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° 10. Solve (1) for the boundary conditions
8 21t

u(p, 0) =100, O0<p<1,
4 ft u(l, 2) =10z, 0<z<2

56°
- u(p,2) =100, 0<p<1.

Figure 5 for Exercise 11. [Hint: Combine the solutions of Exercises 6 and 9.

11. Find the steady-state temperature in a cylindrical barrel floating in water as
shown in Figure 5.

4.6 The Helmholtz and Poisson Equations

We know from Section 3.9 that several important boundary value problems
can be solved by applying the method of eigenfunction expansions. In this
section, we will present some applications of this method on the disk. For
this purpose, we start by solving the eigenvalue problem consisting of the
Helmholtz equation on a disk of radius a,

(1) V2p(r,0) = —kd(r,0), 0 <r<a, 0<8<2m,

with the boundary condition
(2) #(a,0) =0, 0 <8 <2r.

To solve this problem means to determine the values of k (or eigenvalues)
for which we have nontrivial solutions and find these nontrivial solutions (or
eigenfunctions).

Substituting ¢(r, 8) = R(r)©(6) into (1), separating variables, and using
the fact that © is 2m-periodic, we arrive at the equations

(3) 0" +m?0=0, m=0,1,2,...,
(4) r?R" +rR + (kr? —=m?)R=0, R(a)=0.

The solutions of (3) are
cosmf, and sinmf, m=20,1,2,....

If k < 0, equation (4) becomes the modified Bessel equation of order m, and
it can be shown that in this case the only bounded solution with R(a) =0
is the zero solution. So we take k > 0 and (4) becomes the parametric form
of Bessel’s equation of order m. We know from Theorem 3, Section 4.8, that
the nontrivial solutions of (4) are constant multiples of J,, (A7), which is
the solution corresponding to the eigenvalue k = A2 . Piecing together the
product solutions, we obtain the following important result.
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THEOREM 1

THE HELMHOLTZ
EQUATION IN A
DISK

THEOREM 2
EXPANSIONS IN
TERMS OF THE

EIGENFUNCTIONS

OF THE
HELMHOLTZ
EQUATION

The eigenvalues of the problem (1)-(2) are
(5) Bt | (nam,,L/a.)2, m=0,1.2 ... ;=D

where q,, is the nth positive zero of the Bessel function J,,. To each

eigenvalue A2, correspond the eigenfunctions
(6) co8 b Jy (M) and sin m@.J,, (Apnr) -
(Note that for m = 1,2, ... we have two distinct eigenfunctions for a given

eigenvalue.)

In other words, if ¢y (7, 0) = cos MO, (Apun) OF G (1, 0) = sin MmOJ,, (Amn),
then V2@ = =2, by and ¢(a, 8) = 0.

As you will discover, the eigenfunctions satisfy orthogonality relations
that can be used to expand functions on the disk, much as we used cosnz
and sinnx to expand functions in terms of Fourier series. The orthogonality
here follows as a consequence of the orthogonality of the Bessel functions and
the trigonometric system. Because the orthogonality relations for the Bessel
functions are expressed with respect to the weight function r (Theorem 1,
Section 4.8), the orthogonality of the eigenfunctions in (6) will be expressed
by integrals over the disk with respect to rdrdf. For example, we have

2T ra
(7) / / sin mOJp, (Amnr) cos mO Iy (Amnr)rdrdf = 0.
o Jo

Putting these facts together, we obtain the following expansion theorem,
which was already used in (8), Section 4.3.

Supp-ose- that .f (7".., f) is defined for all 0 < r < a and 0 < 8 < 2. Then

(®.¢] o

(8) Tt == Z Z I (M) (@mn cos MmO + by, sin mh),

m=(0 n=1

where (the generalized Fourier coefficients) a,,, and b,,, are given by (12)-
(14), Section 4.3.

In Section 4.3, we established (8) as a consequence of Fourier series and
Bessel-Fourier series. A simpler and more direct derivation can be obtained
using the orthogonality of the eigenfunctions (6) (see Exercise 4).

