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4. a=1,¢c=1, f(r) =0, g(r) = Jo(asr).
[Hint: Orthogonality relations in Section 4.8.]

5. a=1, c=1, fr)=Jo(aar), g(r) =0.
[Hint: Orthogonality relations in Section 4.8.]
6. a=2,¢c=1, f(r)=1-r, g(r) =0.

7. a=1, c=1, f(r) = Jo(agr), g(r) =1—r2

8. a=1,c¢c=1, flr)=15B—-4r"+r%), g(r) =0.

[Hint: Integration by parts, Example 2.|

9. (a) Find the solution in Exercise 3 for an arbitrary value of ¢ > 0.
(b) Describe what happens to the solution as ¢ increases.

10. Project Problem: Radially symmetric heat equation on a disk.
Use the methods of this section to show that the solution of the heat boundary
value problem

)
w(r,0) = f(r), 0<r<a,

is

with 5 “
A, = aQ_J%(a_n)/o F)Jo () dr,
where A, = 22, and a, = nth positive zero of Jy.

11. (a) Solve the heat problem of Exercise 10 when f(r) = 100, 0 < r < a. What
does your solution represent?

(b) Approximate the temperature of the hottest point on the plate at time t = 3,

given that a =1 and ¢ = 1. Where is this point on the plate? Justify your answer
intuitively.

12. Project Problem: Integral identities with Bessel functions.
(a) Use (7) and (8), Section 4.8, to establish the identities

/Jl(:t) dz = —Jo(z)+ C and /xJo(x) der =xJi(z)+C.

In the rest of this problem we generalize these identities.
(b) By integrating (5), Section 4.8, show that

/ Jpt1(zx) de = / Jp—1(z)dr —2J,(x).

(¢) Use the first integral in (a), (b), and induction to establish that

/Jzn+1(.1') dx = -.]0(1') - QZJQIC(Z') +C, n=201,2,....

k=1
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As an illustration, derive the following identities:
/Jg(x)d:(: = —Jo(z) — 2J2(z) + C,
/Jg,(x) dz — —Jo(z) — 2Ja(x) — 2J4(x) + C.

(d) By integrating (3), Section 4.8, show that

xJpi1(x) +p/Jp+1(x) dx = /:va(x)d:L-.

[Hint: Evaluate the integral of z.J;(2) by parts.]
(e) Take p = 2n in (d) and use (c) to prove that forn =0, 1, 2, ..

. n
/ 2Jon(x) dz = zJonyy(z) — 2ndo(x) — 4n Z Jog(x)y + C.
k=1
Derive the following identities:

/ xJo(z)dx = xJ3(x) — 2Jo(x) — 4J2(x) + C,

/xJ4(.r) dz = 2J5(z) ~ 4Jo(x) — 8Ja(z) - 8J4(x) + C.

4.3 Vibrations of a Circular Membrane: General Case
We continue our study of the vibrating circular membrane, now without
any symmetry assumptions. We will solve the two dimensional wave
equation in polar coordinates:

d%u d*u  10u 1 0%
(1) = o ),

oz 2t i T e

where 0 < r < a, 0 <8 < 2w, t > 0. Here u = u(r,0,t) denotes the deflec-
tion of the membrane at the point (7, §) at time t. The initial conditions
(displacement and velocity) are

) u(r6,0)= F(r0),  o(r,6,0)= g(r,0),

0 <r<a, 0<8 < 27. The requirement that the edges of the membrane
be held fixed translates into the boundary condition

(3) w(a,0,t) =0, 0<60<2m,t>0.
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Since 6 is a polar angle, (r,0) and (7,8 + 27) represent the same point,
and hence u(r,0,t) = u(r,0 + 2x,t). In other words, u is 2w-periodic in 6.
Consequently,

du

ou
90 (T7 07 t) - _<Ta 2777 t)

(4) u(r,0,t) = u(r,2m,t) and 50

Separation of Variables

We start by deriving the general solution of (1) subject to the bound-
ary condition (3). We use the method of separation of variables and set
u(r,0,t) = R(r)©(0)T'(t). Differentiating u, substituting into (1), and sepa-
rating variables gives

TI/ R// R/ (_)ll
2T~ R TR e

The left side depends only on t and the right side only on r and 8. Therefore,
each side must equal a constant k. Expecting periodic solutions in T, we
take k = —A2. Thus

TII 9 RII R/ @II 5
c2—T————/\, and f'{"@—f—ﬁé——)\.

