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EXAMPLE 1 Use spherical coordinates to compute the Laplacian of
f(z,y,2) = In(2? + % + 22), (x,y,z) #(0,0,0).
Solution In spherical coordinates, we have
f(r,6,¢) =Inr? =2Inr.
Since f is independent of # and ¢, all partial derivatives in these variables are zero.
From (8) we get
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Exercises 4.1

In Ezxercises 1-8, compute the Laplacian in an appropriate coordinate system and
decide if the given function satisfies Laplace’s equation V?u = 0. The appropriate
dimension is indicated by the number of variables.

L u(e) = 2 uey) = a2,
3. ) — z

( ) \/TU 4. u(xay»")‘\/m~
5. u(z,y,z) = (2% + 9> + 22)3/2 6. u(z,y) = In(z? +y?).
7wl = (@ 4P+ ) B u(ag) = ten~ (4) s

9. (a) Show that if u(r, 8, ¢) depends only on r, then the Laplacian takes the form
Viu=J4 4+ 204

(b) What is the form of the Laplacian if the function u depends only on r and 67
10. Supply all the details to derive (8) from (7).

11. Project Problem: Harmonic functions. Recall from Section 3.1 that u(z, y)
is called a harmonic function if it satisfies Laplace’s equation.

(a) Show that if u and v are harmonic and « and 8 are numbers, then au + Bv is
harmonic.

(b) Give an example of two harmonic functions v and v such that v v is not harmonic.
(c) Show that if u and u? are both harmonic, then u must be constant. [Hint: Write
down what it means for u and u? to be harmonic in terms of their partial derivatives.
(d) Show that if u, v and u? + v? are harmonic, then u and v must be constant.

4.2 Vibrations of a Circular Membrane: Symmetric Case

In this and the next section we study the vibrations of a thin circular mem-
brane with uniform mass density, clamped along its circumference. We place
the center of the membrane at the origin, and we denote the radius by a.
The vibrations of the membrane are governed by the two-dimensional wave
equation, which will be expressed in polar coordinates, because these are the
coordinates best suited to this problem. Using the polar form of the Lapla-



Figure 1 A radially symmet-
ric shape.

The initial conditions are ra-
dially symmetric, so they de-
pend only on 7.
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cian ((3), Section 4.1), the two dimensional wave equation becomes
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The initial shape of the membrane will be modeled by the function f(r,8),
and its initial velocity by g(r, ).

In this section we confine our study to the case where f and g are radially
symmetric or axisymmetric, that is, they depend only on the radius r and
not on 6. It is reasonable on physical grounds that in this case the solution
also does not depend on 6 (see Figure 1). Consequently, du/d0 = 0, and
(1) becomes
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where v = u(r, t), 0 < r < a, and ¢ > 0. Since the membrane is clamped
at the circumference, we have the boundary condition

(3) u(a, t) =0, t>0.
The radially symmetric initial conditions are

(4) u(r, 0) = f(r), -(?)—1:(7', 0)=g(r), 0<r<a.

We solve the boundary value problem (2)—(4) using the separation of vari-
ables method, as we did throughout Chapter 3. The goal is to separate the
variables in the partial differential equation (2) and reduce the problem to
two ordinary differential equations in » and ¢. As you will see, the equation
in t is the same as the one that we obtained after separating variables in
the wave equation in rectangular coordinates. Hence the solution in ¢ will
consist of sines and cosines. The equation in the spatial variable r is new,
and its solution will involve the so-called Bessel functions.

Separating Variables
We assume that the solution is of the form u(r,t) = R(r)7T'(t). After differ-
entiating, plugging into (2), and separating variables, we get
T 1
27 = &l
Because we expect periodic solutions in 7', we have set the sign of the separa-
tion constant negative. (For a more rigorous argument based on the fact that

R”-}'ERI) :_/\2.
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Figure 2 The Bessel func-
tions of order 0.

the solution in R should be bounded in the interval [0, a], see the solution of
the Dirichlet problem in Section 4.5.) Hence

(5) rR'+ R +ArR=0, R(a)=0 (from (3)),
(6) T" 4+ 2\2T = 0.

Solving the Separated Equations

Here again, we begin by solving the equation with the boundary conditions
to narrow down the possible solutions. Equation (5) is known as the para-
metric form of Bessel’s equation of order zero (here X is the param-
eter). This equation arises so frequently in applications that its solutions
have been named. Since the equation is second order and homogeneous, we
need only two linearly independent solutions to be able to write its general
solution. By convention, these two linearly independent solutions are called
Bessel functions of order 0 of the first and second kind, and are de-
noted Jo(Ar) and Yy(Ar), respectively. Hence the general solution to the
parametric form of Bessel’s equation in (5) is

(7) R(T) = ClJ()()\T‘) + CQYO(/\T‘) ,

where r > 0 (Theorem 3, Section 4.8). The functions Jy and Yj are treated in
great detail in Sections 4.7-4.9; here we recall facts only as needed. Figure 2
shows the graphs of Jy and Yp .

