2) & [27PJp(2)] = —27P Jps1(2).
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