Examples of PDEs

<table>
<thead>
<tr>
<th>PDE</th>
<th>Model</th>
<th>Order</th>
<th>Linear</th>
<th>Homogeneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0)</td>
<td>advection eq</td>
<td>1</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>(\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2})</td>
<td>wave eq.</td>
<td>2</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>(\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2})</td>
<td>heat eq.</td>
<td>2</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0)</td>
<td>Oseen eq.</td>
<td>1</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>(\frac{\partial^2 u}{\partial t^2} + \frac{\partial^2 u}{\partial x^2} = 0)</td>
<td>Navier-Stokes</td>
<td>2</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>(\Delta u = f)</td>
<td>Laplace eq.</td>
<td>2</td>
<td>y</td>
<td></td>
</tr>
</tbody>
</table>

order of PDE: highest order of differentiation

linear equation: \(L(u) = f \) where

\[L = \text{linear diff. op i.e. satisfies:} \]

\[L(\alpha u + \beta v) = \alpha L(u) + \beta L(v) \text{ for all } \alpha, \beta \in \mathbb{R} \]

homogeneous eq. all terms involve unknown.

- \(L(u) = f \) is linear, non-homog
- Poisson eq. is

<table>
<thead>
<tr>
<th>Laplace</th>
<th>Homog.</th>
</tr>
</thead>
</table>
Example: advection eq - linear homog first order DE
\[\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0 \]

has sol of the form:
\[u(x,t) = f(x-t) \]

Verifying:
\[\frac{\partial u}{\partial t} = -f'(x-t), \quad \frac{\partial u}{\partial x} = f'(x-t) \]

meaning:
\[u(x,0) = f(x) \]

changes origin of initial cond to \(t \)
propagating waveform.

Also solution is constant on lines \(x-t = c \)

\(c \) = "characteristics" or "characteristic curves."

Method of Characteristics (RW problem)

\[\frac{\partial u}{\partial x} + p(x,y) \frac{\partial u}{\partial y} = 0 \]

by finding "characteristic" a curve on the \(xy \) plane where \(u(x,y) \) does not change

Rewrite (1) as:
\[\nabla \cdot (\nabla u) = 0 \]

(2) div. div of \(u \) in \(x \) \(\frac{\partial u}{\partial x} = 0 \)
(3) \(u(x,y) \) does not change in \(y \) \(\frac{\partial u}{\partial y} = 0 \)

Key:
\[\left(\frac{\partial}{\partial (p(x,y))} \right) = \text{tangent to characteristic} \]
Check:

\[\frac{2x}{y} = \frac{\frac{dx}{dt}}{\frac{dy}{dt}} = \frac{2}{2y} = \frac{2}{y} \]

Characteristic equation:

\[\frac{dx}{dt} + \frac{2}{y} x = 0 \]

\[\frac{dy}{dt} = y \]

Characteristic solution:

\[y(t) = Ce^{2t} \]

\[x(t) = C'e^{t} \]

\[\phi(t, y) = \frac{y}{x} \]

To get a family of curves of the form \(\phi(x, y) = C \):

\[\frac{dy}{dt} = \frac{y}{x} \]

Separate variables:

\[\frac{dy}{y} = \frac{dx}{x} \]

Integrate:

\[\ln y = \ln x + C \]

\[y = Cx \]
Vibrating string

\[u(x,t) \]

\[\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \]

Linear 2nd order homog PDE

\[L(u) = 0 \quad \text{where} \quad L(u) = \frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} \]

Initial conditions:

- \[u(x,0) = f(x) \quad \text{(shape at } t=0) \]
- \[\frac{\partial u}{\partial t}(x,0) = g(x) \quad \text{(vel of every piece of string at } t=0) \]

Boundary conditions (string fixed at end points):

- \[u(0,t) = 0 \]
- \[u(L,t) = 0 \]

Here is an important family of soln to 1D wave:

\[u_n(x,t) = \sin \frac{n\pi x}{L} \cos \frac{n\pi c t}{L} \quad n = 1, 2, \ldots \]

check:

\[\frac{\partial^2 u_n}{\partial t^2} = -\left(\frac{n\pi c}{L}\right)^2 \sin \frac{n\pi x}{L} \cos \frac{n\pi c t}{L} \]

\[\frac{\partial^2 u_n}{\partial x^2} = -\left(\frac{n\pi}{L}\right)^2 \sin \frac{n\pi x}{L} \]

extremely important.
What about BC?

\[u_n(0, t) = \sin(0) \cos(\cdot) = 0 \]
\[u_n(L, t) = \sin(n\pi) \cos(\cdot) = 0 \]

What about IC?

\[u_n(x, 0) = \sin \left(\frac{n\pi x}{L} \right) \cos(0) \]
\[\frac{\partial u_n}{\partial t}(x, 0) = \frac{n\pi}{L} \sin \frac{n\pi x}{L} \]

zero initial velocity and very particular initial position.

This family is important because principle of superposition + Fourier series threads that can be used to construct trial to W.E. with arbitrary initial

Assume we have $u(0, t) = \sum_{n=1}^{\infty} u_n(x, t)$

then:

\[\mathcal{L}(u) = \int_0^L \left(\sum_{n=1}^{\infty} \mathcal{L}(u_n(x, t)) \right) \text{d}x \]

\[= \sum_{n=1}^{\infty} \mathcal{L}(u_n(x, t)) \]

Moreover:

\[u(0, t) = \sum_{n=1}^{\infty} u_n(0, t) = 0 \]

\[u(L, t) = \sum_{n=1}^{\infty} u_n(L, t) = 0 \]

\[\Rightarrow u \text{ solves also IDWEQ with IC.} \]

\[f(x) = u(x, 0) = \sum_{n=1}^{\infty} b_n u_n(x, 0) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L} \]

\[0 = \frac{\partial u(x, 0)}{\partial x} = \sum_{n=1}^{\infty} b_n \frac{\partial u_n(x, 0)}{\partial x} = \sum_{n=1}^{\infty} b_n 0 \]
Revers engineering:

If an initial condition of string can be written in the form

\[f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L} \]

then solve to:

\[
\begin{cases}
\mu_{tt} = c^2 \mu_{xx} \\
\mu(0,t) = \mu(L,t) = 0 \\
\mu(x,0) = f(x) \\
\mu_t(x,0) = 0
\end{cases}
\]

is given by:

\[\mu(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L} \cos \frac{n\pi ct}{L} \]

Goal in this class: find particular sol to certain DEs and use linearity (principle of superposition = revers, more) to construct a general sol.

For completeness:

Rule of superposition

Let \(L \) be a linear diff op and \(aL(u) = 0 \) be a linear homog diff eq.

Then if \(u, v \) are sol to \((a) \)

\[u + \beta v \] is sol to \((1) \) for any \(\beta \).

Proof:

\[L(\alpha u + \beta v) = \alpha L(u) + \beta L(v) = 0. \]