Since on physical grounds the solutions to the wave equation are expected
to be bounded, it follows that the spatial part of the solution, R(r), has to
be bounded near r = 0. This is effectively a second boundary condition on
R. Now the fact that Yy is unbounded near O forces us to choose ¢o = 0 in
(7). To avoid trivial solutions, we will take ¢; = 1 and get

(8) R(r) = Jo(Ar).
The condition R(a) = 0 (see (5)) implies that
Jo()\a) =0,

and so Aa must be a root of the Bessel function Jy. As Figure 2 suggests,
Jo has infinitely many positive zeros, which we denote by

ap <ag <oz < <oy <

(For a proof of this fact, see Section 4.9, or Exercise 35, Section 4.8.) Thus
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and the corresponding solutions of (5) are

R,(r) = Jo(%r), n=12 ...,

where «, is the nth positive zero of Jy. These solutions are analogous
to the solutions sin%m that we have encountered several times previously,
in particular, while solving the one dimensional wave equation. The only
difference is that the function sine and its zeros nm are now replaced by the
function Jyp and its zeros a,,. Returning to (6) with A = A, , we find

T(t) = Th(t) = Ap coscApt + BpsineAyt .

We thus obtain the product solutions of (2) and (3)
un(r,t) = (An coscApt + BpsineApt)Jo(Apr) n=1,2,....

Bessel Series Solution of the Entire Problem
To satisfy the initial conditions, motivated by the superposition principle,

we let
o0

u(r,t) = Z(A" cos CApt + By sincAnt) Jo(Anr) .
n=1
We determine the unknown coefficients by evaluating the series at ¢ = 0 and
using the initial conditions. We get from the first condition in (4)

u(r,0) = f(r) = ZAnJO(/\nr), O<r<a.
n=1

This series representation of f(r) is akin to a Fourier sine series, except that
the sine functions are now replaced by Bessel functions. There are analogous
expansion theorems that apply in such cases; the series expansions that arise
are known as Bessel, or Fourier-Bessel, expansions (see Theorem 2,
Section 4.8). For the case at hand, we make use of Theorem 2, Section 4.8,
with p = 0. The Bessel coefficients A, are given by

2 a
A= s /0 F) o) dr,

where Ji is the Bessel function of order 1. Now, differentiating the series
for u term by term with respect to ¢, and then setting t = 0, we get from
the second initial condition

oo

ui(r,0) = g(r) = Y eAn Bn Jo(Anr) .

n=1
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THEOREM 1

WAVE EQUATION IN
POLAR
COORDINATES

There is a clear analogy be-
tween the solution (9) and
the solution of the one-
dimensional wave equation
(8), Section 3.3. The only dif-
ference is that spatial varia-
tions are now determined by
Bessel functions rather than
the simpler sine functions.

From (7), Section 4.8,

/ 2P, (z) dz =

2P () + O
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Thus cA, B, = ¢ By, is the nth Bessel coefficient of g, and so

2 ] /Oag(r)Jo(/\nr)rdr.

n = 75,  ~
copaJi(an

This completely determines the solution.

When applying (10) in concrete situations, we are required to evaluate in-
tegrals involving Bessel functions that are quite complicated. In many in-
teresting cases these integrals can be evaluated with the help of integral
formulas developed in the exercises and in Section 4.8. As an illustration,
consider the integral

@ o
/:E”“Jp(gx)dx, p>0, a>0.
0

Let u = %z, du= % dx, then

/a:p“Jp(%x) dx

2
= uP T (u) + C,

where the last equality follows from (7), Section 4.8. Substituting back
u = %%, simplifying, and then evaluating at = 0 and = = a, we obtain the
very useful identity

a p+2
/ poJp(g x)dr = a—Jp+1(a) .

0 a 87

(1)




Section 4.2 Vibrations of a Circular Membrane: Symmetric Case 203

EXAMPLE 1 A circular membrane with constant initial velocity

An explosion near the surface of a flexible circular membrane with clamped edges
imparts a uniform initial velocity equal to —100 m/sec. Assume the initial shape
of the membrane to be flat, take a = 1 and ¢ = 100, and determine the subsequent,
vibrations of the membrane.

Solution The solution is given by (9), where A, = 0 for all n, since f(r) = 0.
From (10) we have

-9 1
n = s Ya— Ji n d
B anjf(an)/o olanr) rdr
- = by (11) with » = 0).