EXAMPLE 1 The method of eigenfunction expansions
Solve V2u(r,0) = u(r,) + 3r2cos 26 in the unit disk, given that w = 0 on the
boundary.
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Solution We look for a solution in the form of an eigenfunction expansion
>0
u(r,0) = Z Z {@mnT)(Amn cosmb + By, sinmb) .

Since each eigenfunction satisfies the boundary condition, our candidate for a so-
lution, u(r, ), also satisfies the boundary condition. Plugging u into the equation
and using the fact that, for an eigenfunction ¢mn, VZi¢mn = —2,, Gmn, we get

>

m=0n

M8

—a2, T (CmnT) (A cos M + By, sinmé)
1

Z Z T (Qmn ) (Amn cos MmO + By sinmb) + 3r? cos 26;
m=0n=1

hence

Z Z(—l — a2 VI (Cmn)(Amn cosmé + By, sinmf) = 372 cos 24.

m=0n=1

Thus (—1~a2,,,)Amn and (=1 —a2,,,) By, are the generalized Fourier coefficients of
the function f(r,6) = 3r2cos20. Note that the orthogonality of the trigonometric
system will imply that only As, is nonzero. All other coefficients will be zero.
Appealing to (13), Section 4.3, with m = 2, we find

9 1 27
(_1 — a%n)AQn = T2/ N / / 3 C052 20 d9r2J2 (aQnr) rdr

7TJ§ (OlQn)

1 2m
= L) / 3 Ja(ougnr) dr (/ cos® 20 df = =)
0 0

Ja?(a?n

6 Jg(QQn) -
N by (11), Section 4.2
J§(042n) Qo (by ( )» Section )

6
Qon JB (a2n) .

Solving for As, and plugging into the eigenfunction expansion of u, we find

= 2 .
(r,0) = cos26 Z (T2 aszg( ) Ja(aonr)

Qon

The collapsing of the double sum in {8) to a single sum is due to the fact that only
the terms in cos 26 are needed here. In general, you may need the entire double
sum, |

Poisson’s Equation in a Disk
Consider the Poisson problem

(9) Viu=f(r,0), 0<r<a, 0<8€<2m,
(10) u(a,0)=g(0), 0<6<2m.



234  Chapter 4 Partial Differential Equations in Polar and Cylindrical Coordinates

Figure 1 Decomposition of a
Poisson problem.

Our first step is to decompose the problem into the two simpler subproblems
in Figure 1.

u(a, 6) = g(8)

(a) Poisson problem with zero (b) Dirichlet problem
boundary data

The Dirichlet problem in Figure 1(b) can be solved by the methods of Sec-
tion 4.4. Thus, to complete the solution, we need only solve Poisson’s
equation with zero boundary data (Figure 1(a)). We will use the method of
eigenfunction expansions. This method tells us to look for a solution of (9)
(with zero boundary data) in the form

(11) u(r,0) = Z Z T Amn?) (Amn cosmb + Bp,, sinm#) .

m=0n=1

Plugging into (9) and using the fact that each eigenfunction satisfies (1), we
obtain

oo 0o
Z Z _)‘zrm‘]m(/\mnr)(Amn cosmb + By, sinmb) = f(r,6) .
m=0n=1

This being the eigenfunction expansion of f(r, 8), we apply Theorem 2, solve
for A, and By, and obtain, for m,n=1,2, ...,

21
(12) Aon = a2 J aOn)/ f(r,8)Jo(Aonr)T dO dr,

27r
(13)  Apn = m/ f(r, 0) cosmOJy, (Ampr)r do dr,

27r
(14)  Bmn = Z—h—/ f(r, 0) sin mbJp (Appnr)7 d6 dr.
7rozmn]m_H Cmn)
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This completely determines the solutions of the problem in Figure 1(a). We
summarize our findings as follows.

The solution of the Poisson problem (9)—(10) is given by
(15) w(r, 0) = uy(r, 0) + ua(r, 6),

where 1, is the solution of the Poisson problem with zero boundary data in
Figure 1(a), and us is the solution of the Dirichlet problem in Figure 1(b).
The function w; is given by (11)-(14), and the function us is given by (4)-(5),
Section 4.4.