Separating variables in the second equation we get

2 pi ! "
r*R rR S]
2 and - % = u?.

R o

A2 4

We have chosen a nonnegative sign for the separating constant p? because
the solutions of the equation in © have to be 2m-periodic. The boundary
condition (3) becomes R(a)O(8)T(t) = 0for 0 < 0§ < 2w and t > 0. To
avoid the trivial solution, we impose the condition R(a) = 0. Similarly,
using (4), we find that ©(0) = ©(27) and ©'(0) = ©'(27). Thus we have
arrived at the following separated equations:

0"+ p20 =0, O0) =06(2nr), 6'(0) =0 (2nr),
r?R"+rR + (XNr? — p )R=0, R(a)=0,
T" + \T =0.



Note that we start with the
© equation, since we have a
full complement of boundary
conditions for it, and it con-
tains only one separation con-
stant. After determining that
pLo=m, 0,1,2 3,..,
we can turn to the equation in
R and determine which values
of the separation constant A
allow for nontrivial solutions.
The T equation is dealt with
last.

m =

We get J,,’s here, and not
Y,.’s or a combination of J,,'s
and Y,,’s because, on physi-
cal grounds, we insist that our

solutions remain bounded at
r=90.
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Solving the Separated Equations

We begin by solving for ®. For p = 0 the solution is a constant Ay. If
w1 # 0, the general solution is of the form ©(0) = ¢ cos ud + cosinpd. To
satisfy the boundary conditions we must take u to be an integer. Thus

Om(0) = A, cosmb + Bysinmf, m=20,1,2,....

(Note that negative values of m do not contribute any new solutions.) Set-
ting ;. = m in the equation for R, we get
R4+ 1R 4+ (M2 —m?)R=0, R(a)=0.

This is the parametric form of Bessel’s equation of order m which is
treated in Theorem 3, Section 4.8. Quoting from this theorem, we have

R(r) = Rpn(r) = Jnn(Amnr), m=0,1,2,...., n=1,2,...

where Ay = Qmn/a and au,, is the nth positive zero of the Bessel function

Jm. For A = Ay the equation in T becomes T”+¢*X2 T = 0 with solutions
mun

A oS cAmpt  and By, sincAgpnt .

Using the expressions for R, O, and, 1', we arrive at the product solutions
of (1) and (3):

(5)  umn(r, 0,t) = Jn( Apnt) (@mn cOS MO + by sinm8) cos c Ayt

and

(6)  Upn (7, 0,t) = T Amnt) (@, cosmf + by sinmf) sin cApnt,

where m = 0,1,2, ..., n = 1,2,.... Note that we have replaced the
coefficient A, Apmn by amn, and similarly for by, ar,,, and b),,. While

this may appear to be just relabeling of the unknown coefficients, in fact,
it provides a more convenient choice of solutions that will be needed as we
proceed. Note too that bg, and by, will never be needed, since sinmf = 0
when m = 0, and so for the sake of definiteness we take them to be 0.
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Superposition Principle and the General Solution

The superposition principle suggests adding all the functions in (5) and (6).
The resulting sum is displayed in (16) below. Because of the complexity
of this solution, we consider two cases separately: one in which the initial
velocity g is zero, and a second in which the initial displacement f is zero.
The general solution is then obtained by combining these two cases.

