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Thus this formula is an alternative way of writing the series solution (4).
(a) Substitute the coefficients (5) in the series solution (4) and obtain

wr0) = — [ F@{ 1423 coslnlf -~ 6)) (5)" } do.
n=1

[Hint: Before you do the substitution, replace the dummy variable @ in (5) by ¢.]
(b) Derive the Poisson formula using (a) and Exercise 28.
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In this section we treat certain radially symmetric Dirichlet problems in
cylindrical regions. In cylindrical coordinates, Laplace’s equation, with no
¢ dependence, is
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(See (4), Section 4.1.) The first problem that we will consider models the
steady-state temperature distribution inside a cylinder with lateral surface
and bottom kept at zero temperature and with radially symmetric temper-
ature distribution at the top, as shown in Figure 1.

The solution of Laplace’s equation (1) with boundary conditions ]

ulp =0, 0<p<a,
i e =07 Oz A,
Ulnh)Y=Flpl D€ p<= g,

is

o
(2) u(p, z) = ZAHJO()\np) sinh A, z,

ek

Qnp
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o sinh(Aph)a®J2(0n,) /O f(p)Jo(Aup)p dp -

and «,, is the nth positive zero of Jy, the Bessel function of order 0.

Proof Using the method of separation of variables and setting u(p, z) = R(p)Z(z),
we get the equations p?R" 4 pR' — kp’R = 0, R(a) = 0, and Z" + kZ = 0,
Z(0) = 0, where k is the separation constant. We also require that R be bounded
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at p = 0, since we are solving for the temperature inside the cylinder. If £ =0, it is
straightforward to check that we only get the solution R = 0. If k > 0, say k = A2,
then we get the parametric form of the modified Bessel equation of order
0 defined in Exercise 7 (see also Exercises 29 and 30, Section 4.7). The general
solution in this case is a linear combination of the modified Bessel functions of
the first and second kind, Iy and Ky, shown in Figure 2 (see Exercise 7). Since
the first one is positive and strictly increasing for p > 0, and the second one is
unbounded near zero, we conclude that no nontrivial bounded linear combination
of these functions can satisfy the boundary conditions on R. So this leaves the
only possibility k = —A? < 0. In this case we have

P*R" + pR' + Np*R =0, R(a)=0,
2 - \2Z =0, Z(0)=0.

Applying Theorem 3, Section 4.8, we find that R = R,(p) = Jo(\np), where A, =
anfa,n=1,2, ... . Solving the equation for Z with A = \,,, we find

Zn(z) =sinh A,z n=1,2,....

Superposing the product solutions we get (2) as a solution. To determine the
unknown coefficients A,,, we set z = h and get the Bessel series expansion

flp) = Z ApnJo(App)sinh A\ b

n=1

Thus A,, sinh A\,h must be the nth Bessel coefficient of f(p), and so (3) follows from
Theorem 2, Section 4.8. |

As a second illustration, we consider a boundary value problem with a
nonzero boundary condition on the lateral surface of the cylinder (see Figure
3).

The solution of Laplace’s equation (1) with boundary conditions
wim O =aipy =1, 10 < pi-a;
aigse) = HaEs Do <Ny
is
= nmw nm
(4) u(p.z) =) Bnlo(5-p)sin—z,

n=1
where [j is the modified Bessel function of the first kind of order 0, and

2 i . nT
(5) B,,, == m/{) f(z)SlIlT&,da.
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Figure 4 for Exercise 5.

The derivation of the solution is very much like the one we did previously,
except that now the interesting case of the separation constant is k = v? > 0.
The details are left to Exercise 8.

Exercises 4.5

In Exercises 1-4, find the steady-state temperature in the cylinder of Figure 1 for
the given temperature distribution of its top. Take a =1, and h = 2.

1. f(p) = 100. 2. f(p) =100 — p?.
i 1
550 ={ o §1205Y 4. f(p) = 70 Jo(p).

5. (a) Find the steady-state temperature in the cylinder with boundary values as
shown in Figure 4.
(b) Solve (1) for the boundary conditions

u(p, 0) = fi(p), 0<p<a,
ula, 2) =0, 0<z<h,

’LL(,O, h):fZ(p)v 0<p<a.

[Hint: Combine (a) with the solution in this section.]

6. Solve (1) for the boundary conditions

u(p, 0) =100, O0<p<1,
u(l,z) =0, 0<z<2,
ulp, 2) =100, O0<p<l.
7. Make the substitution z = Ap (A > 0) in the parametric form of the modified
Bessel equation p?R" + pR' — A2p?R = 0 and obtain that its general solution is

y = c1 lo(Ap) + c2 Ko(Ap), where Iy and Ky are the modified Bessel functions of the
first and second kind. [Hint: Use Exercises 29 and 30, Section 4.7.]

Project Problem: Lateral surface with nonzero temperature. Do Exercises
8 and 9.
8. In this exercise we derive (4) and (5).

(a) Refer to the Dirichlet problem in the cylinder with boundary conditions as
given just before (4). Use the separation of variables method and obtain

Z"+v2Z =0, Z(0)=0and Z(h) =0,
p?R" + pR — v2p’R=0.

(b) Show that the only possible solutions of the first equation correspond to v, = 5+

and hence are

Z,(z) = sin n%z, n=12....

(c) Derive (4) and (5). [Hint: Use Exercise 7.]
9. Solve (1) for the boundary conditions
u(p, 0) =ulp, 2) =0, 0<p<l,
u(l, z) =10z, 0<z2<2.
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