Thus, from (9), we obtain the solution

(o]

u(r, t) = nz::l a%%?an) sin{100 ant) Jo(cwnT) - m
To get numerical values from our answer in Example 1, it is clearly
necessary to know the values of the zeros of the Bessel function Jy. Since
these values are useful in solving many problems, they have been computed
and tabulated to a high degree of accuracy. With the help of a computer
system, we approximated the first five positive roots of the equation Jy(z) =

0. These and other relevant numerical data are given in Table 1.

j 1 2 3 4 5
a; 2.4048 | 5.5201 | 8.6537 | 11.7915 | 14.9309
Ti(ag) | 5191 | —.3403 | 2714 | —.2325 | .2065
?]ﬁm —0.6662 | 0.1929 | —.0984 | 0.0619 | —0.0434

Table 1 Numerical data for Example 1.

With the help of this table, we find the first three terms of the solution in
Example 1:

u(r,t) ~ —0.6662J5(2.407) sin(240¢)
+0.1929 Jo(5.527) sin(552 £) — .0984 Jo(8.65 1) sin(865t) .

We used these terms to plot the shape of the membrane at various values of
t > 0 in Figure 3.
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As expected, soon after the
explosion, the elastic mem-
brane starts to vibrate down-
ward.

Figure 3 Vibrating circular
membrane with radial sym-
metry in Example 1.

The next example treats the case of a vibrating membrane with nonzero
initial displacement and zero initial velocity.

EXAMPLE 2 A circular membrane with radially symmetric initial shape
Solve the boundary value problem (2)-(4), given that

J)y=1-12 g(r)=0, a=c=1.

Solution Note that the problem is radially symmetric because of the boundary
and initial conditions. The solution is given by (9), where B, = 0 for all n since
g(r) =0, and A, is the Bessel coefficient of the function 1 — 2, given by (10). We
have

2 1
A, = —/ 1 —r3)Jolanr) rdr
Jian) Jo ( Vo )
2 an
= m A (@? — s%)Jo(s)sds (s = anr).

Integrating by parts, with u = a2 — 5%, dv = Jy(s)s ds, and hence du = —2sds, v =
J1(s)s (by (7), Section 4.8, with p = 0), we find
2

- 2 .2 an o : 2
A, = ot T2 (an) {(an s7)J1(s)s|, +2-/0 Ji(s)s d.s]

4 o 2,
)/0 Jl(g)s ds.

at Ji(ay,
To evaluate the integral, we appeal to (11) and arrive at

4

An = "5 197/~
o Jf (o)

JQ(OAn) .



From (6), Section 4.8,
Jp+1(z) = %UEJp(x) — Jp-1(x).

53(7') 51(,«)

1-1r2 r

0 r
Figure 4 Partial sums of
Bessel series.
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At this point, we could appeal to (9) to write the explicit form of the solution.
However, before doing so, we mention one more worthy simplification based on yet
another property of Bessel functions. Appealing to (6), Section 4.8, with p = 1,
and recalling that ., is a zero of Jy, we find

2
Jalan) = ——Jr(an),

and hence g
A= ———.
a3 Jy(an)
Thus, from (9), we obtain the solution
- 8
u(r,t) = —————cos{ant)Jo(anr) .
(=Y 25t s(@ntHo(anr) .

n=1
Setting ¢t = 0 in the solution of Example 2, we should get the initial displace-
ment, that is, we should get

ZOO 8
1—7’2: m;}o(&»,ﬂ"), 0<r<l.
n=1 """ n

This is the Bessel series of the function 1 — 72 that we have computed in
passing as we worked out the solution to Example 2. Figure 4 shows some
partial sums of this series converging to 1 — 72, 0 < r < 1.

We end this section with a remark concerning the physical interpretation
of the solution of Example 2. In our derivation of the wave equation, we
always assumed small displacements, but you may not be willing to call a
unit displacement at the center of a drum of unit radius small. To give
our problem a meaningful interpretation, we could rescale the initial data.
Because of the linearity of the boundary value problem this leads only to
the same rescaling of the solution.

Exercises 4.2

In Ezercises 1-8, solve the vibrating membrane problem (2)—(4) for the given data.
If possible, with the help of a computer, find numerical values for the first five
nonzero coefficients of the series solution and plot the shape of the membrane at
various values of ¢t . (Formula (11) is useful in all these exercises.)

1. a=2,¢=1, fr)=0, g(r) =1
2. a=1,¢=10, f(r)=1-7% g(r)=1.
3. a=1,c=1, f(r)=0,

[Hint: Follow Example 1.]
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