EXAMPLE 1 Vibrations of a membrane with zero initial velocity
Solve the boundary value problem consisting of (1)—-(3) given that g = 0.
Solution The initial conditions in this case are

du
—(r,0,0)=0, O<r<a, 0<8<27.

at

It is easily seen that the only product solutions that meet the second condition are

those given by (5). Thus the superposition principle suggests a solution of the form

u(r,8,0) = f(r,0),

(7) u(r,6,t) Z Z T AmnT) (@mn €08 MO + by, sinml) oS cApnt .

m=0n=1

Setting ¢t = 0, we get

(8) f(r,6) = Z Z T AmnT) (@mn €08 MO + by sin mb) .

m=0n=1

This surely is a sort of a generalized Fourier series of f(r, 8) in terms of the functions
I (Amnr) cosmb and Jp(Amn7) sinmf, and hence a,y,, and by, are the correspond-
ing generalized Fourier coefficients of the function f. This fact and many important
related applications are explored in Section 4.6 (see in particular Theorems 1 and
2 of that section). We now proceed to determine a.,, and b, using properties of
the usual Fourier series and Bessel series.

Fix r and think of f(r,0) as a (2n-periodic) function of 8. To facilitate the use
of Fourier series, we write (8) as

=ao(r) =am(r)
f(r,0) = Z aonJo(PAonr) + Z { (Z aanm(x\mnr’)> cosmb
n=1 m=1 n=1
=bm (1)
(; T )smm }
= +Z r) cos mb + by, (r) sinmd) .
m=1

Now we see clearly that (for fixed r) ao(r), am(r), and b, (r) are the Fourier coefhi-
cients in the Fourier series expansion of 8 — f(r,8). Using (2)—(4), Section 2.2, we
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conclude that

1 2m ad
(9) ap(r) = o /. f(r,0)do = ,; agnJo( AonT),
1 2 o
(10) G (r) = = f(r,0) cosmb do = Z Gran Im (AmaT),
0 n=1
1 27 (&9
(11) b (r) = — Fr.0)sinmfdf = b S (AmnT),
0 n=1
for m = 1,2,... Now let » vary and think of the last three series as the Bessel
series expansions of order m = 0, 1, 2, ... of the functions ag(r), am(r), and by, (7),

respectively. The coefficients in these series are Bessel coefficients and so from (17),
Section 4.8, we obtain

2 " Q
Aon = m/o aO(T)JO(/\OnT)T dr,

Gimn = % / (1) s A1,
0

2
a?Jg, 1 (0mn

2 ] /Oa bon (7)o (Amn )7 dr .

bmn =
' 2
a?Jz 1 (Qmn

Now using (9)-(11), we get

1 a p2m

12 n = T 5 397~ 3 n fd 5
(12) = e | | £ 0Ty s

2 a 2w
(13) G, = Y /0 /0 f(r,8) cosmb Jo (Amnr)r df dr,

2 a 2
14 o = ————————— “(r, 0) si m (Ama )T dO dr,
(14) b 7T0,2J3.L+1(Oémn) /0 /0 f(r, 6)sinmf Jp,( )7 7
for m, n=1,2.... Substituting these coefficients in (7) completes the solution of
the problem. m

Before giving a numerical application, we present a useful identity in-
volving Bessel functions.

For any k£ > 0, a > 0, and o > 0, we have

a . o kil o akt4
(15) /O(a — o)kt Jk(gr)dr:2 2 Jir2(a) .

Proof We first make a change of variables, &r = z, dr = £ dz, and transform the
integral into

k+2 o 2,2
a a*z, 4
P L

aktt e k+1 gkt re k+3
+ +
= — T Je(x) dx — 2T Ji(z) dx.
kT2 /0 () okt Jg (z)
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0.6 1

0]

~0.3 1

Figure 1 Ji(r) and its first
four positive zeros.

From (7), Section 4.8, with p = k, the first term is

k+4 k+4

a a

k2 [‘rkﬂ‘]’vﬂ( ac)]g =

J};+1( Oé) .

