Topics to Review

Fourier series (Sections 2.1-2.4)
and the separation of variables
method (Section 3.3) are crucial
in this chapter. Section 4.1
is self-contained. It presents
the Laplacian in polar, cylindri-
cal, and spherical coordinates.
Sections 4.2 and 4.3 deal with
the vibrating circular membrane.
These require knowledge of Bessel
functions (Sections 4.7, 4.8) and
Fourier series.  Section 4.4 re-
‘or Section
4.5, further properties of Bessel
functions from Sections 4.7 and
4.8 are needed. Section 4.6 devel-
ops the cigenfunction expansions

quires Fourier series.

method on the disk. For this sec-
tion, it is recommended to review
the material of Section 3.9.

Looking Ahead...

You recall from Section 3.6 how
by varying the bhoundary condi-
tions we were led to new types of
In this chap-
ter we will solve boundary value
problems over circular and c¢ylin-
drical domains. It should not
surprise you that the solutions
will entail new series expansions;
for example, Bessel series. These
series look quite complicated at
first, but with the help of a com-
puter system, you will be able to
plot them and see that they be-
have very much like Fourier se-
ries. The ideas of this chap-
ter will be developed further in
Chapter 5, where we will con-
sider problems in spherical coor-
dinates, giving rise to new fami-
lies of special functions.

series expansions.

4

PARTIAL DIFFERENTIAL
EQUATIONS IN POLAR
AND CYLINDRICAL
COORDINATES

One cannot understand ... the universality of laws of nature, the re-
lationship of things, without an understanding of mathematics. There
1s no other way to do it. -RICHARD P. FEYNMAN

In the previous chapter we used our knowledge of Fourier series to
solve several interesting boundary value problems by the method of
separation of variables. The success of our method depended to a
large extent on the fact that the domains under consideration were
easily described in Cartesian coordinates. In this chapter we address
problems where the domains are easily described in polar and cylin-
drical coordinates. Specifically, we consider boundary value problems
for the wave, heat, Laplace, and Poisson equations over disks or cylin-
ders. Upon restating these problems in suitable coordinate systems
and separating variables, we will encounter new ordinary differential
equations, Bessel’s equation, whose solutions are called Bessel func-
tions. The full implementation of the separation of variables method
will lead us to study expansions of functions in terms of Bessel func-
tions in ways analogous to Fourier series expansions.

You do not need to know about Bessel series to start the chapter.
As needed, we will refer to Sections 4.7 and 4.8, where you will find a
comprehensive treatment of these special series expansions. Section 4.9
contains mostly proofs of interesting properties of Bessel functions,
with surprising connections to Fourier series. This section can be
omitted without affecting the rest of the chapter.
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4.1 The Laplacian in Various Coordinate Systems

The two dimensional Laplacian and its higher dimensional versions are of
paramount importance in applications. They appear, for example, in the
wave and heat equations, and also in Laplace’s equation. In previous sec-
tions we solved these equations over rectangular and box shaped regions.
To extend our applications to regions such as the disk, the sphere or the
cylinder, it is to our advantage to use new coordinate systems in which the
region and its boundary have simple expressions. For example, for problems
over a disk we change to polar coordinates, where the equation of a circle
centered at the origin reduces to r = a. Similarly, problems over spheres
are simplified by a change to spherical coordinates. For later applications,
in this section we express the Laplacian in various coordinate systems.

The Laplacian in Polar Coordinates
We recall the relationship between rectangular and polar coordinates

z = rcosb, y = 7siné,
72:x2+y2, tan9:2
x

(Since the inverse tangent takes its values in the interval (—m/2, 7/2), we
have § = tan™! (¥) + kr, where k = 0,1, or —1, depending on whether
z>0,z<0andy>0,orz<0andy<0. Also, if z =0, then § = 7/2 if
y > 0and —7/2 if y < 0. See Figure 1.) Differentiating 72 = 22 + y? with
respect to z, we obtain
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) Differentiating a second time with respect to 2 and simplifying, we obtain
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Figure 1 Polar coordinates. or 14 (g>2 2/ 2
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Differentiating a second time with respect to  and simplifying yields

9% 2y 0r  2xy

822 139zt
Differentiating now with respect to y, we obtain in a similar way

or y 06 «x % z? 829__2:Ey
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(Check these identities.) From what we have done so far, it is easy to derive
the following interesting identities

" o0 50 _
oz oy®
and
06 or 08 or
(2) 9207 By dy 0.