EXAMPLE 2 A Poisson problem with zero boundary data
Solve V2u = 1 in the unit disk, given that u = 0 on the boundary.

Solution Note that in this case up = 0 in (15). The function u; is given by
(11). Since the whole problem is independent of 6, we expect the solution to be
independent of #. Indeed, plugging f(r,8) = 1 into (13) and (14), we get 0 because
of the integral in 8. Now (12) yields

-9 /1
Agyp = ———— Jo(aonr)rdr.
= G2 aon) Jo L)

Using (11), Section 4.2, to evaluate the integral and simplifying, we get Ag, =
g
—2 Substituting into (11), we obtain

a3, Ji(aon)
(OCOT,,T) . ]

Interesting applications of the eigenfunction expansions method are pre-
sented in the exercises.

Exercises 4.6
1. Derive (3) and (4) from (1) and (2).

2. State and prove all the orthogonality relations for the eigenfunctions of the
Helmbholtz problem (1) and (2) ((7) is one of them).

3. Let ¢mnlr, 0) denote either one of the eigenfunctions in (6). Evaluate

27
/ / gb {r,0)rdrdf.

Treat the case m = 0 separately. [Hint: Use (12), Section 4.8.]

4. Derive the coefficients in Theorem 2 by using the orthogonality of the eigen-
functions (6). [Hint: Multiply both sides of (8) by an eigenfunction, interchange
integrals and summation signs, then integrate over the disk with respect to r df dr.)
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In Ezercises 5-12, use the method of eigenfunction expansions to solve the given
problem in the unit disk.

5. Viu=—u+1, u(1,8) =0. 6. V2u=3u+rsind, u(l,0) =0.

7. V2u =2+ r3cos 36, u(1,8) = 0. 8. Viu=r2 u(1,0) = 0.

9. 10. V2u = r™sinmf, u(1,6) = 0.
11. V2 =1, u(1,6) = sin26.

T2y — rsinf f0<r<3i,
=90 if%<r<1, 12. V2u =1+ rcosé, u(l,6) =1
u(1,0) =

13. A heat problem. Do Exercise 11, Section 4.3, using the method of eigen-
function expansions.

14. Project Problem: A nonhomogeneous heat problem. For this project,
you are asked to use the eigenfunction expansions method to solve the nonhomoge-
neous heat boundary value problem, with time-dependent heat source,

gy — (2 <Q—¥+ig’:+—7w)+q(r9t)
u(a,0,t) =0,
w(r,0,0) = f(r,0),

where 0 < 7 < a, 0 <8 <27, and £t > 0. Justify the following steps.
(a) Let

w(r,0,t) = 30 50 T (Amn ) (A (£) cos mb + By, (£) sinmb),
flr,0) =%, Z;’O 1 m( mn " N (@mn €OSMO + by SInMA),
qg(r,0,t) = > 0 5% T (Amnt) (Conn () cOS MO + dpr (t) sin mb) .

(Why should this be your starting point?) What are aymn, bmn, Cma(t), and dp,n(t),
in terms of f and ¢7
(b) Show that A,,, and B,,, are solutions of the following initial value problems:

Almn (t) + )‘?nnAmn (t) * Crnn (t)v Amn (0) = Gmn,;
B;nn (t) + A?nan'n(t) = dmn(t)> B‘m.rl, (O) = b'm,n -

(¢) Complete the solution by showing that

ot
2
Apn(t) = e—*?‘lmt(amn + / N (s )ds)

0

and
t

Brn(t) :e_’\imt<bmn +/ e’\?"msdmn(s)ds) .
0

15. (a) Work out the details in Exercise 14 when ¢ = 1, f =1, and q(r,0.t) = e~ "
(b) Plot the temperature of the center and describe what happens as t — oo.

16. (a) Work out the details in Exercise 14 when ¢ =1, f =1rsind, and ¢ = 1.
ng (b) Plot the temperature of the center and describe what happens as t — co.
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