The second integral can be evaluated with the help of (7), Section 4.8, and integra-
tion by parts. Let u = 22, dv = zF* J(z)dz, then du = 2z dz, v = zF 1 J, 1 ().
Hence the second term becomes
k+4 k+4 «
a a ,
[xk+3Jk+1(x)]g + 2ak+4 / 2F T2 T (2) d
Jo

T ok

Using (7), Section 4.8, one more time and simplifying, we get

k+4 k+4

a a
Jet1(a) + 27Jk+2(a)>

and (15) follows. [ |

EXAMPLE 2 A vibrating membrane

Refer to Example 1 and determine the solution u(r,6,t) when a = c =1, f(r,0) =
(1 —72)rsinb, g(r,0) =0.

Solution From (12), we have

1 1 27 )
Qo = ———— 1 —r°)rsin8Jy(ag,r)rdfdr =0,
o= gt |, [ (= sindglan)

because f027r sinf df = 0. A similar argument using (13), (14), and the orthogonality
of the trigonometric functions shows that am, = 0 for all m and n, and by, = 0,
except when m = 1, in which case we have

2 1 2m
b = m/ / (1 —r2)rsin20J1(a1nr)r do dr
2\n) Jo Jo
9 1
= W/o (1- 7‘2)7’2.]1(&1”7') dr

because %fo% sin?@df = 1. We now appeal to (15) with o = 1,k = 1 and get

b1 _ 4J3(Oﬁln) _ 16
" a%n‘]g (aln) a%n‘]?(aln) ’

where in the last step we have used (6) from Section 4.8 with p = 2, and the fact
that Ji(a1,) = 0. Recall that o1, denotes the nth positive zero of J;. See Figure 1
for an illustration and Table 1, Section 4.8 for a list of numerical values of the first
five ay,. Substituting b1, into (7), we arrive at the solution

= 1
u(r,8,t) = sinez Wijal)h(amr) Cos a1pt .
n=1 17 n

With the help of a computer system we found approximate numerical values of the
first three coefficients in the series and plotted in Figure 2 the partial sum of the
series solution (with n up to 3) at various values of t. |



Section 4.3 Vibrations of a Circular Membrane: General Case 213

Figure 2 Vibrating circular membrane: a nonradially symmetric case.

To complete the solution of the vibrating membrane, we need to treat
the case of a nonzero initial velocity. Save for some minor differences, this
case is similar to the one we just treated. The proof is outlined in Exercises 7
and 8. For ease of reference, we state the entire solution for this case in the
following box.

THE WAVE | The solution of the boundary value problem (1)—(3) is given by
EQUATION IN

POLAR —e Pl
COORDINATES: L = Z Z I (AmanT) (@mn cosml + by, sinmé) cos chpnt

GENERAL CASE St
(16) + Z Z ']m‘()\""’""(r.)(a")lkn" cosmb + ])mn sin 77140) sin CApnt,

m=0n=1

where A, = “'# Gy 18 the nth positive zero of J,,; @y by, are given

by (12)—(14); and

(17 Oy = 71‘((}0,,(11/ 00,,)/0 /0 g(r, @) Jo(Mopr)r db dr,
27
(18) (l,*"‘” - TCXnn . ]nz+1 ("mn)‘/o /0 (OS 77’0] ()\7"/”'7')7‘ o d"'.,

27
(19) bron = mam,,al,,,ﬂ(u,,,,,)/0 / g(r, 0) sin mO.J,, (Apn7)7 d6 dr,

(="

ot

I

for m. r
L d
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EXAMPLE 3 Nonzero initial displacement and velocity
Determine the solution u(r, 8,¢) of (1)—(3) when

a=c=1, f(r,0) = (1 —rHrsind, g(r,0) = (1 —r*)r?sin20.