We are now ready to change to polar coordinates in the Laplacian. Using
the chain rule in two dimensions, we have
Ou  Oudr Oudl
gz droz 900z
Applying the product rule for differentiation and the chain rule, we obtain
0%u O Ou\Or Oud* 0 ;O0u\ 08 Ou 00
57 = 52\or)as ot T 55 \29) 6 * 00 o
_ (Tulr Puonyor ouot
or? 9z Ordh dx/ Ox = Or Ox?
(32“ @+@%>%+%3_29
ordl dx  06% 9x/ dx 96 Ox?
0%u  Or\2 0%u 06 Or  Oud’r
52 (5n) " 2509 5 5 T B 5?
(O (20, 2 0%
062 \ oz 00 0z?
Changing z to y, we obtain
u  0%u s Or\2 0% 00 Or Oud*r % 06N\2 Ou 0%0
5 = 5\ 5y) 25085y 8y * o 67 T o7 \5y) T 26 o
Adding and simplifying with the help of (1) and (2), we get
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Figure 2 Cylindrical coordi-
nates.

We should note that there
is no unanimity about which
spherical coordinates to call 8
and which to call ¢. Calculus
texts tend to use 4 for longi-
tude and ¢ for colatitude. Our
notation is more common in
physics texts and hence more
convenient for the physical ap-
plications of Chapter 5.

Replacing the partial derivatives with respect to x and y by their expressions
in terms of r and 8, we arrive at
u  0%u 82u( z? yQ) ou (.r2 y2> N 0%u (.r2 y2)

o+ =S+ )+ (S D) (S L
0z%  Oy?  Ori\r? g2 Or\r3 3 a2 \rd 4

Simplifying with the help of the identity z? + y? = 2

form of the Laplacian

, we get the polar

0%u  10u 1 9%y
_ 72, _ g .
(3) Au-vu_8r2+rar+r2692'

The Laplacian in Cylindrical Coordinates

If w is a function of three variables z, ¥, and z, the Laplacian is

0*u  O*u  O%*u
v, = g -
Au=Vou= 522 + a2 + 5.2

The relationships between rectangular and cylindrical coordinates are
T =pcos¢y, y=psing, 2=z,

where we now use p and ¢ to denote polar coordinates in the xy-plane as
illustrated in Figure 2. The cylindrical form of the Laplacian is now
evident from (3):

0%u  10u 1 0%u  0%u |

vy, -, 2,7
(4) Au_vu_8p2+p8p+p28¢2+8z2'

The Laplacian in Spherical Coordinates

We will use (7, 8, ¢) to denote the spherical coordinates of the point (z,y, z).
We have

T =rcos¢sing, y=rsingsinh, z=rcosh,
r? =27 4y + 22
From the geometry in Figure 3, we have

p=rsinfd, x=pcosd, y=psing, p? =22 +197.



Sx y=psing

Figure 3 Spherical coordi-
nates.
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Our goal is to express V2u in terms of r, 6, and ¢. From the polar form of
the Laplacian (3), we have

5 Ou oo 10w 10%
dz2 Oy 9p*  pdp  p?O¢?

Observe that the relations
z =rcosf, p=rsind

are analogous to those between polar and rectangular coordinates. So, by
using again the polar form of the Laplacian with z and p (in place of = and
y), we get from (3)

0’u  0%u B Pu  10u 1 0%

(©) PR T o YT

Adding g—i&‘ to (5) and using (6) gives
7 82u+82u+82u_82u+16u+182u+13u+182u
0x2 " Oyt 922 Or2  ror 12062 pdp  p?0¢?
It remains to express du/Op in spherical coordinates. From the relation
0 =tan"'(p/z), we get
a0 1
dp 1+ (p/2)?

Differentiating p = 7 sin§ with respect to p, we get

2 z cos b

1
;_z2+p2_7—'2—* 7

]
lzg—;sinﬁ—I—rcos()g—p:—g—;sin0+cos20.
Hence
Qt_l—coszé_sine
dp  sinf )

Now note that ¢ and p are polar coordinates in the zy-plane, hence d¢/0p =
0. Using the chain rule, we get

ou_uor uon oudy_oup  dueoss
Op Ordp 000p 0Opdp Orr 09 r

Substituting this in (7) and simplifying, we get the spherical form of the
Laplacian:

Pu  20u 1 /0% ou 0%y
w2 < 2
(8) |Au=Vu= 52 + - + ) <—802 + cot e + csc 6 —6¢2)'
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