
MATH 3150-1, PRACTICE MIDTERM EXAM 2
OCTOBER 24 2008

Total points: 100/100.
Problem 1 (30 pts) The goal of this problem is to solve the Heat Equation with mixed
boundary conditions

(1)


ut = 3uxx for 0 < x < 1 and t > 0

ux(0, t) = 0 for t > 0

u(1, t) = 0 for t > 0

u(x, 0) = f(x) for 0 < x < 1

(a) Use separation of variables to show that a general solution to (1) is

u(x, t) =
∞∑
n=0

an cos (λnx) exp[−3λ2
nt], where λn =

2n+ 1

2
π.

(b) Consider the inner product (u, v) =
∫ 1

0
u(x)v(x)dx. Given the orthogonality relations

valid for n = 0, 1, 2, . . . and m = 0, 1, 2, . . .

(cos(λnx), cos(λmx)) =

{
1
2

if n = m

0 if n 6= m,

show that

an = 2

∫ 1

0

cos(λnx)f(x)dx, for n = 0, 1, 2, . . .

(c) Solve problem (1) with f(x) = cos(3πx/2) + 2 cos(7πx/2).
Problem 2 (30 pts) Consider the 2D Laplace equation below, which models the steady
state temperature distribution of a square plate where the right and left sides are kept in
an ice bath and the bottom and top sides have prescribed temperatures f1(x) and f2(x)
respectively.

(2)


uxx + uyy = 0, for 0 < x < 1 and 0 < y < 1

u(0, y) = u(1, y) = 0, for 0 < y < 1

u(x, 0) = f1(x), for 0 < x < 1

u(x, 1) = f2(x), for 0 < x < 1.

(a) Explain why it is possible to decompose (2) into the two subproblems below (the x
and y below are implicitly in (0, 1)).

(P1)


vxx + vyy = 0,

v(0, y) = v(1, y) = 0,

v(x, 0) = f1(x),

v(x, 1) = 0

(P2)


wxx + wyy = 0,

w(0, y) = w(1, y) = 0,

w(x, 0) = 0,

w(x, 1) = f2(x)
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(b) Show that if we assume that the solution to (P2) is w(x, y) = X(x)Y (y), then separa-
tion of variables gives

X ′′ + kX = 0, X(0) = 0, X(1) = 0

Y ′′ − kY = 0, Y (0) = 0

(c) Assuming k = µ2 > 0, obtain the product solutions to (P2)

wn(x, y) = Bn sin(nπx) sinh(nπy)

(d) Write down the general form of a solution to (P2), and use the formulas at the end of
the exam to express Bn in terms of f2(x).

(e) In a similar way it is possible to obtain the product solutions to (P1),

vn(x, y) = An sin(nπx) sinh(nπ(1− y)).

Write down the general form of a solution to (P1) and give an expression for An in
terms of f1(x).

(f) Solve (2) with f1(x) = 100 and f2(x) = 100x(1− x). You may use the identity below
(valid for n = 1, 2, . . .):∫ 1

0

x(1− x) sin(nπx)dx =
2((−1)n − 1)

π3n3
.

Problem 3 (30 pts) Consider a circular plate of radius 1 with initial temperature distri-
bution of the form f(r, θ) = g(r) cos 2θ and where the outer rim of the plate is kept in an
ice bath. The temperature distribution u(r, θ, t) satisfies the 2D Heat equation

(3)


ut = ∆u for 0 < r < 1, 0 ≤ θ ≤ 2π and t > 0

u(r, θ, 0) = f(r, θ) for 0 < r < 1 and 0 ≤ θ ≤ 2π

u(1, θ, t) = 0 for 0 ≤ θ ≤ 2π and t > 0

Because the initial temperature distribution is a multiple of cos 2θ, the solution can be
shown to be

u(r, θ, t) =
∞∑
n=1

a2nJ2(α2nr) cos 2θ exp[−α2
2nt].

where α2n denotes the n−th zero of the Bessel function of the first kind of order 2, and

a2n =
2

πJ2
2+1(α2n)

∫ 1

0

∫ 2π

0

f(r, θ)J2(α2nr) cos 2θ dθ rdr for n = 1, 2, . . .

(a) Solve (3) with the initial temperatures

f1(r, θ) = J2(α2,1r) cos 2θ and f2(r, θ) = J2(α2,2r) cos 2θ.

(b) The steady state temperature distribution is u = 0. Of the initial temperatures f1(r, θ)
and f2(r, θ), which decays faster to the steady state? Justify your answer.
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Problem 4 (10 pts) Recall that the Laplacian in spherical coordinates is:

∆u =
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2

(
∂2u

∂θ2
+

1

tan θ

∂u

∂θ
+

1

sin2 θ

∂2u

∂φ2

)
.

Determine whether the function f(x, y, z) = (x2 + y2 + z2)−1/2 satisfies Laplace’s equation
∆u = 0.

Some useful formulas

0.1. Orthogonality relations for sine series. With the inner product (u, v) =
∫ a

0
u(x)v(x)dx,

we have for all m, n non-zero integers,(
sin
(mπ
a
x
)
, sin

(nπ
a
x
))

=


2

a
if m = n

0 if m 6= n

0.2. Hyperbolic trigonometry.

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
(coshx)′ = sinhx, (sinhx)′ = coshx

cosh2 x− sinh2 y = 1, sinh 0 = 0

0.3. Bessel functions. The following identities are valid for p ≥ 0 and n = 0, 1, . . ..∫
J1(r)dr = −J0(r) + C and

∫
rp+1Jp(r)dr = rp+1Jp+1(r) + C

0.4. Orthogonality relations for Bessel functions. Let a > 0 and m ≥ 0 be fixed.
Denote with αmn the n−th positive zero of the Bessel function of the first kind of order m.
With the inner product

(u, v) =

∫ a

0

u(r)v(r)r dr

we have for all j, k non-zero integers,(
Jm(

αmj
a
r), Jm(

αmk
a
r)
)

=


a2

2
J2
m+1(αmj) if j = k

0 if j 6= k.
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