Solution The solution is given by (16). We only need to compute the second
double series since the first one is computed in Example 2. Using the orthogonality
of the trigonometric functions and arguing as we did in Example 2, we find that

ay,n, = 0 for all m and n, and &}, = 0, except when m = 2. To compute b3, we
use (19) with g(r,0) = (L —72)r?sin20, a = c =1, and A\py, = Qmn, and get

« 2 o 24,2 qi2
b, = m/ /0 (1 — 7*)r® sin® 20J5(agy,r)r dO dr

2 L
-2 / (1 = 12)r3 Ty (cuanr) dr,
0

a2nJ3 (a2n)

because — f sin®20df = 1. To compute the last integral we apply (15) with
a=1, k=2, and obtain

b* _ 4J4(a2n) _ 24
o, R azn)  od,Js(azn)

where in the last step we have used (6) from Section 4.8 with p = 3 and the fact
that Jo(ag,) = 0. Substituting in the second double series in (16) and using the
solution of Example 2, we get the solution

u(r,0,t) = smGZ

Ji{a1aT) Cos aent
ln‘]z(aln ( " ) "

+ sin 26 Z ozsz3 o) Ja(@anT) sincant .

The coefficients in the series can be approximated with the help of a computer, as
we did in Example 2. |

In the exercises, we will use the methods of this section to solve the
general heat problem on the disk.

Exercises 4.3

In Ezercises 1-8, solve the vibrating membrane problem (1)—(3) for the given data.
If possible, with the help of a computer, find numerical values for the first five
nonzero coefficients of the series solution and plot the shape of the membrane at

various velues of t. (Formula (15) is helpful in doing these problems.)
1. f(r,0) =1 ~-7r2)r%sin20, g(r,0) =0, a=c=1.

2. f(r,0) =(9—7r2)cos20, g(r,0) =0, a=3, c= 1.
3. f(r,0) = (4—r?rsinb, g(r,0) =1, a=2, c=1.
4. f(r,0) = Js(azer)sindf, g(r,0) =0, a =c=1.
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5. f(r,8) =0, g(r,8) = (1 —r*)r?sin26, a = c = L.
03 6. f(r,6) =1— 1% g(r,6) = Jo(r), a=c=1.

7. Project Problem: Circular membrane with zero initial displacement.
Follow the steps outlined in this exercise to determine the vibrations of a circular
membrane with radius ¢ and fixed boundary, given that the initial displacement
of the membrane is 0, and its initial velocity is g(r,8). Review the solution of
FExample 1 for hints.

(a) Write down explicitly the differential equation, the boundary conditions, and
the initial conditions.

(b) Assume a product solution of the form R(r)©(8)T'(t) and show that T'(0) =
Conclude that

u(r,0,t) = Z Z (Amn7)(ar,, cosmb + b7, sinm@) sin cApnt .

(¢) Use the given initial velocity and (b) to obtain

g(r,8) = i Aonahn Jo(Aont) + i { (i C/\mnafnnJm(/\mnT)> cosmd
n=1 m=]1 =1

+ (nz::l c/\mnb:m.]m()\mnr)) sin mO} :

(d) Derive (17)-(19) by proceeding from here as we did in the derivation of (12)-
1

(
8. General solution of the vibrating circular membrane problem.

(a) Show that the solution of the boundary value problem (1)—(3) can be written
as u(r,0,t) = ui(r, 0,t) + ua(r,0,t), where u; and uy satisfy (1) and (3) and the
following initial conditions:

)
4).

uy(r,60,0) = f(r,0), 28(r,0,0)=0;
us(r,8,0) =0, 2u2(r, e ,0) = g(r,6).

(b) Combine the results of Example 1 and Exercise 7 to derive the general solution
(16).

9. Project Problem: An integral formula for Bessel functions. Follow the
outlined steps to prove that for any £ > 0, and any integer [ > 0, we have

!

{! 3 —n
/7"’“+1+2le(7") dr = Z(—l)n Qn‘mrkﬂﬁl Jians1(r) +C.
. n=0 '

{a) Show that the formula holds for [ = 0 and all ¥ > 0. [Hint: Use (7),
Section 4.8.]

(b) Complete the proof by induction on I. [Hint: Assume the formula is true
for [ — 1 and all k. To establish the formula for I, integrate by parts and use the
formula with ! — 1 and k£ + 1.]
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